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Hartree-Fock density of states for extended systems
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The density of states (DOS) of extended systems, calculated at the rigorous Hartree-Fock (HF) level, can
have a number of unphysical features. It is shown analytically that in partially filled band systems (crystals,
thin films, polymers) the HF DOS vanishes at the Fermi energy, regardless e~ Fermi-surface shape. HF
DOS will also vanish, in the (rare) event that an equienergetic surface S for an energy different from the
Fermi energy coincides with the Fermi surface SF. Additional features such as shoulders, peaks, or near
gaps can occur at energies with surfaces S close to SF. No HF-related zero DOS arises in filled-band
extended systems. Published HF DOS are discussed. A detailed summary of expressions for crystal HF
matrix elements in momentum representation is given. Their modification for thin films and polymers is
indicated.

I. INTRODUCTION

Since 1969 several calculations have appeared in
the literature that aim towards obtaining rigorous
Hartree-Fock (HF) results for crystalline solids.
These calculations differed from previous work to
the extent that full, nonlocal exchange was taken
into account, and that integrals were calculated
accurately or approximated carefully. Because
only limited basis sets were used in Bloch orbital
expansions no calculation can be considered to have
reached the HF limit. Nevertheless, there are in-
dications that several have come pretty close.

Two fundamentally different approaches to rigor-
ous HF have been used. One of these can be char-
acterized as a configuration-space (CS) approach,
since the HF matrix elements are expressed as
real (or direct) lattice sums over multicenter inte-
gral. s. A formulation, using Adams-Gilbert local
orbitals, ' was first given by Kunz. ' Applications
were made to the optical properties of solid rare
gases, ' alkali halides, ' and lithium hydride. ' The
linear-combination-of-atomic-orbitals (LCAO)

-version of this approach was appl. ied to diamond, '
LiF, and Ne. ' More recently, the CS approach
was applied to some "open-shell" solids (with par-
tially filled bands) such as calcium, ' lithium, ' and
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The other approach can be described as a mo-
mentum-space (MS) approach, because recipro-
cal lattice summations are used to compute HF
matrix elements. First introduced by Harris and
Monkhorst, " the MS (or Fourier) method has also
been used for diamond by Mauger and Lannoo, "
employing Slater-type orbitals for atomic basis
functions. Very recently the MS approach has
been analyzed by Cox and Fry" and Fry eP &E.

"
(hereafter referred to by FBB). Applications to
properties of several. simple metals have also ap-
peared. "

The CS and MS formulations are totally different
in their analytic and computational details, al-
though, when. carried to their limits, the two ap-
proaches are identical. We already indicated that
the CS and MS methods are based on direct and
reciprocal lattice summations, respectively. This
difference has several consequences of great prac-
tical import. To name a few:

(i) The CS approach is most appropriate for in-
sulating crystals, whereas the MS approach con-
verges best for conductors.

(ii) The Madelung-type conditional convergence
problem that troubles the CS method is eliminated
in the MS method through a rigorous cancellation
of singularities. As a result, total HF energies
with the CS method can oscillate seriously with as-
sumed unit cell cluster size (implicit in the real
lattice sum truncation), whereas in the MS method
these energies are stable.

(iii) The most significant difference is that the
CS method requires the calculation and manipula-
tion of horrendous numbers of many-center inte-
grals, particularly when Gaussian-type orbitals
are used. The MS method, however, allows the
reductions to reciprocal lattice sums involving
Fourier transforms of basis functions only. Con-
sequently, when z orbitals occur per unit cell, the
computing effort of the CS method scales like ~',
and the MS method scales more like ~'.

In physical terms one can say that the CS ap-
proaches emphasize the calculation of the gotgl
wave function and charge distribution, whereas the
MS approach emphasizes the deviation from a uni-
form charge distribution and associated wave func-
tions. It can thus be understood that the methods
have different ranges of applicability.

The successes of the crystal HF calculations are
based on the precise def inition of the HF method.
This situation allows us to draw wel. l-founded con-
clusions on the correlation effects in band widths,
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gaps, and density of states (DOS). Moreover, and
possibly most significantly, its variational charac-
ter admits realistic geometry optimization. Final. -
ly, with the inclusion of proper basis functions,
the method gives excellent charge distributions,
with which many properties can be obtained.

