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The following theorem is proved for a partial differential eigenvalue equation in a periodic system:
—2rri I, Po[pt(kn), Q(k'n')] d0 = nj(kn)8„~k/8„„, if e(k n')'= e(kn) and k', = k, for i +j.

Here e(kn) is an eigenvalue, Q(kn) is an eigenfunction, and P(kn) is a solution to the adjoint eigenvalue
problem satisfying J„»dxiPt(x;kn) Q(x;kn') = 5„„.Also, v, (kn) =()c(kn)/ ()k, , s, is a cross section
of the unit cell, and Ps is the bilinear concomitant. The above theorem is used to evaluate the bulk Green's
function in closed form: Go(H';ke) = —27ri [X„,[P(%;kk+n) Pt(ft';kk+n)/ v, (kk„+,n)]t)(x, — x, ')
—X„,[Q(x;kk„,n)P (x';kk In)/u, (kk„,n)] t)(x, ' —x,)], where k =(k„k,). The k„, are those values of k, for

which e(kk„,n) = c, partitioned into the two sets k+, and k„, according to the boundary conditions on Go. A
Green's function G(H';ke) in the presence of an interface'is given by the above expression if Q is replaced

by 4, an eigenfunction that grows out of Q as the interface is approached. This expression also gives the
exact many-body Green's function go (or g) if i(kn) and Q (or +) are interpreted as solutions to an
eigenvalue problem involving the self-energy. Finally, the expression holds for nondifferential equations —e.g.,
the matrix eigenvalue equation for phonons or electrons in a localized representation; in this case, the
derivation is based on the analytic properties of &(kn) and Q(kn) at complex k.

I. INTRODUCTION

There are Green's-function techniques for
equilibrium problems involving interfaces —such
as the calculation of electronic structure —and
for nonequilibrium processes —such as tunneling,
photoemission, field emission, and low- energy-
electron diffraction. In this paper I derive a very
general result that should simplify the evaluation,
understanding, and employment of Green's func-
tions in surface physics.

As an example, my result for the retarded"
bulk Green's function in the case of an arbitrary
eigenvalue equation involving a (formally) self-
adj oint operator or matrix is

6', (xx'; k&)

= -2riigg(x; kk„,n)tP (x'; %k„*,n)

where

x [v, (kk„,n)) ' sgn(x, —x,'),

In our notation,

v'=- (vr)*, (1.4)

where v is the transpose of the vector v; if v is
a scalar, v =v*. 'The k„, are those values of k3
which satisfy two requirements: First,

k = (k„k,), k = (k, k, ) (l.2)

and the i]1(x;Ttn) are Bloch functions for complex k
with the normalization

,»dx P (x; k*n) . i]t(x; kn') = 6„„, .

e(kk„,n) = e,
where c(kn) is the eigenvalue for the nth branch
and the wave vector k. Second,

Imk„, sgn(x, —x,') &0

if k„, is complex, or

v, (kk„,n) sgn(x, —x,') &0

if k„, is real, where

t, (kn) -=
se (kn)

f

(1.6a)

(1.6b)

(1.7)

As mentioned in a previous paper, ' the solutions
to (1.5) come in pairs, and (1.6) selects the ap-
propriate member of the pair —a wave propaga-
ting away from" the plane x3=x3', if k„, is real, or
decaying away from this plane if k„, is complex.

Equation (1.1) is complementary to the expres-
sion that we obtained earlier in a mixed Wannie'r-
Bloch representation'.

C;(Xs -X,', kne)

~ jkf1 j(X3 X3)
= -2nig ~, sgn(X, -X,')+Gee . (1.8)

V3 (~~n j'+ ~

An advantage of this earlier result is that it in-
volves only the eigenvalues e(ks) at complex k„
and not the eigenfunctions g(x; k, ).. Equation (1.1),
however, has two advantages that should usually
be more important: there is no branch-cut con-
tribution G~c, and the Green's function is in the
coordinate representation or an arbitrary local-
ized representation, rather than specifically the
Wannier-Bl. och representation.
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If the values of x are discrete, as they are in the
lattice-dynamics problem for phonons and the
matrix eigenvalue problem for electrons in a lo-
calized representation, then fdx in (1.3) is to be
interpreted as Zz, and 6(x-x') in the following is
to be interpreted as 6~, . Also, for phonons ((x)
is a three-dimensional vector, and for electrons
in a localized representation it is an s-dimensional
vector, where s is the number of basis functions
employed for the atom (or unit cell) labeled by x.
For electrons in the coordinate representation,
g(x) is a, scalar, spinor, or four-component wave
function, depending on the differential equation
being used. In the case of the Schrodinger equa-
tion, x may include a spin coordinate and n a spin
quantum number.

The "advanced" Green's function G,(e) is given
by (1.1) if (1.6b) is replaced by

v, (kk„,n) sgn(x, —x', ) (0.
That is, G, involves waves "propagating toward"
the plane x, =x,', if k„, is real, or decaying away
from this plane if k„, is complex. The "time-
ordered" (zero-temperature, noninteracting fer-
mion) Green's function is given by (1.1), with
(1.6b) holding for e )e|;, and (1.6b') for e(ez,
where &~ is the Fermi energy.

The phrases propagating away from" and re-
tarded" are used figuratively in this paper, and
are defined by (1.6b). Similarly, "propagating
toward" and "advanced" are defined by (1.6b'), and
"time-ordered" is defined by either (1.6b) or
(1.6b'), as described above. Whether this usage
is literally correct depends on how the eigenvalue
& arises from the frequency w through some time-
dependent equation which is not considered here.
For example, in the case of phonons the original
equation is second order in the time, so

(1.9)

where ~ is the phonon frequency. Then my label-
ing of the Green's functions is literally correct
only for»0; for «0, G' is really the advanced
Green's function and G the retarded Green's
function. Also, for phonons v& ——2coV&, where V&

is the actual group velocity.
'The paper is organized as follows: In Sec. II the

basic mathematical ideas are introduced. Perhaps
the most important of these is the

' bilinear con-
comitant, " an object which is very useful in con-
structing Green's functions. ' 4 The mathematical
abstractions are illustrated with physical examples
in Sec. III, and the bilinear concomitant T is
connected to a current j . In Sec. IV, I specialize
to a periodic solid and consider the eigenvalue
problem for complex k. I then set out to evaluate
the bulk Green's function G, in Sec. V. In Sec. VI,

