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The phase diagram for electron-hole droplet condensation is addressed, and detailed calcula-

tions are given for the elemental systems Ge and Si with varying uniaxial strain which have

properties that vary systematically over relatively wide ranges. A model based on noninteracting

droplet fluctuations is used to describe the phase diagram. This model expresses the liquid and

gas densities in terms of properties of the low-temperature liquid phase, most notably its surface

tension. Detailed microscopic calculations based on a gradient expansion of the free energy are

given for the temperature-dependent surface tension of droplets in six model systems involving

Ge and Si with uniaxial strain; these are zero strain, intermediate strain sut'ficient to remove the

electron-band degeneracy, and large strain which also removes the hole-band degeneracy. Phase

diagrams are given for these systems and show changes corresponding to the systematic de-

crease in the electron-hole droplet binding energy with increasing uniaxial strain. The resulting

critical temperatures and densities are compared to the results of new calculations based on the

uniform plasma approach to the critical point. The phase diagrams, including the values ot the

critical parameters, are in good agreement with experiment for unstressed Ge and Si and for Ge

with fairly large uniaxial dress. The model provides a parameter which characterizes the shape

of the phase diagram, and systematic changes in shape with strain are obtained.

I. INTRODUCTION

At low temperatures and fairly high densi'. y, elec-
trons and holes in many semiconductor systems un-

dergo a liquid-gas-like condensation into micron sized
droplets of "metallic" electron-hole liquid (EHL). In
recent years this phenomenon has received much ex-
perimental' and theoretical' study. Because the
effective-mass approximation accounts in detail for
the electron-lattice (ion) interaction in most semicon-
ductors and the band-structure parameters are known
very accurately in these systems, the electron-hole
droplet (EHD) system offers perhaps the best testing
ground presently known for the understanding of the
effects (on both bulk and surface properties) of
electron-electron interactions which play an important
role in many aspects of solid-state physics. In addi-
tion EHD condensation is unusual among phase tran-
sitions in that it is the most quantum of known tran-
sitions; in it the electronic system remains largely de-
generate up to the critical temperature.

EHD condensation has received the most detailed
investigation in the indirect gap, elemental semicon-
ductors Ge and Si, but it has also been studied in
other systems notably Ge and Si with uniaxial
stress, ' especially so quite recently, ' and also in

compound semiconductors. The existence of EHD
condensation in a particular semiconductor system
and the properties of the resulting condensate are
known to depend sensitively on the band structure of
the semiconductor. The ground-state energetics of
EHL are understood quite well especially in Ge and
Si. At zero temperature the ground-state energy of
EHL is composed of kinetic energy, exchange energy,
and correlation energy. Ge and Si have respectively
four- and sixfold degenerate electron conduction
bands and coupled heavy and light hole bands. The
degeneracy (and anisotropy) of the bands plays an
important role in reducing the EHL ground-state en-
ergy below that of the exciton, thereby stabilizing the
EHL mainly by reducing the kinetic energy.

As the number of systems in which EHI3 conden-
sation is observed increases and becomes more
varied, the systematics of this condensation is coming
to be of considerable interest. I t is in part the pur-
pose of the present work to study the systematic
changes in the properties of the condensa'tion in a set
of well characterized systems with widely varying en-
ergetics. Ge and Si with varying uniaxial strain along
the [1111and [100) directions, respectively, consti-
tute an attractive set of systems for such a study in
that their band structure is known well, and detailed
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FIG. 1. Schematic representation of typical phase diagram
for electron-hole droplet condensation in units of ln of den-

sity vs temperature.

calculations are available for the correlation energies.
Under moderate strain onc electron valley in Ge and
two in Si are lowered with respect to the others thus
lifting the conduction-band degeneracy; with still
larger uniaxial strain the hole-band degeneracy is also
lifted. These are the six model systems to be studied
in detail here. As the band degeneracy decreases
with increasing strain the kinetic energy increases,
and the binding energy of the EHL relative to the ex-
citon decreases; for example, for unstrained Ge the
EHL is bound strongly, but for Ge with large strain
the binding is weak.

The full temperature-dependent phase transition
for temperatures up to the critical temperature T, is

less well understood than the ground-state energetics.
The most complete picture of the phase transition is

provided by the phase diagram (see Fig. 1), which is

a boundary (in density p and temperature T )
separating a phase composed of a low-density "gas" of
excitons, electrons, and holes from a phase of high-
density "metallic" liquid (EHL) and from a two phase
region involving their coexistence which is character-
ized by electron-hole droplets (EHD). The shapes of

1
both sides of the phase diagram for T & T T, are un-

derstood reasonably well on the basis of quite simple
arguments: On the gas side of T (

2 T, (p ( 2 x 1G'5

cm 3 for Ge) the exponential dependence of the den-
sity on T is given by thermal equilibrium between a
noninteracting classical gas and the liquid phase. '

On the liquid side for T &
2 T„ the T' dependence

of the density can be understood with a simple pic-
ture of nonintcracting degenerate fermions. ' " For

T & —, T, however these simple descriptions fail, and
there results a flattening of the top of the phase di-
agram (see Fig. 1).

Theoretical understanding of the phase diagram in

the region T &
2 T, is hampered by an inadequate

knowledge of the energetics of the electron-hole sys-
tem. In the intermediate density region, between the
dense electron-hole system and the low-density exci-
tons, the effects of multiple scattering between elec-
trons and holes become increasingly important, and
existing many-body theories do not provide an ade-
quate description of the exchange-correlation energy
in this region. Furthermore, as Tapproaches T„crit-
ical' fluctuations become increasingly important, and
these fluctuation contributions to thc free energy also
have not been calculated from a microscopic theory.