Yet, the HF method has been discarded by many
band theorists because of its "unphysical" aspects.
They often refer to the vanishing DOS at the Fermi
level in the electron gas and the enormous widen-
ing of the occupied band. Indeed, even the valence
and conduction bands of alkali halides and diamond
are substantially wider than those inferred from
experiments. ' "'" In some instances correla-
tion corrections have been made, and invariably
the bandwidths become more "realistic. "'' "'"
Whether the DOS vanishes at the Fermi level in
crystals with partially filled bands had not been
clearly established so far. Jennison' and FBB'~
discuss this question, but admit that it would be
difficult to see in a DOS calculation with the con-
ventional methods.

We wish to present a rigorous proof that, in-
deed, the DOS at the Fermi level vanishes rigor-
ously whenever partially filled bands occur, re-
gardless of the shape and the connectivity of the
Fermi surface. We will also show that this is the
case for extended systems periodic in one or two
dimensions, such as polymers and thin films. No
special features are expected in the DOS for filled
and empty bands, except for widening of bands
and gaps near the Fermi level. Finally, we raise
the warning that unphysical features might occur
in the DOS as conventionally calculated. These
are related to the sudden drop to zero of the DOS
at the top of the Fermi sea.

The above behavior of the DOS is associated
with the extensiveness of the systems. Therefore,
it is not surprising that it can be most elegantly
shown with the MS approach. In Sec. II we sum-
marize the basic formulas of crystal HF in the
MS representation. This enables us to most easily
discuss the analytic behavior of the band energies
(Sec. III). Then follows the proof that the DOS
vanishes for partially filled band systems (Secs.
IV and V). A discussion of its conse(luences can

. be found in Sec. VI.

II. HARTREE-FOCK IN MOMENTUM REPRESENTATION

Consider a crystalline solid with A atoms per
unit cell, with nuclear charges Z„Z„.. . , Z„
and position vectors s„s„.. . , s„relative to the
unit-cell origin. The unit cell volume is v,. The
lattice vectors are indicated by R, R', etc. , and
the associated reciprocal lattice vectors are de-
noted K, K', etc.

We assume that the HF Bloch wave functions
~

vk) can be expressed in the I CAO form

&C,„(k), (1)

where the basis Bloch orbitals ~pk& in r repre-
sentation are given by

(r~pk&=N'"g exp(ik R)&r —R~p&

Q C*„(k)S,(k)C„,(k) = 6„„. (6)

For later developments it is convenient to write
M(k) for a matrix with elements M~,(k), and C„(k)
for a vector with components C~„(k). We can now

compactly write, instead of Eq. (6),

Ci(k)S(k)C (k) = 6„„. (I)

We will need the density matrix D(k), with ele
ments

&q,(k)=Q n„(k)C*„(k)C (k). (6)

The occupation number n„(k) is defined as

1, if E„(k) (Ez,
0, if E„(k))E~,

where E„(k) and E~ are the HF band energies and
Fermi energy as calculated below. Adopting a re-
stricted HF scheme (double occupancy of the or-
bitals), we have the charge neutrality condition

(9)

p g a„(k)s„(f)=~(g z.),
Pe ,m=1

(10)

where the k sum is over the BZ. Using the equiva-
lence, as N-~,

; Jd'k

as a real lattice summation, or
-1/2

(r~pk&= g exp[1(K+k) rj(k+K~p& (3)
Vp

as a reciprocal lattice sum. ~ is the number of
unit cells, and k is the Bloch vector in the Bril-
louin zone (BZ).

~
p& are the atomic orbitals.

The
~

vk) are assumed to satisfy the orthonor-
mality condition

(l),k
i
vk)= 6„„,

or, using E(l. (1) and the identification

S, (k ) -=(pk
i
qk ),

we can write
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we can equivalently write, thanks to (7) and (8),
A

2g ', f d'), n„(k)=p«
m=~

The HF equations can now be cast in the form

&pk
l
vlqk&= —,g ' &plK+k&v(K -K')&K'+k lq&;

Vp
K, K'

(19)

with the definitions

[F(k) E (k)S(k)]C„(k)= 0. (13) V(Q) = ——,Z(Q); (20)

As usual, these equations are obtained by minimiz-
ing the HF energy with constraints of Eqs. (7) and
(10) [or (12)]. Indeed, the latter condition im-
plicitly defines the Fermi energy E~ The Fock
matrix has the following structure:

A

Z(g) = g Z exp(iQ' s„); (21)

&pk Iclqk)= ~ g'&plK+k)C(K —K')&K +k

F„(k)=-&pk lFlql-);
h h h h h

E= T+ V+ C+X.