II. MATHEMATICAL PRELIMINARIES

Let f-(x, x') be some time-independent operator.
'The generalization of Green's theorem is'

dx dx'w x L x, x' v x'
V V

dx dx' L, x', x wx ~ vx'

+ w, v ~ dS,
S

(2.1a,)

where au and v are any two functions. 5[m~, v] is
a function of wt and v and their derivatives, called
the bilinear concomitant"" ~ (or conjunct'"), and
8 is the surface bounding the volume V. L is
called the "formal adjoint" of J, and w and v are
said to satisfy ' adjoint boundary conditions" if

(2.2)

Iprove a central theoremthat relates P to v—= ~re(k).
This is a generalization of the well-known
theorem' that the expectation value of the velocity
is equal to the derivative of the energy eigenvalue
with respect to k for an electron in a periodic
solid. In Sec. VII, the results of the preceding
two sections are combined to give the final ex-
pression for G,. This same expression is shown,
in Secs. VIII-X, to give the Green's function in
the presence of an interface, if g is replaced by

an eigenfuncjion that grows out of g as the in-
terface is approached. Furthermore, it is shown
in Sec. XI that this expression holds for the exact
many-body Green's function 9,(e) [or 9(e)] if e(kn)
and ((kn) [or %(kn)] are the solutions to an eigen-
value problem involving the self-energy Z(c).

Up to this point, the treatment is concerned with
partial differential (or integro-differential) equa-
tions. For equations containing no derivatives—
such as the matrix eigenvalue equations for
phonons, for magnons, and for electrons in a
localized representation —the bilinear concomitant
can be taken to be identically zero and the treat-
ment of Secs. V-VII and IX-X is not applicable.
In Sec. XII, therefore, I turn to a different ap-
proach, one that involves the properties of E(kn)
and ((kn) [or 4(kn)] at complex k. In Sec. XIII,
I show that &(kn) and P(kn) usually have the re-
quired properties if Ho(k), defined in (4.5), is an
analytic function of k [and the g(kn) for k real
comprise a complete set]. When G, [or one of the
other Green's functions 0, 9„or 9] is evaluated
in Sec. XIV, by means of a contour integration,
the result is identical to that obtained in the
earlier part of the paper. A concluding summary
is given in Sec. XV.
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Equation (2.la) can be written more simply as

Chv ()v)= Ch(LH)v+ lP(vv, v] ~ dH. (2.12)~ ~

V V S Hvn = &nvn (2.9a)

will have some set of solutions corresponding to
different (eigen)values of e:

[In our notation, the first function in an expression
like zot(Lv) is regarded as a function of x, and the
second as a. function of x'. Integration with respect
to x', over the volume V, is always implied if not
explicitly shown. Integration with respect to x,
which may be over any volume, is always ex-
plicitly shown and never implied. An inner product
is always implied in expressions like gatv and Lv
if v is a vector and L a matrix. In (L~)tv, v is
regarded as a function of x and se as a function of
x'. Finally, P is always a function of x, and V

means &&.]
In this paper, we consider operators of the form

Hvn cn vn

Suppose there is a set of vn and vn such that

P[v„, v„,].dS=O.

Then (2.1}, with L- H, g-ives

dh (H v) vld (Hv )v =0„, „.

so by (2.9)

(2.9b)

(2.10)

(2.11)

(2.12)

L=&-H,

where E is a complex number. 'Then

(2.3a,) That is, the v„and v„satisfying adjoint boundary
conditions are biorthogonal.

Equation (2.1) follows from
(2.3b)

w'(Tv) (T2v }'v—= —V ~ 5[w', v] (2.13)
Let

H=T+V, (2.4a)

where T consists of all those terms containing
derivatives and V is the remainder of H. It will
be assumed that

T(x, x') = T(x)6(x- x'). (2.4b)

Since 5 arises from the derivatives in L when one
performs integrations by parts to get from the
expression involving L in (2.1) to the expression
involving ~, L, -H, and -T all have the same
bilinear concomitant P. If there are no derivatives
in L, the boundary term in (2.1) vanishes; we can
therefore take

V T[nP, v]=0. (2.14)

If v„, and v„are solutions to (2.6) and (2.7), then
(2.1) gives

n' ~n
S

(2.15a)

This will be satisfied if

2d' ~ P[v„', v„, ] = 0, e„, = e„. (2.15b)

In one dimension, this becomes dP/dx=0, or

(provided that $[nP, v] is sufficiently well-behaved
for Gauss's divergence theorem to hold). Also,
(2.2) follows from

V[w, v]=—0, for all m and v, if T=0.
Consider the homogeneous equation

(2.5)
&[v~, v„, ] = const, e„, = c„.

When

H=H,

(2. 16)

(2.17)
dx' L (x, x') .v (x') = 0

or, in the simpler notation

jv=0.
he

'
adj oint problem" is

(2.6a)

(2.6b)

H is said to be formally self-adjoint. " The
solutions v„, e„ to (2.9a) and v„, e„* to (2.9b) are
then distinguished only by the boundary conditions.
If V„and vn satisfy the sa~e boundary conditions,
H is said to be self-adjoint" or Hermitian"; then
we have the familiar result

L,v =0. (2.7)
vn= vn~ &n = ~n ~ (2.18)

According to (2.1), v and v will automatically
satisfy adjoint boundary conditions. With L given
by (2.3),

III. EXAMPLES

Hv =ev,

Hv = e*v.
(2.8a)

(2.8b)

Consider the one-particle Schrodinger equation
with a possibly nonlocal potential V(x, x'), for
which

For a given set of boundary conditions on v, we H = (5'/2m) v's (x —x') +—V(x, x'), (3.1a)



20 GREEN'S FUNCTIONS FOR SURFACE PHYSICS 1457

V*(x', x) = V(x, x'),

e =E)

(3.1b)

(3.1c) P[w ~, v ] = - ih cw t av,
(3.8a)

(3.8b)

where F. is the energy of the particle. After inte-
grating by parts twice, one obtains (2.1) with

P [w+, v ] = + (k'/2m)(w +Vv —v Vw +) .
(3.2a)

(3.2b)

du dao*
P[w +, v]= so* ——v-

2st Eke Ax
(3 4)

In this case, (2.16) expresses the familiar fact
that the Wronskian is a constant for two eigen-
functions with the same eigenvalue.

For a charged particle of spin zero moving
relativistically in a time- independent electromag ww

netic field, we can choose

H = [(-iH —(e/c)A)'c'+ m'c4] 5 (x —x'), (3.5a)

e =(Z —eA, }', (3.5b}

where A is the vector potential and Ao is the
scalar potential. The one finds that

(3.6a)

P[w*, v] =8 c'(w*Vv —vVw*} —i 2kceAw*v.