Often in discussing experimental data, it has simply
been suggested that the scaled phase diagram in this
region has the same shape as that for classical gas
condensation. "' Among theoretical approaches,
Droz and Combescot'3 have suggested a parameter-
ized lattice-gas model. Reinecke and Ying" intro-
duced a model based on droplet fluctuations. Mahler
and Birman" have made model approximations for
the constituents and energetics for the intermediate
density regime.

In the present paper the droplet fluctuation model
is discussed fully, and it is used to treat in detail
EHD condensation in Ge and Si with varying uniaxial
strain. This mode1 expresses the densities in terms
of the properties of the low-temperature liquid phase,
most notably its surface tension. Detailed microscop-
ic calculations are made of the temperature-depen-
dent surface tension for the six systems given by Ge
and Si with zero, intermediate, and large uniaxial
strain, and the corresponding phase diagrams are
given. These results furnish perhaps the most com-
plete picture to date of the systematic behavior of
EHD condensation in a set of systems with widely

varying energetics. Brief accounts of some aspects of
the droplet fluctuation model for EHD condensation
have appeared previously. '"' " It is the purpose of
the present paper to give a fairly complete account of
the model incuding comparison with experiment and
with other calculations and also to discuss in some
detail its application to the set of strained elemental
systems.

The paper is organized as follows: The droplet
fluctuation model is developed in Sec. II A. Calcula-
tions of the temperature-dependent surface tension
are given in Sec. II B, and the phase diagrams for the
six model systems are given in Sec. II C. These
results are compared with experiment in Sec. III A.
The resulting critical points are compared with new
evaluations of the critical points of these systems us-

ing the uniform plasma-model description of the sys-
tem in Sec. III B. The shapes of the phase diagrams
are discussed in Sec. III C.
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II. DROPLET FLUCTUATION MODEL

AND CALCULATIONS

A. Droplet fluctuation model for electron-hole
droplet condensation in semiconductors

In order to describe the phase diagram for T & —, T„
we employ a simple, physically clear model' based
on the concept of droplet fluctuations. This model is

an extension of a model already used to discuss the
condensation of classical gases" and used more re-
cently to discuss certain aspects of critical pheome-
na. ' In this model the gas near the condensation
curve is pictured as containing a distribution of
noninteracting dropletlike fluctuations at constant
chemical potential p, and temperature T. Then the
gas density is given by

Here the free energy of a droplet fluctuation of n

electron-hole pairs' is separated into a bulk term FBn
where FB is the bulk free energy per pair, a surface
term a-an", where a. is a surface tension parameter
for the fluctuation, and an" is the surface area, and a

higher-order term in ln(n)"; qo is an overall propor-
tionality constant.

The condensation point and the critical point are
determined as follows. The exponential factor Eq.
(I) gives the probability of a fluctuation of n pairs.
For FB ( p, the probability of very large fluctuations
diverges, whereas for FB ) p, it does not. Thus the
condition p, =Fs(T) indicates the onset of a stable
liquid phase and gives the condensation point. Using
this condition the gas density on the coexistence
curve is

a (T)an"
pG, coex. q0 + n exp

n-& kB T
(2)

As T approaches T, the surface tension parameter
a (T) decreases, and fluctuations increase. Finally at
a temperature for which o(T) vanishes, stable dro. -

plet formation is no longer possible, and thus the
condition

0.(T = T,) =0

pa = qo X n exp [ [Fsn +—aan.
n 1

+ ks Tr In(n) —ILn]/ks T) . (1)

Here po(T) gives the temperature variation of the
density due to single-particle excitations across the
electron and hole Fermi surfaces, and the second
term gives that corresponding to bubble fluctuations.
Complete symmetry between droplet and bubble fluc-
tuations has been assumed which gives a particularly
simple expression for the density at the critical tem-
perature

p, = —,po(T = T)1

The shape of the phase diagram in the region
T & —, T, is given by the sums in Eqs. (2) and (4)
which correspond to fluctuations. As T approaches
T„o(T) dec.reases and the fluctuations increase.
Thus, crudely speaking, the shape of the phase di-

agram is controlled by a(T) In the .droplet model,
rather than employing an expression for the free en-
ergy as a function of the average uniform density,
model averages are made over different configura-
tions which consist of dense droplets and empty
background (dense background and empty bubbles
on the liquid side). Thus this approach has the mer-
its that the free energy as a function of equilibrium
density in the intermediate density regime is not re-
quired, and also critical fluctuations are included in a

simple and intuitive way. In order to proceed further
with quantitative calculation (or analysis of experi-
ment) however, a further assumption must be made:
that the bulk and surface-free energy of a droplet can
be calculated as if it were in equilibrium rather than a

part of a fluctuation configuration. This is obviously
a good description when the lifetime of the fluctua-
tion is long compared to the thermalization time of
the droplet, which is expected to be the case for tem-
peratures approaching T, .