(14)

(15)

K, K'

(22)

h h h h
T, V, C, and X are the kinetic energy, nuclear at-
traction, electron-electron repulsion, and ex-
change operators, respectively.

We are now ready to discuss the expression for
the various matrix elements over the operators
in I'. As we indicated, we introduced the momen-
tum representation for all integrals. This was
followed by an interchange of the integrations and
lattice sums, wherever admissible. Subsequently,
use was made of the lattice orthogonality rela-
tion; as pf-~,

with the definition

Finally,

x (k) -=&pk lxlqk&

x &K +k ls)

r —P (rl«".Q. «)(—,)'Up
K"

(23)

2 3

g exp(ig R)= g 6(Q-K).
R K

(16) , Q &p lK+ k&X(K+ k, K'+ k)&K'+ k
l q),

Vp
K, K'

s,.(k) =—g &plK+k&«+k lq);
p

(17)

&pklz"lqk&= —p &plK k&
'

&K klq&;5p 2

(18)

For V and C, singularities arise for K= 0, due to
the long-range nature of the Coulomb potential. A

careful analysis reveals that these singularities
rigorously cancel, provided that, besides charge
neutrality, the unit cells have no dipole, quadru-
pole, or second moments. " (This condition is
generally overlooked in conventional applications
of Ewald-type lattice summations, and its non-
satisfaction can cause shifts in the band energies
and total energies of the CS approach. ") The ex- '

pressions below are therefore the remainders
after this long-range cancellation. These left-
overs can be interpreted as resulting from a de-
viation from a uniform-charge distribution.

Casting the formulas in forms convenient for
further discussion we have

(24)

where we have used the def inition

X(Q,4') = -(2'), d'O' Q D„,(k')
rs

) p (rl«" () —()' —«')(«" k')s))
Vp IK"+ Q —k'

I

'

(25)

The primes to the K, K' sums of Eqs. (19) and (21)
indicate the exclusion of K= K'. It is understood
that Q -Q' is a reciprocal lattice vector. Notice
that the nonlocal character of X is reflected by the
fact that X(g,g') is not a function of Q -g' alone.

At this point it is well to remind the reader that
Eqs. (17)-(24) are not always most convenient in
actual calculations. We have found various alter-
native expressions more conducive to exploitation
of convergence characteristics. ' ~" In particular,
when lp) and/or lq) are corelike orbitals, direct-
lattice sums give more rapid convergence. In
practice, therefore, we have used a mixture of
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direct and reciprocal lattice sums. "
The HF total energy per unit cell E„~ can be ob-

tained from the expression

E„,= ', d'0 Q n„(k)E„(k)
V

+ g [T, (k)+ y„(k)] a„(k)+ C.

(26)

T and V are given by Eqs. (18)-(20), and C is a
constant characteristic of the lattice structure
and cell size

2~', IZK I', d'q

K

(27)

The sum in C excludes K= 0, and the integral is
over all momentum values. This term appears
when the singularity from the V contribution to

(26) is balanced against that arising from the nu-

clear-nuclear repulsion. " Of course, the same
condition applied to this cancellation as discussed
below Eq. (16); the singularities have the same

origin. The constant C can be interpreted as the

electrostatic energy between the nuclei with

charges Z and positions s within the unit cell
and a uniform compensa, ting background of nega-
tive charge. It is easy to show that C vanishes if,
in addition, the (positive) nuclear charge is spread
out uniformly. This is the situation in the elec-
tron-gas model for a solid.

From Eqs. (17)-(25) it should be clear that the

MS formulation is really advantageous for valence
and conduction bands: the K, K' sums will converge
fast. A few such expressions can be found in FBB.

In conventional band calculations C has been

usually ignored. This is unfortunate because it
is easy to compute for any lattice structure, "
and its inclusion allows a realistic total-energy
evaluation.

Finally, we wish to point out that pal K sums are
accompanied by a factor 1/u, . This will prove im-
portant when discussing extended systems with

lower dimensionality (see Sec. V).