(3.6b)

In fact, (2.1) reduces to the classic version of
Green's theorem:

f

rizx(w
'V'v —vwa') = f (w 'Vv —vww ') da .

Y S

(3.3)

According to (3.2a), H is formally self-adjoint.
Then it will be truly self-adjoint, or Hermitian,
for those functions ao and v that satisfy the same
adjoint boundary conditions —for example, if se

' and v both satisfy the usual periodic boundary
conditions, or if w and v both vanish on some
boundary, or at infinity.

For the one-dimensional Schrodinger equation,
P is essentially the Wronskian:

where so and v each have four components, and
inner products are implied as usual.

For the lattice-dynamics eigenvalue problem
associated with phonons,

H(x x') =M"' 'C'(x x')M=' '

C t (x', x) = C (x,x'),
(3.9a)

(3.9b)

(3.9c)

where 4'(x, x') is the real 3X3 force-constant ma-
trix coupling the vibrations of atoms at x and x',
I-„ is the mass of the atom at x, and ~ is the vi-
brational frequency. We can think of (2.8a) in
this case as being an "integral equation" with
discrete values for x. Equation (2.1) holds with

P[w t, v] =- 0 .
(3.10a)

(3.10b)

(3.12)

where P now has a fourth component. Suppose
that v is a solution to (2.6b) and that w =v; then
(3.12) becomes

V ~ P[vt, v]+aI', [v, v) /st =0 . (3.13)

This is an equation of continuity, or conservation
law. If j,= CP,[v, v) and j =CP[v, v), C being
an appropriate normalization constant, and if v

is a quantum-mechanical wave function, then jo
is the probability density and j the probability
current density.

Equation (3.10b) can also be taken to hold for other
integral equations. '

It is no coincidence that P in (3.2), (3.6), and

(3.8) is related to the probability current j by

j =CP[v, v], (3.11)

where v is a wave function and C is a constant: If
I.(xt) is a time-dependent operator [with V of
(2.4a) taken to be local for simplicity], then the
analog of (2.13) is

wt(tv) —(tw)tv =V ~ P[w~, v]+SP,[wt, v) /St,

For the Dirac equation with no fields,

H= —[Nc a. V —mc'P]5(x —x'), (3.7a) IV. PERIODIC SYSTEM

(3.7b) In a periodic solid, a general lattice vector is
given by

where the a& and P are 4&4 matrices and

a =a pt=p

One obtains

(3.7c)
X=l,a, +l,a, +l,a,

and a general position vector by

X =/~a~ +%~8 +X3a3 ~

(4.la)

(4.1b)
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K =m, 6, +m,5, +m, b, ,

and a general wave vector by

k = I',b, + k2b2 +I,b3

(4.1c)

(4.1d)

where a, is a primitive lattice vector. Also,
a general reciprocal-lattice vect:or is given by

u(x+X;kn) =u(x;kn), (4.4b)

H, (xx' k)=-e '"' "H, (x, x')e'"' " (4.5)

where k is possibly complex. Here n distinguishes
different solutions for the same k—i.e., different
branches. If we let

a( 5, =2', , (4.1e)

Let Hp be a translationally invariant operator:

where 5,. is a primitive reciprocal-lattice vector:
then (4.3) becomes

H, (t ) (k») =e(kn) (kn)

or

(4.6a)

Ho(x+X, x'+X) =H, (x, x') . (4 2)

(4.3a)

or, in more explicit notation,

The results of Sec. II can be taken over with
L Lo, -H- Ho, T-T„etc., and (2.9a}becomes

Hg(kn) = e (kn)g(kn}

dx' H, (xx'; k) u (x'; k» ) = e (k»)u (x; k» ) .
V

(4.6b)

The adjoint problems to (4.3) and (4.6) are

H,Q(k(() = e +(k»)(t'(k»), (4.7)

dx'H, (x, x') p(x';kn) =e(kn)g(x;kn) . (4.3b)~ ~

V
H, (k)u(kn) =e*g»)u(kn) . (4.8)

According to Bloch's theorem,

g(x kn) =e'" "u(x;k»), (4.4a)
Letting w (x)-e '" "w (x) and v(x)-e'"' "v(x) in
(2.1), with L- —H, we get

dx dx'zo x e '" "H xx' ei '
U x'

V

dx dx'[e ' * ' H, (x', x)e'"*'" w(x}]t ~ v(x') — P,[e '"' "w (x), e" "v(x)] dS .
F V S

(4.9)

We conclude that H, (xx'; k) = H, (xx'; k+), (4.13)
~ a-«+ ~ x ~ ~I & ik+~ x& (4.10a) so (4.8) can be rewritten

where P, and P& are the respective bilinear con-
comitants of —H, and —H, (k). If (4.10a) is sub-
stituted into (4.8), we see that (4.7) will be satis-
fied if we choose

g(x;kn) =e'" "u(x;kn) (4.11a)

P&[w (x), v(x)] =Po[e '"'"w (x), e'"''v(x)], (4.10b) H, (™k*)u(kn) =e*(kn)u(kn) .

We can then take

E' + 'PZ =6 +6

u tl =u *n

V(k») = 4(jk*»),

(4.14)

(4.15a)

(4.15b)

(4.15c)

or

pt(x;kn}=e '" "ut(x;kn) . (4.11a')

the last equation following from (4.11a).
We now return to the general case and specify

that V is a parallelepiped defined by

Bloch's theorem, when applied to (4.7), says that

u(x+X kn) =u(x kn) . (4.11b)

x~& x,. ~x,'. , j =1., 2, 3,

x,. —X. =I,i i

(4.16a)

(4.16b)

If Hp is formally self -adjoint,

H, (x, x') =H, (x, x'), (4.12)

where L,. is an integer and L,--~ is understood.
In the remainder of this section, it will be more
appealing to work within a single unit cell, which
we choose to be a parallelepiped defined by

then (4.10) gives x & x. ~x i=12 3 (4.1'la)
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x~- x~ =1, (4.1Vb) [If V, is a local operator, h, (k) =H, (k).] The ad-
joint problem is