It is also worth pointing out that the simple picture
of the gas phase used here does not account in an ac-
curate way for the energetics of small, bound-state
constituents (such as excitons, trions, etc.). There is

some evidence" in unstrained Ge that their dissocia-
tion in the gas modifies the gas side of the condensa-
tion phase diagram for densities up to but not includ-

ing the immediate vicinity of p, . Such an effect is

not included here, and for this reason also the
present treatment is expected to give a good descrip-
tion of the phase diagram only for T near T, ~

pL, coeL pO(T) —qo X a 'exp rr(T) an&

n~l kB T
(4)

determines T,.
In a manner similar to Eq. (1) we picture the liquid

phase near the condensation curve as dense EHL
containing "bubble"-like fluctuations of the gas. On
the liquid side of the coexistence curve (p, = Fs) the
density is then

B. Microscopic calculations of the temperature-dependent
surface tension for six model systems

In this section microscopic calculations of the
temperature-dependent surface tension and resulting
estimates of the critical temperatures and densities T,
and p, are given for Ge and Si with varying strain
along [111]and [100], respectively. The band
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TABLE I. Input parameters for the calculations for six model systems. Ge[v~, v&] indicates Ge
with v, and v& occupied electron and hole bands. The masses give the transverse (i) and longitu-
dinal (ll) masses of ellipsoidal electron and hole bands and heavy (H) and light (L) hole bands;
masses are in units of the bare electron mass. Rp and ap are effective Rydberg and Bohr radius,
and D, F. give bulk correlation energy [Eq. (7)].

Ge[4;2] Ge[1;2] Ge[1;1] Si[6;2] Si[2;2] Si[2;I]

Nf~y

m~]]

maH

Nli L

2Rp (meV)
ap (10~ cm)
D(2R )
E

0.082
1.58
0.347
0.042
5,318
1.763
0.823
0.999

0.082
1.58
0.347
0.042
5.318
1.763
0.428
0.410

0.082
1.58

mz~
——0.130

m„„=0.040
5.310
1.766
0.287
0.192

0.1905
0.9163
0.523
0.154

25.959
0.487
0.629
0.616

0.1905
0.9163
0.523
0.154

25.959
0.487
0,384
0.270

0.1905
0.9163

m„~ =0.256

lily[] =0.200
25.739
0.491
0.297
0.191

parameters for these systems are listed in Table I.
The notation X[u„uq] indicates system X (= Ge or
Si) with u, degenerate ellipsoidal electron conduction
valleys and with a valence band composed of vq

(coupled) hole bands. A commonly used nomencla-
ture is that Ge[4;2] and Si[6;2] are at "zero" strain,
Ge[1;2] and Si[2;2] are at "intermediate" strain, and
Ge[1;I] and Si[2;I] are at "large" strain. It may be
noted that some recent experiments ' have been car-
ried out at a strain sufficient to remove both
conduction- and valence-band degeneracies but which
is not sufficiently large to correspond to the band
structures in Table I; this arises because residual
valence-band coupling gives an effectively nonpara-

bolic hole mass. This effect can be incorporated
straightforwardly in the present calculations by modi-
fying the kinetic energy of the holes. Results for
the systems in Table I will be obtained here first, and
then in Sec. III A the effects of valence-band nonpar-
abolicity for one particular experimental strain will be
discussed.

The method used for calculating the temperature-
dependent surface tension is essentially that given in
Ref. 16 which is based on generalization of the ap-
proach used by Hohenberg and Kohn'" for the inho-
mogeneous electron gas. The droplet free energy is
written as a functional of the electron and hole densi-
ties p, and pq and is expanded in their gradients.

fO

F[p„pa] =
2 J z [pq(r) —p, (r)][pq(r') —p, (r')]/) r —r'~ d'r d3r'
26p

+ &' g (p~ pa) d r +„" [g~(r ) I
7 p~l'+ga(r) ( V pq( +g,,q(r) V p, 0p„+" ] d'r

The bulk band structure is used for the energy versus wave-vector relation of electrons and holes. The carriers
interact via a Coulomb potential screened by the static background dielectric constant 6p. The term involving g
gives the local contribution to the free energy, and those involving g„gq, and g, ~ give the leading gradient con-
tributions; they are all in general temperature dependent.

For the local term in the free energy we use

~pp S/2

g(p, (r), p~(r)) = —,', (3m')'~' ' ' I—
t g/3

4(m, t/m„() 4(,
pe

&e

where

e ymel~el] g
2/3 r' 2 i 1/3

1

AT +
, ~F,.
+~'] pa"

+ ~ppIS/3

mu

5m2 ka T
12 E„

4/3 4/3

D pe + p'a

E+p E+p~

maH(1+ y ~ ) ~ for "zero" and "intermediate" stress
mes

(ml, ~~mq'q)'r' for "large" stress
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mpL

The total effective optically averaged mass is

1 1 2

3
1

1

mp

3 me Il met
i

+—1 1 1+
2 pplpH mpL

j

1 1 2

3
t

for "zero" and "intermediate" stress

for "large" stress

The function 4~ is given by where

4"(y) for zero and intermediate stress,

,
4&(mqi/m„tt) for large stress

The functions 4 and 4 are given in Ref. 5. The Fer-
mi energies are

EF;(r) = [37r'n, (r)]'i'(mp/2md), i =e, h

g, (0) =
mep 72 pe

(I + y'") (mo/ml n)
I + y'" 72p„

y'"(mo/miH)

(I + y'i') (I + y'i') 3p„
(9b)

g; =g;(0) [1+(—,
' rr') (ks T/Er;)'+ "] (8)

Atomic units are used throughout: The Bohr radius
is ap = ppit /mpe', densities are in units of ap ', and
energy is in a.u. =-2Rp = e'/fpop where Rp ts the ex-
citonic" Rydberg.