III. AN EXPRESSION FOR PE„(k)

For our analysis of the HF DOS we need the
gradient of the band energies. Starting from (13)
and dropping the k dependence from the expres-
sion, we get

(VF —E„VS)C„+(F E„S)VC„—VEP C„=—0. (28)

When we now premultiply with C~; using the herm-
iticity of F, S and the orthonormality condition of

IV. HF DENSITY OF STATES

The density of states (DOS), p(E) ca.n be ob-
tained using a variety of mathematically equiva-
lent, but computationally distinct formulas. For
our purposes the expression

p( )=4„'.Q (30
4& „sI VE„(k,) l

is convenient. The integral is over equienergetic
surfaces S, with position vectors k„so that

E„(k )=E
for at least one p value. n, is the unit vector nor-
mal to S in k,. p(E) is normalized so that

E dE= Z
m= 1

(32)

with E~ the Fermi energy.
It is well known that in the electron-gas model

p(E~) = 0, i.e. , the DOS vanishes at the Fermi sur-
face S~. This is caused by a logarithmic singu-
larity in VE(k) at the (spherical) S~ (see, for
example, Ref. 26):

VE(k.)
I

'nl&8-&~l as S-S,. (33)

We now wish to show that a similar singularity
occurs in any crystal with partially filled bands.

Our starting point. is Eq. (29). Going over Eqs.
(14) and (1'I)-(25) we notice that the k dependence

appears either in the basis orbital Fourier trans-
forms or in the kernels of the sums for the T and

X matrix elements. Typically Gaussian or Slater-
type basis orbitals have been used; neither have
Fourier transforms with singular gradients. In

fact, quantum-mechanical continuity conditions
mandate the k dependence of Bloch functions to be
"smooth" analytically. Therefore, basis functions
with discontinuous k behavior are to be excluded.
Moreover, the factor (K+ k )' in Eq. (18) is ob-
viously analytic in k. We thus conclude that the
only possible source for a singularity in VE„(k) is
the "exchange kernel" of Eq. (25).

Let us look at this quantity more closely. When-
ever

K"+Q=k,

the k' integrals are of the form

Eq. ('I), we readily arrive at

VE„(k ) = C„(k ) [VF(k ) —E„(k)VS(k ) ] C„(k ) . (29)

This is a very compact expression indeed. It
shows that no explicit variation of C„needs to be
considered; only variation of matrix elements
matters, once the HF equations are satisfied.
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J f(k')

jk —k' j'
with f(k') analytic, and k and k' both within the
BZ. But now we have identified a possible singu-
larity, since the integrand diverges whenever k'
= k; the analyticity in k after k' integration need
not be maintained. Therefore, we can restrict
our attention to X(k), and write

E,"(k)= C„'(k)X(k)C„(k) . (34)

In order to more clearly exhibit the underlying
analytic structure of E."„, we recognize that, in
general, the. density matrix contains a sum over
both filled and partially filled bands. Therefore,
with regard to the k' integration domains, we can
write

E,*(k)= J d'O' Qsz - jK+k —k'j

Y(k, k', K)
+

v - jK+k —k' j' (35)

The details of 7'„and F„' are irrelevant for our dis-
cussion except that these quantities (i) are ana, lytic
in k and k', and (ii) cause periodicity in k, k' space
to the integrands. V~ is the volume within S~
Both k' integrations are to be confined to (at most)
the first BZ. The first integral (the filled band

contribution) is over this BZ, including its bound-
ary. The second integral (the partially filled-band
contribution) is over a fraction thereof, V, i~
cludhzg the boundary, the Fermi surface S~.

As we indicated, nonanalyticity in k can occur
from K= 0 in Eq. (35). We therefore single out
those terms and Taylor-expand 7„',

Y,'(k, k', 0) = Y'„'(k, k, 0) + (k' —k )

[v'Y'(k, k', 0)] +. . . , (i= 1, 2).