Call the volume of the unit cell v and the surface
enclosi-ng it s. Then

V =Nv, N=L, L,L, . dx'I), (xx';k) u(x', kn) =@*(kn)u(x;kn). (4.20)~ ~

V

We rewrite (4.6b) as

dX' ko(xx';k) ~ u(x';kn) =e(kn)u(x;kn),
V

(4.18)
If we limit our attention to functions u)(x) and

v(x) which are periodic,

where

h, (xx';k)=-e '"'" QH, (x, x' X')e'"'" " '. (4.19)

iv(x+X) =u)(x), v(x+X) = v(x),

(4.9) becomes

(4.21)

Jdx dx'zg~x ~ ' e ' ' '"' 'Qp x+X, x'+X' e' ''" 'v x'
V V

'- XX'

dx' e (~ ''" '~ 'H, (x'+X', x+X)e'~ ''"'"'u)(x) t v(x')
XX' ~4

Q P [e (% (x+-x) t(„) (1' (x+%)„(-„)].dS~
~

~

~ (4.22)

On the right-hand side, we have used the fact that

J, is the same as the sum of J, over all the N
unit cells within S. (The integrals over the inter-
ior surfaces cancel: each interior surface is
shared by two unit cells. The magnitude of the
integrand is the same when the integral is per-
formed for the first and second cells. But the out-
ward normals point in opposite directions. There-
fore the sum of the integrals is zero. ) Now make
use of the translational invariance expressed by
(4.2)

Xr ei k ~ (x'+x )

X X'

= pre '' " H, (x, x'+X')e'"' '"'"'
Xt

(4.25a)

boundary, but the fraction of lattice points near the
boundary decreases to zero as L] L2 L3 so
the fractional error in the summation of (4.23) will
also go to zero in this limit. We can consequently
rewrite (4.23) as

e '"'"'"'K x+X x'+X' e' ''" ' Similarly, the translational invariance of Kp im-
plies that

X X"
e '"' "K x x'+X" e''&"" "~

p g e-i% (x'+%')p (~l X/ ~
X) i% (x+p)

(4.23)

where X"=X'-X. The values of X' lie within V,
so the values of X" are such that X"+X lies with-
in V. In the following, we will change the limits
of summation on X", taking it to have the same
range of values as X'. If X is far from the bound-
ary of V this will introduce negligible error, pro-
vided that we now require

-i%*~ x ' g H (xI x+X)e(%*~ (x+x) (4 25b)
X

Since P, [u) t, v] involves only u)" and v and their
derivati ves bilinearly, '

P [ eiX'( xx+) t(~x) e(l('(x+)()v(~x)]

H, (x, %')-0 as (x-x'~-~. (4.24)
P [e-IX.x~t(x) ei f xv(x)) (4.25c)

There can be appreciable error if X is near the
Putting these results into (4.22) and dividing by
N, we obtain
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dx dx'w"(x) ~ e "" P,(x, x'+X')e'"'"'" ' v(x')

P 1
dx dx' e '" '"'~ H, (x', x+X)e'~ ''"' 'w(x) ~ v(x') — P, [e '"' "wt(x), e'"'"v(x)] dS.

V V S

(4.26)

We conclude that

k (xx' k) = e '" ' " Z IT (x x'+ X')e'
X'

p k [w t(x), v(x) ] = P,[e-' ' "w t(x), e' "' "v (x) ]

= Pk[wt(x), v(x)],

(4.27a)

(4.27b)

(4.27b')

d x Io(xx; E)' G'o(x x; e) = 6 (x - x ),

f„(xx'; e) =e —H, (x, x') .

We look for a solution in the form

G,(xx';e) = E [n'(x';kn)g(x;kn)0(x, —x,')

(5.1)

(5.2)

where pk is the bilinear concomitant of -k, (k).
Equations (4.21), (4.25c), and (4.27b) imply that

where

+ o, (x'; kn) g (x; kn) 8 (x,' —x,)],

(5.3)

pg[wt(x+X), v(x+ X)]= pk[wt(x), v(x)] . (4.28)
k, =m, /I. . . i =1 or 2. (5.4)

Now, for every point on s at x there is another
point at either x+a,. or x- a, , where a, is one of
the primitive lattice vectors. Since the outward
normals at the two points are in opposite direc-
tions, (4.28) implies that

In view of (5.1), the k values in the sum of (5.3)
are those for which

c(kn) =c . (5.5)

Also, (13.11) and (13.14) imply that we can take

p&[w, v] dS = 0. (4.29) ——,
'

& k. ~ -,'- i = 1 or 2 (5.6a)

That is, periodic functions automatically satisfy
adjoint boundary conditions when the general vol-
ume V of (2.1) is taken to be a unit cell and ff
-k, (k). In particula. r,

(4.30)pp[ut(kn), u(kn')] ds = 0.
S

Thus the u(kn) and u(kn) form a set of the kind de-
fined by (2.9) and (2.10), and we have (2.12) in the
form

——,&Rek, & —, .1 1 (5.6b)

a'(x'; kn) —= n+(x'; kn) —o. (x'; kn), (5.7a)

In writing results like (7.9), we will actually re-
place the k values of (5.6a) by the equivalent Te val-
ues lying in the first two-dimensional Brillouin
zone (BZ). The values of the coefficients o.' are
determined by the boundary conditions on

G, (xx'; e) at fixed x' and c. For each k and n,
either let.

d x.ut(kn)u(kn') = 0, e (kn') c e(kn) . (4.31) a (x', kn) =—0,
o(x';kn) =-n (x';kn),

(5.7b)

(5.7c)
In this paper I ignore the complication of degen-
eracy at fixed k and choose the normalization or else let

d xu "(kn)u(kn') = 6„„,

or, in view of (4.11a'),

d x iP(kn) g(kn') ——5„„.

(4.32a)

(4.32b)

a' (x', kn) = 0,
a (x', kn) —= o. (x'; kn) —n ' (x', kn),

n (x', kn) —= n '(x'; kn) .