The first two terms in the local energy density Eq.
(7) at T =0 give the Hartree-Fock energy, which is
calculated exactly. ' The last term is the T =0 corre-
lation energy which is obtained by fitting calculations
of the bulk correlation energy from Refs. 9, 10, and
25 (see Ref. 26) with a Wigner-like form. These
calculations of the bulk correlation energy are the
most detailed available and include in an approximate
fashion both band anisotropy effects and multiple
scattering effects. The resulting values of Band E
are given in Table I. The temperature-dependent
terms in the bulk free energy Eq. (7) are the leading
contributions in ks T/EF; from the noninteracting
kinetic energy only. The temperature dependence of
the exchange-correlation energy has been neglected;
this is expected to be a good approximation because
Rice has shown that (at least for Ge[4;2]) the com-
bined effect of exchange and correlation on the
single-particle properties is to lower the electron and
hole bands rigidly.

The leading contributions to the coefficients of the
gradient terms g„gi, in the high-density limit are ob-
tained from the kinetic energy functional only, and
they are'p

t

1 1 2
m~p =— - +

3 mell mej

Retaining the leading coefficients in the kinetic ener-

gy functional only should be a good approximation
for EHD systems because of their high effective den-
sity, r, 1.5 (r, is the interparticie spacing divided by

ap). Rose and Shore" have shown explicitly (for
Ge[4;2] at T =0) that a good approximation to the
exact kinetic energy is obtained by retaining its lead-
ing gradient term only as done here. In addition, it
has been shown that approximating the exchange and
correlation energies by a local term only, as done
here, gives good agreement with Hartree-Fock calcu-
lations for atoms ' and that this approximation satis-
fies an important sum rule in the case of surface cal-
culations. " In Eq. (8) as in Eq. (7) the leading term
in ks T/Er; has been retained. Band-structure effects
have been included fully except that the hole bands
have been taken to be isotropic.

%e shall be concerned with temperatures up to the
critical temperature for each system, and it is found
that for such temperatures ks T/EF; &( I where Er; is

the Fermi energy evaluated at the equilibrium bulk
density. This is the basis for retaining only the lead-
ing terms in ksT/Eq; in the free-energy functional,
Eqs. (7) and (8). The equilibrium EHL density
pp(T) and its surface tension o (T) therefore will be
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expanded for small T in a similar fashion

po(T) =—po(0) (I —8,T'),
a(T) = cr(0)(l —8 T')

(10a)

(10b)

The density po(T) is obtained by minimizing the bulk
free energy per electron-hole pair, Eq. (7). This
gives the values for po(0) and 5, quoted in Table II.'~

In order to obtain the surface tension the electron
and hole densities (i = e, h) in the surface region are
parameterized by the planar forms

—,
'

po(T) exp( —p,x), x )0,
po(T) ——,

'
po(T) exp(P, x), x & 0,

where x is the distance perpendicular to the surface.
For a fixed T the quantity o (PI, T)

~(P;.T) = (F[p, p—al —F [po po])

is formed as a function of the parameters p; by (nu-
merical) integration of Eq. (11). Then the surface
tension o(T) (and P;) are obtained by minimizing
o.(P;, T) with respect to the variational parameters P;

~' '-0
1

The values of T, obtained in this way from the calcu-
lations of o(T) are given in Table II for the six
model systems. ' The corresponding values of the

a.(T) is obtained as an expansion in small T as in Eq.
(10b), and the results are given in Table II.

Within the droplet fluctuation model the critical
temperature for EHD condensation is given by the
temperature at which the droplet surface tension goes
to zero, Eq. (3). From Eq. (10b) this gives

(13)

critical density p, obtained from Eq. (5) are also

given.
We have also considered in detail the effects which

several approximations in our calculation of the sur-
face tension have on T, [and on a(0)]. The most
important of these approximations is found to be ihe
treatment of the contribution to the surface tension
from the low-density "tail" region of electron and
hole distributions. The free-energy functional used
here is appropriate for a high-density electron-hole
system and does not represent properly the low-

density tail region. The contribution of the local
term, Eq. (7), to cr(T) from the tail region is negligi-
ble for large x and can be ignored; we have simply
used expression (7) for all x. The contribution of the
gradient term, Eqs. (6) and (8), for low densities
such that EF;(p;(x)) & ks T however becomes artifi-
cially large. On the grounds that the low-density re-
gion should make a small contribution to o(T), we.
have made a physically plausible but somewhat arbi-
trary effective "cutoff" in the integration over x by
evaluating EF;(p;(x) = p) in Eq. (8) where

p =0.4po(0) ', this gives the values for T, in Table
II. By varying p between 0.3po(0) ~ p ~.0.7po(0) the
resulting values of T, vary by & (—,)%.3o Other

checks on the approximations used in the present cal-
culation include using the eight term polynomial fit
(of Ref. 35) for the correlation energy which de-
creases T, by &7'/o and decreases o.(0) by a simiiar
amount and, secondly, including a term correspond-
ing to the leading contribution of the exchange and
correlation energy to the gradient term in Eq. (6),
which decreases T, by —4%. We feel that a reason-
able estimate of the total uncertainty in T, from the
approximations involved in the present calculation is
-+8%.