(36)

and surface 0, around k so as to have continuity
over ( V- v). Writing1,(k' —k)

kl j2 jk kI j2
(39)

we express I, in the form

I,(v, k) = I,( V - v, k)+ f,(v, k),
or, using Gauss's theorem for the first term,

Io(v —v k = +(k, —k) dS (k, —k) do

Ik, —k I' v Ik, —k I'

(40)

(41)

g is the boundary to V (being either the BZ bound-
ary or Sz). k, are the v surface position vectors.
Evaluating the integrals associated with g and 0'

df,(v, k)= (=4~@,
v~

(k, —k) ' da' 1
do= -47t&.

v jk, —k j'
Combining (40) -(43) we thus conclude

(42)

(43)

(ks k)' dS
(44)

g yjk, —kj'
t

As & can be made arbitrarily small, this result
also holds for k on g.

For Iy we can carry through a similar analysis.
The result is

l, (V, k) = (45)

as before, this holds for all k.
We are now ready to discuss the gradient of I,

and I,. Whenever k is not on g, i.e. , k is either
within or outside V, the integrands are finite and
continuous in k. We therefore can bring the grad-
ient operation under the integration. For example,

Substituting these expressions in (35) we generate
k' integrals of the form

vI, (V, k)= (k, —k) dS
V

f,(V, k) =
d'p'

jk —k' j

(37)
or ) Us lng

q=k, —k, (46)

(k' —k )d'k'
f,(V, k) =

y jk- k'j

where V is either BZ or P~. We have now iso-
lated the quantities that might be responsible for
singular ities.

V INTEGRALS Io AND I 1

I e«s first consider Io. We wish to apply
Gauss's theorem. If k is within V we must ex-
clude a small sphere, with volume g, radius &,

we can write

q (q dS) dS

c 0 cV
(47)

Clearly q never vanishes in this case, and we find

~Vf,(V, k)
~

&, V k/Z. (48)

Similarly, it is easily found

~Vf, (V, k)
~

&, vkaZ.
We thus reach our first conclusion: (i) The band-
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where

Io(V, k) = (k, —k)'do
(53)

)k —kj

T;(V, rr)= f irr~k, a~drr. (54)
C

r

Obviously the term in square brackets in Eq. (52)
excludes k from the surface integral. There-s
fore, its gradient with respect to k, as k-k„will
remain finite. However, this is not the case for
the other term when m= 0, as we will now show.
We introduce the variable q,

q=k —k. (55)

If we describe the integral over c with the radial
variable r, then we have

q do= 6rdrdg,
2 ~2+ Q2

(56)

(5't)

We thus are led to

21r

Io(V, k)= 6 dP
0

or

I;(V, k) = v[& ln(62+ ~') 26 ln5] .
Since 5 =

I
k —k, I, we readily derive

(58)

2

VIO( V, k) = +2vn ln6+ -ln(62+ ~2)
$2+ g2 (59)

energy gradient VE„(k) will have finite values for
all k &0t on either the BZ boundary or on the Fer-
mi surface S~

Now we will consider the case that k approaches
a vector k, on Z. Because of a lack of continuity of
the integrands in the surface integrals (44), (45)
we cannot bring the gradient operation under the
integral signs. Therefore we must proceed as
follows:

We can assume, without loss of generality, that
k approaches k, so that

6=k —k (50)

is an infinitesimal vector parallel to n„ the unit
vector normal to 3 in k„

6/5= +n, . (51)

6 is the distance of k to Z. The minus (plus) sign
applies when k approaches k, from within (out-
side). We next cast a small circle denoted by c,
around k, on g. Its radius & is taken small enough
so thai Z can be considered locally flat. We then
can express I0 lg as

I„(V, k) = I'( V, k ) + [I„(V, k ) —I'( V, k ) ] (m = 0, 1),

Finally, we are prepared to take the limit k-k, .
Doing so, Eqs. (58) and (59) immediately give
(with &&0),

limI;(V, k) = 0, (60)
ks

limvI;(V, k)= + lim»n, lnlk —k,
l
.

k k k ks

Now, considering I, , we quickly get

I;(V, k) - Jl inl k, —kl do

or, with Eqs. (35)—(57),
If( V, k ) - z

I
( e'+ 6') 1n(e'+ 5') —&' —26' in 6

I
.

(61)

Furthermore,

dIc
vI

(62)

or, using (62),

lvI'(v, k)
I

-2m
I
261n5 —51n(&'+ 5')

I
.