(5.8a)

(5.8b)

(5.8c)

V. METHOD FOR EVALUATING 60

The Green's function G, (xx';e) is defined to be a,

solution to Go(xx q e) = Go (XX
q e) + Go (XX q e), (5.9a)

After this arbitrary choice is made, let the k, for
which (5.7) holds (at fixed '0 and n) be called k„'„
and let the k, for which (5.8) holds be called k„,.
Then (5.3) can be written
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Gso(xx';e) =—g g a'(x', k'n'l'))I)(x;k'k'„, , n')e(x, -xs) + g g a (x', k'n'l') g(x; k'k„, n')e(xs'-xs),
n' l ' n' l'

(5.9b)

GNs-=g ~(x', kn)y(x;kn), (5.9c)

with a slight change of notation. We have sepa-
rated Go into a "singular" part G, and a "nonsingu-
lar" part Go:

dx" L (xx";e) 'G (x"x', ()=6(x —x'), (5 10a)

dx" I,(xx";c) G",8(x"x', e) =0.
V

(5.10b)

(Go is "a particular solution to the inhomogeneous
equation" and Go is "the general solution to the
homogeneous e(luation. ") Although L,G8 has a
6-function singularity, we require that Go itself
be a function with no singularities at x, =x,; this
restricts the treatment below to the case

T040. (5.11)

(More precisely, Ho must contain a derivative with
respect to x,.) We also assume that T])(x;kn),
T To(]x); kn), and

dx" V,(xx") ' G,(x"x'; E)

are not singular at x3 x3.
From (2.13), we have

( t(xi kn) ~ [To' Geo(xx', e)] —[T T[)(x; kn)]t'Gs(xx' e)

P(kn)[LoGos (x', c)]+II) t(kn)[(V, —z)G'o(x', e)]

+ [T,f(k n)]'G', (x', e)

= V P, [T[) t(kn), GB (x', c)] .
/

If this equation is integrated over the volume &V

defined by

(5.13)

x (x (xA B
1 1 1

x"(x (xB,
2 2 2

X,' —&X3 (X,- X,'+ ~X'3,

(5.14a)

(5.14b)

(5.14c)

where S(&V) is the surface of t)V and we have
assumed that Po[[T)t(kn), Gos (x', e)] is sufficiently
well behaved for Gauss's theorem to hold. As
&xs-0, the sides of S(6V) become vanishingly
thin and give no contribution to the surface inte-
gral of (5.15). On the "top surface, " where x, =x,'

+ &x„ the normal is parallel to b, and P, dS
=P~dx, dx» where I',

&
is defined by

P()= ( o)a) +Po, am+Pos@)l s'a). (5.16)

in terms of the x",. and x~& of (4.16), the second and

third terms will give no contribution as ~x3- 0,
because these terms involve no singularities.
However, (5.10a) implies that the first term gives
a contribution of P(x'; kn). Therefore

i)!(x', kn) = f S [i)!((!n),S (x; a)] dS, (5.15)
S (5F) x

= -V P)P(x; kn), Gs (xx', c)]

or, since Lo=e —Ho=a —(T,+ V,),

(5.12) Similarly, on the bottom surface, where x3 x3
~x3 the normal is par all el to -b, and Po 'd S

&03 dx1 dx2 We can therefore write

x1B @=x3+5X3

P(x', kn) = dx| dxsPos [[1) (kn), Go (x', e)]
@=@3-5X3

(5.17)

Now substitute (5.9b) into (5.17), with

g ~(x', kn)- T[)t(x', kk'„, n);

the result is

(x', 5' )a') J 1' n[il'!(kk' , n), 5(k''5 . , n')]'dS„'„
n' l' S3

a (x';5'n'1') f S.[i)!(kk'an), 5(S'5„, n'.)] dS=ila(x', kk'„, n) (5.15)
n' f' S 3
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x- x] x] ) i=1 or 2)

X3 X3 j
having its normal parallel to b, .

(5.19a)

(5.19b)

as &x3-0, where S3 is the surface defined by where k and k+6k are arbitrary complex wave
vectors. According to (4.4) and (4.11a'),

VI. THEOREM

In this section I prove the following theorem:

dx ~ kn k+5, k, n' e'
V X

(6.5)

Now, the argument just below (4.22) implies that

-2@i P, kn, k'n' ds = && kn &&~&„„
Sy

(6.1a)
P -ik ~ ( +%)

e(k'n') = e(kn),

k& =ksp s

1 1Rek) -2 &Rek~ (2.1 p 1

(6.1b)

(6.1c)

(6.1d)

[ A slight generalization of this result is given as
(6.23).] Here s& is any surface defined by

x; —1 x; x], z 4g,(o) (o) (6.2a)

X(o)
f . j (6.2b)

having its normal parallel to bz, with x,', x,',
and x, being arbitrary real constants. It is as-
sumed that e(kn) is differentiable with respect to
l3& at the point k, that P3[g (kn), (j)(k'n')] is inte-
grable over s& [and over the rest of the surface s
of (6.16)], and that P(kn') is a continuous function
of k& at the point k=k'. It is also assumed that
To&0—or, more precisely, that Ho contains at
least one derivative with respect to x&.

According to (6.2), s& can be any cross section
of any parallelepiped unit cell having its normal
parallel to b&. For example, if (P3 is an arbitrary
plane parallel to a, and a„ then s3 is that part of
3 lying within some unit cel l intersected by 6'„
and the normal to s3 is parallel to a, && a,. Simi-
larly, s1 is parallel to a, and a„and s, to a,
and a1~

~e begin the proof by applying (2.1):

ei(k+)k, k) ~ (x+%)
&( )], dS (6.6)

if u and v are periodic, and the argument just
above (4.25c) leads to the generalization

P [&-ik ~ (x+ ) t(q i(k+(),k) ~ (x+2) gq]
P [e-ik x t(~) i(k+i), k) ~ x&g)] iAk ~ X (6.7)

When the above results are combined, with
3{)-u(kn) and &-u(k+lkk, n'), we obtain

[e(k + i)kk, n') —e(kn)j dx]])t(kn)]()(k+l), k, n')

xQ elk

P,[(j) (kn), g(k+6k, n')] dS
S

Q sijkk. 1{ (6.8)

At this point we choose

Ak,. =k,' —k; =m;, i=lor 2, (6.9)

(6.10)

l =l l +1 l' +(I —1) (6.11)

~k X=2ml, m, +2~l,m, +2', M,
by (4.1). According to (4.16), X has a. range of
values given by putting

or

dx IIo kn ~ k+4k, n'

P, [(l) (kn), (j(k+6k, n')] ~ dS,
S

(6.3)

into (4.1a), Therefore
r. +(1.3
(o)

Qkllk k kg Q (
I* IU&

3 3

3 3
(o)

1 2(1e3 3)/(le 3K' 3)

(6.12)

(6.13)

[k()j+kk, ) —k(kk)] fkdk j7 (kk)k(k+ kk, k')

Po ~ kn, k+6k n' ~ d
S

(6.4)

We write

A@3 =k,' —k3+&k3,

where &k3 is chosen so that

ik k3 & integer/1. 3 .