The values obtained here for o.(0), the zero-
temperature surface energy, are in agreement with
those reported previously by the present au-
thors' ' o for Ge[4;2], Si[6;2], and Ge[1;1] and

TABLE Il. Values of the bulk density and surface tension [Eq. (10)], and of the critical tempera-
ture and density T, and p, obtained from calculations in text. o.(0)ao/k~ T, characterizes the shape
of the corresponding phase diagram.

Ge[4;2] Ge[1;2] Ge[1;1] Si[6;2] Si[2;2] Si[2;1]

p, (0) (10"cm-')
(10-3 g-2)

(0) (10~ erglcm2)
S (10-'K.-')-
r, (~)
p, (10~~ cm 3)

o.(0)ao/kg T,

2.258
9.2444
1.84
2.21
6.73
0.656
2.56

0.717
18.04
0.452
4.18
4.89
0.204
1.87

0.111
49;90
0.0679

11.8
2.91
0.0320
1.63

32.51
0.7427

32.0
0, 181

23.5
9.59
2.17

13.80
1.012

11.6
0.283

18.8
4.43
1.75

4.494
1.827
3.53
0.495

14.2
1.42
1.48
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are in reasonably good agreement with the calcula-
tions reported by other authors. In particular
for the case of Ge[4;2], the present results are in

very good agreement with the recent detailed calcula-
tions of Rose and Shore" in the case in which these
authors use essentially the same (T =0) energy func-
tional used here. There is at present some uncertain-
ty as to whether it is appropriate to include the lead-

ing effects of exchange and correlation in the gra-
dient term in energy functional, Eq. (6), and we have
not included them above. ' ' We find, in agreement
with other authors, ' ' that the effect of such
terms is to increase o (0). In the case of Ge[1;ll, for
example, if we include the leading contributions from
the exchange and correlation in the high-density lim-
it44 to the gradient term (g,"'+gP) =5.083
x10 '[ , (p, +p-p)] 'a.u. , o(0) =0.112 &10 '

erg/cm' which is somewhat larger than that given in
Table II (and first reported' by us for this system' )
and is in fairly good agreement with recent calcula-
tions by others. ' ' ' '" Finally it might be noted
that the apparently large change with stress in the nu-
merical value of o.(0) between the several model sys-
tems studied here is consistent with the crude rule
that on dimensional grounds o.(0) should scale
roughly with a4pp(0) ' where ag is the EHL ground-
state energy at density pp(0).

C. Phase diagrams for six model systems

I

Equations (2) and (4) give the phase diagram in

terms of o (T) and pp(T) which are properties of the
low-temperature EHL. In Figs. 2 and 3 we give the
phase diagrams obtained by using the results of the
microscopic calculations from Sec. II B for 0-(T) and

pp(T) for Ge and Si, respectively, with varying strain.
In each of these systems for temperatures less than
the critical temperature, pp(T) and o(T) can be ex-.
panded for small Tas in Eqs. (10). From simple

geometry

1.0

0.75

T/Tc

0.5

0.25—

I

1.0 2.0 3.0

pIpc—

FIG. 2. Phase diagrams obtained from calculations in text
for Ge with zero, ' intermediate, and large uniaxial strain.

30—

7.0 infinite and for the finite 7.0 which corresponds to
real EHD systems. Physically the reason that the ef-
fects of finite 70 become non-negligible only at low T
is that for such temperatures the rates for the eva-
poration and collection processes slow down to the

. time scale of Tp For G. e[4;2] and Si[6;2] these devi-

ations are found to occur only for T & 2 K and T & 8

K, respectively, and in the region T & —T, of partic-

ular interest here there is no appreciable difference
for finite and infinite 70. Because the critical tem-
peratures decrease substantially with strain however,
it becomes important to determine for what tempera-
tures the effects of finite vp become appreciable in

strained systems, but detailed calculations of the ef-
fects of finite v.

p for these systems are not yet avail-

able.
A rough estimate of these temperatures can be ob-

tained by noting that the difference between the

47r ( /3[4=~ p( p)0]l
7[13+—,

'
S,T'] (14) 20

and 71= —;also r=2.2. Then qp=p, /((7 —1)

where f( ) is the Riemann $ function.
The simple droplet fluctuation model given in Sec.

II A for EHD condensation and for the phase curve is

based on the standard ideas of equilibrium statistical
mechanics and does not take into account effects
resulting from the finite lifetime 70 of the electron
and hole which characterizes EHD. Detailed calcula-
tions ' based on a model which treats evaporation,
collection, and recombination processes at the droplet
have shown that there are differences between the
condensation phase curve (on the low-T gas side) for

T( K)

10

1.0 2.0 3.0

p(10'Bcm 3]

FIG. 3. Phase diagrams obtained from calculations in text
for Si with zero, intermediate, and large uniaxial strain.
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phase curve (on the gas side) for finite ro and infin-
ite ro depends on (pG p—i)/ksT where pG and pi are
the (true) chemical potentials for the gas and the
liquid for infinite ~0. A convenient estimate"' of the
temperature belo~ which the effects of finite 70 be-
come appreciable in strained systems can therefore be
made by determining the temperature for which this
ratio in the strained system equals that for the
corresponding unstrained system evaluated at the
temperature for which finite vo effects are known
from available detailed calculations to become appre-
ciable in the latter systems. A lower bound for
(p,G

—
p~) /k aTis given by Silver

&/2

Pg pi
I 1

2o(0)
AT 3AT ~pkg

exp, (15)
AT

where A is the coefficient of the Richardson-
Dushman expression for exciton evaporation from
the drop, and $ is the condensation energy (the
difference between the EHD ground-state energy and
the exciton energy). By using the above procedure50
we have determined for example that finite vo is ex-
pected to have an appreciable effect on the phase di-

agram for Ge[1;1] only for T &
2

K and for Si[2;I]
only for T & 2 K. Physically the reason why these
temperatures decrease for increasing stress is that the
effects of finite vo depend on temperature mainly
through exp(@/ks T) (which arises from the evapora-
tion term), and @ decreases with increasing strain. In
fact, we find for all of the six systems studied the ef-
fects of finite vo are negligible for T & —, T„ the re-

gion of interest here.