Again, we take the limit k-k„and we obtain

(63)

limI [(V, k) - ve'I2 inc —1I &

s

lim Ivf;(V (65)
s

Looking at Eqs. (61), (65), and remembering the
role I'„plays in I„[Eq.(52)] we conclude

lim I,( V, k) & ~;

lim I,(V, k) &~; (6'1)

(66)

.»mlvI, (V k)I= 1m 12' n51 i
k k

' 6~0
s

lim lvI, (V, k)
I

&~.
s

(68)

(69)

A. Singularity in VE„(k)

Returning to the Taylor expansion (36), which
gave rise to I, and I„ it is clear that higher-order
forms will not generate any divergences in VE"„(k);
the k' integrands will not be singular. Therefore,
we have precisely pinpointed the singularity in
VE„(k), and we will argue that it only occurs in
partially filled band systems, with k any point k~
on the Fermi surface.

In order to.see this, we first remind ourselves
that the singularity in V'I0 emerges as a three-
dimensional version of an endpoint singularity to
an integral representation with singular kernel.
We saw that no singular behavior was found for k
away from the "endpoint", i.e. , not on g.
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Now, using the symmetry

a„,(k') = D„,(k'+ K") (70)

k~ k~ k~ ky

We have now arrived at the second and main re-
sult of this section: (ii) In partially filled band
systems the gradients of al/ band energies E„(k)
diverge logarithmically whenever k is on the Fer-
mi surface S~.

In filled-band systems these gradients never di-
verge.

B. DOS at Fermi level
I

It is now immediately obvious that, indeed, the
DOS vanishes at the Fermi energy E~: the sur-
face S becomes S~ for E„. The integral in Eq.
(30) is over a zero integrand, thus giving no con-
tribution to p(Ez). Obviously this result holds
whether S~ is either multiply connected or entirely
within the BZ; the cause of the singularity is the
termination of the k' integration short of the ful1.
BZ.

Our result of Sec. IVA has an interesting im-
plication. U, for a particular EtE~, the equien-
ergetic surface S coincides with S~, then the as-
sociated p(E) will vanish as well. We are unaware
of a general principle that precludes this to hap-
pen. Although it seems highly unprobable, we have
to be concerned about this possibility. We will re-
turn to this point in Sec. VI.

in Eq. (25), it is not hard to see that the first term
in Eq. (35) is of the form

g(K",+k ) ", g(~)
IK"+k'-k I'

K"

There is no endpoint singularity, as this integral
covers the entire reciprocal lattice. But that
means that the fuf/ HZ integration in E„(k) does
not give a singular contribution to VE„(k), what-
ever k is.

Indeed, we are now in a position to make a pre-
cise statement concerning ATE„(k):

.»m
I
~E.(k)

I

= »m "II".('. k 0)»lk -k.
l l.

Vp= Qpk o (72)

The lattice and reciprocal lattice vectors are ex-
pressible as

B= Bii+ B~;

K=K +K~, (74)

or as a sum of vectors parallel and perpendicular
to the plane of the unit cell. base. The perpendic-
ular vectors are given by

plies to these lower-dimensional, extended sys-
tems. A'fter all, one can imagine these systems
to p/ysically appear if one allows one or two
unit cell dimensions of a bulk crystal to increase
beyond limits, keeping al.l relative position vec-
tors s„ finite in length. Periodicity in these (in-
finite) dimensions then becomes immaterial, and
we have effectively a collection of noninteracting
extended systems of lower dimensionality.

Theoretically we can answer this question in
two different ways. Using the MS approach, we
can formulate the HF problem for polymers"
and thin films as isolated systems, exploiting
the one- and two-dimensional per iodicities. The
Fermi surfaces are two points in polymers, and
a planar curve in thin films. Instead of the three-
dimensional reciprocal lattice sums, double re-
ciprocal-space integrals and one summation ap-
pear for polymers (two summations and one in-
tegral for thin films). An analysis similar to the
one given here can then be carried through.

However, a physically more appealing, albeit
mathematically somewhat less rigorous approach
is to start from the crystal HF formalism of Secs.
II-IV, and take certain limits so as to describe
the reduction of dimensionality of the system.
These limits should be associated with the stretch-
ing of unit cell sizes in one (two) directions to ob- '

tain the formulas for thin films (polymers) in the
HF description.