(6.14)

(6.15)
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Then (6.8) can be divided by (6.13), and

[e(keek n')- e(kn)[ f dx() (kn)()(keek, n')

P, ~kn, k+5k n' . d
S

After the x& have been specified, let xy:xy
so that the unit cell v as defined by (4.17}has the
s& defined by (6.2) as its "front surfaces. " Also,
let t& be the "back surface" defined by (6.2a) and

sg xg 15)

(6.16)

(6.2b')

having its (outward) normal in the direction of
-b~. Since tz is displaced by -a& from s~, and the
normals are in opposite directions for the two
surfaces, (6.7) implies that

be replaced by e(kn') and AK(kn')g(kn') in (6.20).
Then (4.32b) gives

-2' Po ~ kn, k'n' ~ d S

=A K(kn) 6„„e. (6.21)
& e(kn)

ak,

Next consider the case k,'- k, &integer. Then
as 6k, -0 in (6.18), (1-e '"' ') remains non-
zero and (6.lb) requires that

Po[f~(kn), [P(k'n')] ~ dS =0. (6.2
S3

When (6.21) and (6.22) are combined, and the
derivation is repeated for j=1 and 2, we obtain

P, ~ kn, k+6k n' dS
t~

=-e '" '~ P, kn, k+6k n' - dS.
S~

(6.17)

This result, in conjunction with (6.9), allows us
to simplify (6.16):

[e(k.+nk, n') —e(kn)] f dx'(( (kn)d(k+nk, n')
0

= —() —e ' '
) f P [ (ki)n)(()+k,kn, n')) d([,

S3

(6.18)

First consider the case k,'- k, =integer = m, .
Using (6.lb) and (6.14), and keeping only the first-
order term in (1-e '"

&), we obtain

[e(k', k,' + &k„.n') —e(k', k,'; n')]

x dx ~ kn k+6k n'

=-2'&ks Po ~ kn, k+4k n' d
S3

e(k'n') = e(kn), (6.23b)

k] =kq+mq, i 4j, (6.23c)

where mq is any integer, and that K is related to
m„m„and m, through (4.1c). If

A-„(kn) = 1 (6.24)

then (6.23a) reduces to (6.1a) (with 6»»
-6» +„,e) Equa. tion (6.24) will obviously hold if
we set m& =0, i j, and force mz =0 by restricting
Rekj and Rek& to the interval (-&, &], i e , if w. e.

replace (6.23c) by (6.1c) and (6.1d).
When k' =k and n' =n, (6.la) is the gen'eralization

of a mell-knomn theorem of solid-state physics, ""'
that the average value of the probability current
density is equal to the derivative of the energy
eigenvalue with respect to k for an electron in a
periodic solid. [A weaker version of (6.la) is

-2' dxP, =v= v, a, +v,a, +va,

-2' P, kn, k'n' d
Sy

=dtK(kn)&~(kn)6», ~ » 6„„, (6.23a)

where &~ +~,~~=1 if k& -k~=integer=m& and 0
otherwise. We recall that (6.23a} holds if

or

J d i)e(k )d(k+K, ')'3 0

6k, -0, (6.19}
Another expression for v&(kn) = S e(kn)/Bkz can
also be generalized: According to the Hellmann-
Feynman theorem'i~ (otherwise known as first-
order perturbation theory) and (13.4),

=-2' P, ~ kn, k'n' ~ d
3

(6.20)

ee(kn) f d fBk~

where K is the reciprocal-lattice vector defined
by m„m„and m, according to (4.lc). In view of
(13.11) and (13.14), e(k+K, e') and g(k+K, n') can so

xx';k u x';kn,
(6.25}
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ni(kn) =2 xi f dx jl (x; k )n[T, x&]d(x;kn)
The same (well-known) argument that produced
(6.13) leads to the result

+27ri dz dz' gt(z; kn)(x& —xi)

x V (z, z') I()(z'; kn) . (6.26)

ef(a'-a ) ~ x

2 $27i(a -a;)I.;„„(,. „,)(0) I —e
e/27l(A ~-y. )

4 = 3.

(7.5a)

VII. FINAL RESULT FOR Gp

The two-dimensional analog of (6.6) is

P,[e '"'"u)t(z), e'"""v(z)] dS~ ~

P [e-ik ~ (x+x) 1'(~) ikx (x+ x) (~)j
~ ~

s X
3

lal 2a2 0

(7 1)

(7.2)

(7.5b)

-2n'i Po kn, k'n' ' ds
S3

=L,L,v, (kn)6), ), &„„x ('l.6)

if k, and k,' satisfy (5.6b). We therefore have

r PG[g (kk„',n), g(k'k„'. , n')] dS =0, (7.7a)

if k and k' satisfy (5.4) and (5.6a). Then (6.1)
and (7.4) give

if zo and & are periodic. In this section we choose

x(') =x'
3 3& (7.3) P,[g t(kk„', n), g(k'k„', x n')] ' d S

S3

so that the little surface s, defined by (6.2) lies
within the big surface S, defined by (5.19). Com-
bining (6.'l) and (7.1), and letting k+ hk-k',
u) -u (kn), v- u(k'n'), gives

PG[pt(kn), p(k'n')j d S

= L,L, v, (Kk„'in) 6i-„x6„„x6,in/-(-2 xi), (7.7b)

which reduces (5.18) to

a'(z'; knl) =+2' gt(z'; kk„', n)/ (ik)k„', )Ln, L, . (7.8)

Then (5.9) gives, with (L,L,) 'Q;- jBz dk,

p ~ kg kI&~ .ys e'(~'- )'x g 4
S3 X

G (xx'; x) =f dkG (xx', kx},
BZ

(7.9a)

GG(zz'; ke)

g(z; k„'in)g (z'; kk„',n), „V' )()(x;kk„,n)p (z'; kk„in)
g Ns ~ d k ) (7

G, s(z z'; km) = g a(x'; kk, n) g (z; kk, n) . (7.9c) Ti)(kk, n) = P(kk,*n) (7.11)

Recall that the coefficients n are determined by
the boundary conditions on G„and that the k
values in the sums of (7.9) are those satisfying
(5.5) and (5.6b). We write (7.9) in the shorter
form

(,—
)

. g ()l(xk kknin)il)'(z'k kkwin)

Gi v, ( „k,k)n
x sgn(x, —x,') + G, (z z'; k e),

(7.10)

if the operator H, is formally self-adjoint.