Complete phase diagrams have been measured only
for Ge[4;2]"22 and for Si[6;2]" 5', such data are
shown in Figs. 4(a) and 4(b). For Ge[4;2] the most
recent measurements of T, and p, by Thomas et al. 22

give T, =6.7+0.2 K and p, =(6+1) x 10'6 cm ' and
by Minescalco et al. give T, =7.0+0.1 K and

p, = (8.9 +0.5) x 10'6 cm ', earlier measurements by
Thomas et al. '2 gave T, =-6.5 +0.1 K and

p, =(8+2) x10'6cm 3. For Si the most recent
measurements of the critical point by Forchel and
Schmid give T, =22.5+1.0 K and
P, = (1.34+0.03) x 10's cm 3 and measurements by
Shah et al. "give T, =27+1 K and p, =1.1 X10'
cm . Clearly the results of the microscopic calcula-
tions presented here (Table II) are in quite good
agreement with recent experimental values for T, and
in reasonable agreement for p, (for which experi-
mental values are probably somewhat less reliable).

III. COMPARISON %1TH EXPERIMENT, WITH OTHER
CALCULATIONS, AND DISCUSSION

A. Comparison with experiment

Some~hat less detailed measurements of the phase
diagram for uniaxially stressed Ge have been report-
ed recently by Feldman et al. ' At the stress em-
ployed in this experiment the electron- and hole-band
degeneracies are lifted, but residual valence-band
coupling gives a valence band which is nonparabolic,
with a hole mass which effectively depends on the en-
ergy. '" The band structure of this system therefore
does not quite correspond to the model Ge[l;ll treat-
ed above. Also a detailed calculation of the correla-
tion energy has not yet been carried out for the band
structure corresponding to the experimental stress.
In order to make a comparison with these experirnen-
tal results, we have made an estimate of T, and p,
based on the method of Sec. II 8 as follows. 'We first
note that the total of the exchange and correlation
energies when expressed in the appropriate atomic
units as a function density also in atomic units is very
nearly independent of system. ' " Therefore the ex-
change and correlation energy of Ge[1;1] is used in
the bulk term Eq. (7). Then the hole density of
states mass is adjusted so as to give the ground-state
equilibrium density po(0) =2.7 x 10'6 cm 3 observed
in the experiment. ' The adjusted hole density of
states mass is used in EFq, and the gradient coeffi-
cients for Ge[1;1] are retained. The surface tension .

and equilibrium density are calculated as usual and
are found to be

o (T) =0.150[1—(0.0825 K ') T'] x 10 ' erg/cm'

and

po(T) =2.7[1 —(0.03869 K ') T'] x 10"cm '

From these results we obtain T, =3.53 K and

p, =0.699 x 10' cm '. These values are in good
agreement with the experimental results which are
T, = 3.5 + 0.5 K and p, = (0.77 + 0.2) x 10' cm
The complete phase diagram is readily calculated as
in Sec. II C and is found to be in good agreement
with the available data. '

In comparing the phase diagrams with experiment
it should be pointed out that there is at present con-
siderable uncertainty concerning the gas side of the
phase diagram. Recently, based on an analysis of
recombination line shapes, Thomas et al. ' have con-
cluded in the case of unstrained Ge that the gas side
of the phase diagram for densities up to but not in-
cluding the immediate vicinity of p, is modifie'd as a
result of progressive dissociation with increasing den-
sity of the constituents (excitons, trions, etc.) of the
gas. This effect is not yet entirely clarified experi-
mentally or theoretically.

The phase diagrams obtained in Sec. II C on the
basis of microscopic calculations of po(T) and o.(T)
are in generally good agreement with experiment for
Ge[4;2] and Si[6;2] as noted above. The most dis-
cerning test of the droplet fluctuation model, howev-



T. L. REINECKE, M. C. I.EGA, AND 8, C. YING 20

er, is given by using the experimentally determined
po(T) and cr(T) to fit the data for the phase diagram
near T, . This fitting procedure in addition allows an
estimate of the surface-energy parameter o (0) to be
extracted from measurements of the phase diagram.
Such fits have been made for the data for Ge[4;2]'4
and Si[6;2]"and the results are shown in Figs. 4(a)6~
and 4(b). pp(T) was obtained from the low-T liquid
side of the phase diagram and is shown by po in the
figures; 5 is given by T, 2 [see Eq. (13)] where T, is
obtained from experiment. 63 Finally o (0) is chosen
in order to give the best overall fit to the data in each
case. The values of the droplet fluctuation surface-
energy parameter o.(0) obtained in this way are
o.(0) =1.0 x 10 ' erg/cm' for Ge[4;2] and
o (0) =32 ~ 10 ~ erg/cm' for Si[6;2]. Clearly the
present model accounts well for the detailed features
of the phase diagrams.