First, let us consider the transition to thin-film
systems. Thereto, without loss of generality, we
assume a monoclinic, three-dimensional unit cell
with a parallellogram basis with area gp and height
jg. It then follows that

VI. DOS FOR SYSTEMS EXTENDED IN FE%ER
DIMENSIONS

B,= mhz, m=0, al, +2, . . . ,

K, = n(2w/h)z, n= 0, +1, a2, . . . , (76)

Polymers and thin films are extended systems
(usually) periodic in one or two dimensions, re-
spectively. HF calculations at the same rigorous
level as bulk crystal work are being performed, "
or are underway. " In view of our finding that the
HF DOS in crystals vanishes at the Fermi level
the question can be raised whether this also ap-

if it is assumed that the unit cell base is parallel
to the g-y plane.

The obvious next step is to take the limit Pg, - ,
keeping the s finite. In our formulas (17)-(27)
this limit has two consequences. Noticing that a
factor (1/g, ) is associated with each K sum, the
first effect is that the K sum becomes very dense,
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i.e. , in the limit k- this becomes an integral.
Indeed, we can write

= llm
1 . 1

K Kll KL

or

= lcm — dK, ,
Rll

1 1 ~ +oo

lim —g = g dK, .
g~ oo gp 2'gp

K Kll

Formulas generated in this manner are identical
to those obtained by a direct application of the MS
approach to thin films.

The other consequence is that k' integrations
reduce to integrals in the two-dimensional BZ,
with k'- k'll More specifically

(77}

The 0,' integral will scale like 2m/h. The occupa-
tion numbers ~„(k) (contained in the integrands of

the k integrations) will become independent of k,
in the limit h since its length vanishes. There-
fore, we can say that in this limit, the k~ integral
"fills up" the entire BZ width (2m/h) in the per-
pendicular direction. We thus conclude that

(78)
a (2m)' 2m

'

Again, the All integra, ls generated are those ob-
tained in a "direct" slab approach; as h-~, all
k' vectors approach a vector k', in the two-dimen-
sional BZ.

But now we can immediately state that the re-
sults of the previous section regarding the den-
sity of states apply to thin films as well. Volume
integrals become surface integrals, and surface
integrals become line integrals. In particular,
the divergence in

~
VE„(k}

~

for partially filled
bands [Eq. (68)] will hold as well in the limit
h-~. Since the divergence found is related to
the distaygee of k to the Fermi surface, this re-
sult should be no surprise.

By subsequently taking the limit that a two-di-
mensional unit cell dimension approaches infinity,
we generate the formulas for polymers. Mutatis
mutandis, we arrive at the. same conclusion,
namely, that in a partially filled band polymer
the HF DOS vanishes at the Fermi level. No van-
ishing p(E) occurs in filled band polymers. In
this case the Fermi surface consists of two points.

I.est the reader is worried whether the outlined
treatment concerning the DOS is sufficiently rig-
orous, he can convince himself by carrying out
the analysis directly on isolated thin films (poly-
mers). For the exchange terms the integrals

over K, resulting from (77) have to be treated
carefully around K, = 0. Exclusion of a small re-
gion [-e, e], with e&0, will "extract" a small,
pancake-shaped volume in reciprocal space
around the origin, which captures the singularity.
To that volume the same analysis as before can
be applied, giving the same results.

To sum up then, we have arrived at the follow-
ing conclusions:

(i) The HF band-energy gradients VE„(k) asso-
ciated with systems, extended periodically in one
or more dimensions and possessing partially
filled bands, diverges logarithmically as k ap-
proaches a Fermi surface vector k~ No such
divergence occurs for filled band systems.

(ii) The HF density of states p(E) for such ex-
tended systems with partially filled bands van-
ishes at the Fermi level E~ At any energy E wE~.
for which the eguienergetic surface S [Eg. (31)]
coincides with the Fermi surface S„, p(E) will
also vanish.

In general, p(E) will not vanish for filled band
systems with E not in band gaps.

VII. DISCUSSION

The results of this paper concerning the HF DOS
have a number of interesting and, in some cases,
somewhat disturbing consequences for calcula-
tions already published or contemplated.