VIII. SYSTEM WITH AN INTERFACE

%hen an interface is present, H, is changed to
H, an operator with only two-dimensional trans-
lational invariance:

a(x+x, x, ;x'+x, x,') =a(X, z'). (8.1)

For reference, we write down the analog of (4.1):
X=1,a, +l,5, (X=X+ l,a,), (8.2a)

where it is understood that k„,=k„", for sgn(x, —x,')
=+1 and k„,=k, , for sgn(x, —x,') =-1. We recall
(4.15c):

x=x,K, +x,K, (z=x+x,a,),
Ik =mibi+m, b, (K =Z+m, b,),

(8.2b)

(8.2c)
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H(%, %')-H)(x, x') as x, -~ and x,'-~, (8.3a)

-H', (x, x'} as x, --~ and x,'--~,
(s.sb)

-0 as ~x, -x,'~-

where H, is the bulk operator for M&.
Let g& (kn) be an eigenfunction of Ho'& with wave

vector k and eigenvalue»& (kn), and let 4'& be any
solution to

(8.3c)

[e& (kn) —H] +)& (kn) = 0,
for which

(S.4a}

+& (%;kn) - g (x;kn) as x, -+~ .
That is, '0 grows out of (t& as the interface is ap-
proached. Also, let 4& be a solution to

[e)~(kn) —H] 4'& (kn) = 0,
for which

(8.4b)

(8.5a)

'I()(%;kn) —
7(&, (%;kn) as x, -+~. (8.5b)

Equation (8.4} does not uniquely specify 4, since
(8.4b) will still be satisfied if an arbitra, ry set of
rapidly decaying solutions to (8.4a) is added to 4'.
Similarly, (8.5) does not uniquely specify 4'.

In the following, I f8cus on the medium M& for
concreteness, and temporarily drop the subscript:

0 = k,b, + k2b, (k = k+ k»b, ) . (8.2d)
I

I et the interface be at x, =O and let the medium
in the region x, &&0 be called M&. (Either M& or M&

may be vacuum. } We assume that

--, &Rek3- » --, &Rek31 1 1 1

Here P is the bilinear concomitant of —II, and o,
is a surface defined exactly as s, was [in (6.2),
with j = 3] but which may be nea. r the interface, or
arbitrarily far beyond it, rather than in the bulk.

We begin by letting 0 be the volume defined by

(9.1d)

x,'"—1 ~ x; ~ x;"', i = 1 or 2,
x"'& x & x"'

3 3 3

(9.2a)

(9.2b)

with x,'"-x,(o&= integer. In order to obtain (9.6b),
me mill let

x@) (9.2c)

e-"'"'(-'('
)t P[+'(x kn) +(x k'n')] dS

fy j

The volume 0 is a "long parallelepiped" stretching
from the plane x, = x,"', deep within the bulk of M &,

to another plane x, = x,'" which may be near the in-
terface (or may lie beyond the interface, within

M&). We let o be the surface of 0, and break o up
into three "front surfaces" cr,. and three "back
surfaces" &;, with the normals to o,. and &,. being
parallel to b,. and -b, , respectively.

The two dimensional analog of (6.7) is

p [e- r» (» +x & ~t (y ) e (P ( «+ x &g ( «x )]

P[e-i» «~t(g) gi»' «g(x«))ei(»'-»& x (9 3)
I

with t&&(x) and v(x) having two-dimensional perio-
dicity. In view of (8.7) and (8.8), we then have

HO=H„q =q&, g= g&, 4= 4'&.

4 is a two-dimensional Bloch function:

(8.6) i=1 or 2 (9.4)

e(x; in) = e(»'V(x; kn),

V(x+X, X,;kn) = U(x;kn).

So is I(, and (4.lla') requires that

&1(t(x; kn) = e (»' Ut(%; kn)

V(x+ X, x, ;kn) = U(%;kn).

(8.7a)

(8.7b)

(8.8a)

(8.8b)

since &, is displaced from cr, by X= —K, , and since
the normals to &,- and cr,. point in opposite direc-
tions. If (9.lc) is now invoked, (9.4) will cause
the contributions from the "long sides" of o to
cancel, leaving

I P[% (kn), 4'(k'n')]'d S

IX. A COROLLARY

2 wz
&a3

P[4' (kn), 4'(k'n')] 'd S= v»(kn)5»» 6„„.

(9.1a) .

~(k'n') = ~(kn),

k,'=k„ i =1 or 2,
(9.1b)

(9.1c)

In this section, I prove a corollary to the
theorem of Sec. VI:

P[@t(kn), (1((k'n')] 'd S. (9.5)
3+ 3

That is, the surface integral reduces to an integral
over the "end caps" at the top and bottom of o.
But since 4 and 4 satisfy adjoint boundary condi-
tions, according to (9.1b) and the comment fol-
lowing (2.7) [which still holds if V- 0 and S —(r in

(2.1b) and (2.2), the left-hand side of (9.5)
vanishes, and f„=—5, . Equations (6.2) and (9.2)
show that &3 and s3 consist of the same points;
however, their normals point in opposite direc-
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tions, so f, = —f, . We thus have

P 4'~ kn, 4'k'pg' dS S.6a
S3

Po kn, k'yg ' 'd' S S.6b
S3

in view of (9.2c), so (9.1) is the same as (6.1) for
3 0

X. EVALUATION OF 6

G(xx', e) is defined to be a solution to
I

dx" L(xx"; e) .G(x"x'; e) = 6(x -x'),

L=g-H.

(10.1)

(10.2)

(The boundaries of V parallel to a, and a, are far
from the interface on both sides. ) .As in See. V,
we look for a solution in the form

G(xx'; e)=g [S'(x'; Km)C (x; km) &(x, —x', )

+ P (x; k-m)C (x; km)e(x,' —x,)],
(10.3)

with the k satisfying (5.4). The C (km) are the
solutions to

HC (km) = ~(km)C (km),

e(km) =e,
(10.4a)

(10.4b)

satisfying some specified boundary conditions.
It will be assumed that

e(km)=Pc(T )e(T ), (10.5a)
k»n

where the 4(kn) satisfy (8.4) with e(kn) =e. This
is a reasonable assumption in view of (8.3). [If 4
decays to zero more rapidly than H -H, in the
limit x„x,'- -~, it is conceivable that (10.5a) may
break down; in this exceptional case, the present
treatment will have to be modified. ] There are
two "natural" ways to specify the boundary condi-
tions on 4: The first way is to choose the bound-
ary conditions such that 4(km) - ((kn) as x, - -~,
with Imk, ~ 0; i.e. , all the c(kn) in (10.5a) except