The interpretation of the surface-energy parameter
o.(0) for the droplet fluctuations appearing in Eqs.
(2) and (4) as the surface-energy appropriate to large
equilibrium drops must be taken with some caution.
Except for Tquite near T, the sums in Eqs. (2) and
(4) are dominated by relatively small droplet fluctua-
tions. For example, in the case of Ge[4;2] shown in
Fig. 4(a) (T, =6.5 K) at T =5.5 and 6.4 K, n & 10
and n & 30 contribute &10'/o of the sums. In princi-
ple, more reliable values of the surface tension could
be obtained by fitting the phase diagram within a few
tenths of a degree of T„but sufficiently detailed ex-
perimental data is not available in this region. For
small droplet fluctuations the separation of the free
energy into bulk and surface terms is somewhat arbi-
trary, and the surface-energy parameter appropriate
for the relatively small droplet fluctuations on the
phase curve may differ somewhat from that for a
large droplet. This difference has two closely related
implications for the present treatment of EHD phase
diagrams. First, there is some uncertainty in inter-
preting the value for o (0) obtained by fitting experi-
mental data for the phase diagram as done in Figs.
4(a) and 4(b) as the surface energy of large drops,
and second there is a corresponding uncertainty in

using values of the surface energy calculated micros-
copically for a large planar surface as in Sec. II 8 as
the surface energy appropriate for the small droplet
fluctuations in constructing the phase diagrams.

Although the relationship between the surface en-
ergy for the droplet fluctuations on the phase di-

agram and that for larger droplets is not yet known in
detail, an estimate can be obtained by examining the
case of Ge[4;2] for which experimental estimates
based on other methods are available. Analysis of
nucleation data '6 6 and of acoustic absorption '
has given estimates of the surface energy for large
droplets in the range (2.1 —4.2) x 10~ erg/cm' which,
although there remains considerable variation in the
values, nevertheless give values which are consistent-
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FIG. 4. Comparison between droplet fluctuation model
(solid curves) and measurements of electron-hole droplet
phase diagrams: (a) for Ge (data from Ref. 12; see
Ref. 62), and (b) for Si (data from Ref. 55).

ly somewhat larger than the value 1 x 10 4 erg/cm
obtained by fitting the phase curve [Fig. 4(a)]. By
noting that at a given value of. T/T, similar percen-
tages of the sums for the phase curve for ail systems
studied are given by fluctuations of a similar size, we
are led to suggest that the relationship between the
surface-energy parameter for droplet fluctuations on
the phase curve and that for large droplets is roughly
the same in all systems. Specifically, the surface en-
ergy for large droplets appears to be roughtly three
times that obtained by fitting the phase curve. Thus,
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for example, on the basis of the fitting of the phase
diagram for Si[6;2] above [Fig. 4(b)] we estimate that
the surface energy for large drops in Si is
=100 x 10~ erg/cm . This value is consistent with a
recent estimate made for Si[6;2] on the basis of nu-

cleation data. '4

B. Comparison with results of the
uniform plasma approach

The values of the critical temperatures and densi-
ties for these six systems calculated above from the
droplet fluctuation model are now compared to the
corresponding values calculated from the "uniform
plasma approach"6 to the EHD critical region. The
basic idea behind the uniform plasma approach to the
critical point is understood by noting that in principle
for T & T, the sides of the coexistence curve can be
obtained by using a Maxwell construction involving
the chemical potential p, as a function of density p
and that the critical point is given by an inflection
point in p, vs p. Combescot has pointed out that
despite the fact that an expression for the free energy
like that in Eq. (7) is too crude for an adequate
description of the gas phase along the phase boun-

dary and hence cannot be used to determine directly
the phase diagram, the critical point itself occurs at a

fairly high density and the free-energy expression (7)
and the chemical potential derived from it provides a

reasonable description there. Thus the inflection
point in the corresponding chemical potential can be
used to determine T, and p, .

%e have recently made new calculations of the
critical point based on this approach using a chemical
potential formed from a free energy which is essen-
tially that in Eq. (7) except that the numerical values
of the correlation energies from Refs. 9, 10, and 25
were used directly at the densities for which they
were tabulated and a signer-like form was used for
lo~er densities. Analogous calculations made using
an eight-term polynomial fit to the correlation ener-
gies gave only modest (-5%) changes for T, . The
dependence of the resulting critical points on details
of the correlation energy was tested by studying its

changes resulting from arbitrary changes in the densi-

ty derivatives of the correlation energy, and the criti-

cal point was found not to be overly sensitive to de-
tails of the correlation energy. The results are sho~n
in Table III.

Points to be noted from these results include: (i)
An error in previous calculations69 was corrected. (ii)
These results for the critical point, especially for T,

'

are in rather good agreement with those obtained by
other authorsi2, 68, 70 who used the uniform plasma ap-
proach but used somewhat different correlation ener-
gies. This agreement as well as the results of the
direct tests of the sensitivity of the cr'itical point to
details of the correlation energy indicate that this ap-
proach gives consistent estimates of the critical point
which are not strongly dependent on an imperfect
knowledge of the correlation energy. (iii) The result-
ing values of T, are larger than the most recent ex-
perimental results' '6' and also than the results of
the present droplet fluctuation model calculations.