With regard to crystal HF work, in a number of
cases HF DOS are presented that ought to show a
vanishing p(E~). For example, the DOS for cal-
cium, "lithium, ' and TiO,"show a conspicious
absence of a zero HF DOS at E~ In view of the
computational methods used (polynomial. interpo-
lation, with or without Gaussian broadening, or
a Gauss-Chebyshev method, formulated by Monk-
horst and Pack" ) it is impossible to see this be-
havior. Moreover, the above calculations have
been performed in the CS approach. The trunca-
tion of the direct lattice sums (forced upon for
practical reasons) causes the p(E~) to not even
vanish rigorously. Yet, the intrinsic extensive-
ness of the systems considered requires, as we
saw, the HF DOS to vanish. We therefore con-
clude that these DOS are qualitatively in error,
at least near E~, and cannot possibly be repre-
sentative of the HF DOS near the Fermi level.

We also found that for an energy whose equien-
ergetic surface S is identical to the Fermi sur-
face S~, the HF DOS should vanish. The occur-
rence of this seems highly improbable and might
even be impossible. Certainly, viewing the band
structure as to arise from a perturbed, nearly-
free-electron (NFE) model one seems to have to
rule out such coincidence. However, bvo remarks
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are in order in this connection. First, the NFE
model is inappropriate for crystals with strong
Bragg scattering, such as highly localized or-
bitals of d and f character. Fermi surfaces in
transition element compounds are notoriously
complicated, and the same can be expected of
above surfaces S. Second, even though the co-
alescence of surfaces S and S~ seems improbable,
they could be close. If that happens chances are
that unphysical. shoulders, peaks, or near gaps
could appear in p(E). The rea, son for this can
be found in FBB [Ref. 14]. In Fig. 3 of their sec-
ond paper the authors present the HF DOS for the
NFE gas, both the exact curve and numerical val-
ues. Apart from the inability of the numerical
method to accurately reproduce p(E) near Ez,
another unsettling observation can be made: p(E)
peaks at an energy about ( —,') the band width. This
is to be contrasted with the steadily increasing
Hartree p(E), which on many counts is closer to
the "correct" DOS. The kinetic energy decreases
faster with decreasing electron density than the
exchange energy. Therefore, we expect this pre-
peaking to be even more pronounced at lower elec-
tron densities. But now we have to conclude that
unphysical features to the p(E) curve can already
occur for energies E with equienergetic surfaces
S quite different from S~ We sam a pre-peaking
in the NFE gas model. We thus can expect shoul-
ders, peaks, or even near gaps to occur, depend-
ing on how closely S approaches S~ and what the
electron density is.

All correlation corrections have concentrated on
the Fermi level. DOS or the band midth or band

gaps. Our results indicate that with complicated
band structures such as for transition element
compounds, considerable attention has to be paid
to the correlation problem at all energies. The
fact that numerical inaccuracies tend to mash out
these HF-caused singularities (or near singu-
larities) is irrelevant, although expedient in prac-
tice. The point is that the theory alloms for them,

and therefore they should be either shown faith-

fully or corrected for. Unfortunately, so far no
scheme has been formulated that is practical and
theor etically sound.

It is even more likely that thin films and polymer
HF DOS exhibit such unphysical features. In the
case of thin films it is quite possible that two
Fermi curves come close in shape and area. Since
in polymers the Fermi surface consists of two
points, there is an infinite number of energies
(lying within bands) for which "S coincides with
S~." In practice, however, this is not very rele-
vant; stable, partially filled band polymers do not
occur,

,
although a filamentary structure of equally

spaced polymers of hydrogen atoms has been pro-
posed and studied for metallic hydrogen. "

Summing up then, one has to be quite cautious
when interpreting detailed features to p(E) at the
HF level, particularly for complicated crystals
on thin films with partially filled bands. ' " By
analogy mith the widening of the HF NFE gas band
width, we expect considerable exaggeration of
bands and gaps near E~. No vanishing p(E) within
bands of filled-band systems is expected.

Notwithstanding these fundamental failures to
the crystal HF results we do not advocate a local
approximation to exchange and correlation cor-
rections. The work of Overhauser and others'
has suggested that a considerable nonlocality has
still to be associated with these corrections, al-
though not as strorig as "bare" exchange. The
use of HF as a first approximation has many vir-
tues: it is well defined, yields variational total
energies, and gives good charge densities. Be-
yond that, the correlation problem for extended
systems is still with us, and progress has been
slow. "
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