The droplet fluctuation model and the uniform
plasma approach employ two rather different treat-
ments of the EHD system at its critical point. In the
uniform plasma approach the chemical potential is
calculated neglecting statistical density fluctuations,
and the critical point is located from an inflection
point in the chemical potential. In the present drop-
let fluctuation model, on the other hand, statistical
density fluctuations are included in an approximate
way, and T, is obtained from the temperature depen-
dence of the surface tension. The nature of the two
approximations is different, and the accuracy of each
is difficult to estimate; thus it does not appear that
one can distinguish a priori which is the better
method with which to estimate the critical point. As
seen from Tables II and III, the values of T, from
the uniform plasma approach are in reasonable good
agreement with those from the droplet fluctuation
model but are consistently somewhat higher than the
latter results; importantly they show the same trend
with strain. The fact that the uniform plasma ap-
proach gives values of T, consistently higher than
those from the droplet fluctuation model is consistent
with the fact that in the former approach critical fluc-
tuations are neglected. In all such mean-field-like ap-
proaches which neglect fluctuations, the critical tern-
perature is overestimated. " The droplet fluctuation
model, on the other hand, includes fluctuations albeit

TABLE III. Values of the critical parameters calculated on the basis of the uniform plasma model
approach to the critical point.

Ge[4;2] Ge [1;2] Ge[1;1] Si[6;2] Si[2;2] Si[2;I]

T, (K)
p, (10' cm )

7.91
0.436

6.09
0, 117

3.76
0.0247

29.1

4.22

26.4
2.71

17.6
0.779
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in an approximate way.
Finally it should also be noted that the droplet fluc-

tuation model gives the critical point as a part of a
unified treatment of the phase diagram near T,
whereas the uniform plasma approach gives only the
quantities T, and p, .

C. Discussion

Finally we point out that the present droplet fluc-
tuation model provides a useful parameter with which
to characterize quantitatively the "shape" of the EHD
phase diagram. As the number of systems in which
EHD condensation is studied has increased in recent
years to include stressed Ge and Si and also a variety
of compound semiconductors, interest has grown in
the systematics of this phenomenon, e.g. , in the ex-
tent to which the features of the condensation are
common to all systems or vary from system to sys-
tem. One suggestion along these lines is that EHD
phase diagrams have a universal shape which is in
fact the same as that for a classical gas condensation. '

From Eqs. (2), (10b), and (13), it is seen that each
term in the sum foi pG „,„ is a power of
exp( —[o (0)a(T)/T, ][1—(T/T, )'] T,/T], and similar-

ly for p~, „., Thus in the region T & —, T, the shape

of the phase diagram when expressed in densities
scaled by p, and temperatures by T, (i.e., p/p, vs
T/T, ) is characterized by the dimensionless quantity
a ( )Oa ok/sT, ~ a (0)/po(0) ks T, where
ao =4m {3/[4mpo(0)]]'~'from Eq. (14). As discussed in
detail in Sec. II 8 the quantities cr(0) and T, are each
sensitive (in different ways) to details of the EHL en-
ergetics, which itself is determined by the semicon-
ductor band structure. Thus we expect a priori that
the shape of the phase diagram will vary accordingly
from system to system. " Values of the parameter
a(0)ao/ks T obtained from the microscopic calcula-
tions of a.(0) and T, given above are listed in Table
II for the six systems studied here. The shape of the
corresponding phase diagrams is seen to have a sys-
tematic variation with strain in both Ge and Si. The
decreasing value of the shape parameter with strain
corresponds to a phase diagram which is less "flat" on
the top Because. the values of o.(0) and T, for the
six systems were obtained by the same theoretical ap-
proach, we believe that this systematic variation with
stress is real and that it reflects the underlying change
in the energetics. Indeed, in very recent work in
which we develop several "scaling relations" for
EHD condensation we 0 have shown that this shape
parameter for the phase diagram scales like

~(0)ao/ks T, ~ (C/A)' where C is the the coeffi-
cient of

~

'vr p~2/p in the gradient term in the free en-
ergy (p, = pz = p), Eqs. (6), (8), and (9), and A is the
coefficient of p' 3 in the bulk term Eq. (7). e
have shown that within approximations similar to
those employed here the changes, in the shape param-
eter with strain obtained in the present calculations
can be accounted for quantitatively by the corres-
ponding changes in (C/A)'~'. Thus this scaling argu-
ment and the explicit calculations presented here sub-
stantiate the dependence of the shape of the phase
diagram on the underlying droplet energetics (band
structure).

IV. CONCLUDING REMARKS

We have provided a model of electron-hole droplet
condensation and of the corresponding phase di-
agram, which reduces the description of the entire
phase diagram to the properties of the low-temp-
erature electron-hole liquid. Detailed calculations of
the surface tension for six model systems involving
Ge and Si with varying uniaxial stress have been
presented, and the corresponding phase diagrams
have been constructed, thus providing a detailed pic-
ture of EHD condensation in a set of systems with
systematically but widely varying energetics. Results
for their critical points have been compared to the
results of new calculations of the corresponding
quantities based on the uniform plasma model. As

'

thc ground-state energetics of EHD in other systems
are understood in better-microscopic detail, this
model will enable the construction of the correspond-
ing phase diagrams, or conversely as the phase di-
agrams are measured in greater detail the model pro-
vides a method to extract an estimate of the droplet
surface tension. Finally the droplet fluctuation model
provides a convenient parameter with which to
characterize quantitatively the shape of phase di-
agrams, and systematic changes in the shape of the
phase diagram corresponding to systematic changes in
the underlying energetics have been obtained.
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