4 (km) =g c,(kn)4', (kn),
$3n

set c&(kn) =—c(kn) = 0 for Imk, &0 and c&(kn) = 0 for
Imk 3 & 0, and then match the two expre s sion s
(10.5) for 4(km) (in the appropriate interfacial
boundary conditions) at some plane x, =x~ to
determine the possible sets of coefficients c~.
Notice that the 4(km) can include solutions lo-
calized near the interface on one or both sides,
i.e. , surface states" a.s well as bulk states. "

Combining (10.3) and (10.5a), we have

(10.5b)

G(xx', c) = [y'(x'; kn)4(x; kn) &(x, —x,')
n

+ y (x'; kn)4(x; kn)fj(x', -x,)],
(10.6)

which is the analog of (5.3). We can now simply
carry over the treatment of Secs. V and VII, with
G, -G, o-y, g-w, L, -L, H, -H, T, -T, V,- V, I', -8, and s, - o', [and x,'" = x,' replacing
(7.3)], to obtain

G~xz', tI —f dkG(xx', kt),
BZ

(10.7a)

~, (kk„,n)

x sgn(x, —x,') + G "8(xx'; kE),
(10.7b)

G "8(xx', ke ) =g y(x', kk, n)W (x; kk,n) .
nk3

Had we assumed 6" = 0 and left G in the form

(10.7c)

~J;P[e'(kn), W(T n)].a3'

x sgn(x, —x', ), (10.8)

we would have had the generalization and simpli-
fication of a result due to Feibelman. '

With the subscripts of Sec. VIII restored, (10.7)
ls

one are made to equal zero. In this ease, 4(x;
km) will ordinarily grow without bound as x, -+~.
The other way is to choose the boundary conditions
so that C (km) remains bounded as x, - -~ and

x3 + ~ . In thi s case, we w rite the anal og of
(10.5a) in M&,

. g'k((x; kk„',n)4'&&(x"; kk„',n) &(,)
g4'&&(x; kk„,n)4'&&(x', kk„,n) 8(,,

+P y~(x', kk, n)4&&(x; kk,n),
.nA3

(10.9)
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sag(kn)
v, kn—

3
(10.10) (, )

1 g @,(x;e)4t(x', e)
E —6~(E)

(11.4c)

Here G is the Green's function for the medium
M&, in the region@, &0, and G is the Green's
function for the medium ~&, in the region x'3 &0.
The k, of (10.9), which are those values satisfying

e((kk, n) = E, (10.11)

for fixed k and n, have been arbitrarily broken up
into the two sets k„', and k„,. After one has decided
which k3 will be called k„', and which will be called
k„„ the coefficients p are determined by the
boundary conditions imposed on G(xx') at fixed x'.

X.(x)X.'(x')
E'— (11.5a)

at zero temperature. This equation and (11.1)
imply that y, is a solution to

[The factor I/Kin (11.4) is inserted to be consis-
tent with (14.1) and (14.2).] 0 is a "quasiparticle
eigenfunction. " The fact that Zt(x'x) xZ(xx') in
general means that 36(e) is not formally self-ad-
joint and e, is consequently complex; i.e., the
time-dependent function C,e ' ' is damped.

There is also the Lehmann spectral representa-
tions which has the form

XI. MANY-BODY GREEN'S FUNCTIONS Bt) AND 8 3C(h, )X.= &,X.. (11.5b)

The exact single-particle Green's function 9
satisfies the Dyson-Schwinger equation'

where

2(e) =c -x(c),
36(&) = ~+'u(&),

~(~) = V+Z(~) —V,

(11.2a)

(11.2b)

(11.2c)

9(xx';e) = g [y,'(x')@,(x;e)8(x, —x,')

+y, (x')C, (x; e)8(x,' —x,)], (11.3a)

where the 4,(x;e) are the solutions to

36(e)@,(~) =~+.(~) (11.3b)

satisfying some set of boundary conditions.
In addition to the representation (11.3), which is

of interest in the present section, there are two
other representations of 9. If some set of solu-
tions 4', (e) to the equation

36(e)@,(e) = e,(e)@,(e) (11.4a)

p. is the chemical potential, and Z(xx'; e) is the
(temperature-dependent) self-energy. [For 'He
atoms and superconducting electrons, 8 and Z are
2x2 matrices. ' To allow for interaction with a
quantized field )))), one can add a term -gl'P to the
right-hand side of (11.2c), with g representing the
coupling constant and I' the vertex part. '] In view
of (11.1), we look for a solution in the form (10.6):

(,(e) = )C)(km'), e, (e) = e (kne), (11.8)

where )C) is a bulk solution. [We are using e to re-
present the parameter in the Green's function or
self energy an-d e(kne) to represent the eigenvalue
of (11.4a). ] Similarly, Z for the system with an
interface is assumed to have the same two-dimen-
sional periodicity as H, and 4 is taken to satisfy
the analog of (8.4). The treatment of Secs. V-X
can then be repeated with G —8, L —Z, B-R, and
V-~. (The parameter e is regarded as fixed
throughout this treatment. ) Consequently, the
Green's function for a system with an interface is
given by

S)xx';a)= JdÃ))(H .)e), ',
BZ

(11.9a)

If the values of s become continuous in (11.4c),

(e —e,) '-a, (e)(e —e, +i5) '+b, (e)(e —e, —i6) ',
with a, (e)+b, (e) =1. The same kind of replace-
ment is to be made in (11.5a).

According to (2.1),

&(~) =~*-30(~), (11.6a)
'l

36(xx', e) = H(xx') + Z~(x~x; e) —g, (11.6b)

with P= T+ V. As before, 4', (e) is defined to be a
solution to

36(c)+.(~) =~.*(e)~.(e) .
In the bulk, we assume that the self-energy Z,

has the same periodicity as the lattice, so that
Bloch's theorem gives

is complete,

4,(x; e)%t(x'; c) = 5 (x - x'),1

S
(11.4b)

. g 4(x; Xk„,ne)4'~(x'; kk„,ne)
v, (kk„,ne)

x sgn(x, —x',), (11.9b)

then 9 has the biorthogonal spectral representa-
tion"

where 0 and 0 in this section are solutions to
(11.4a) and (11.7), and
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se(kne)
8k~

(11.10)

As before, the k„, are those k, values for which

e(kk„,ne) =e, (11.11)

XII. NONDIFFERENTIAL EQUATIONS

If Tp 0, the results of Secs. II and IV still hold,
but the method of Secs. V and VI for evaluating
the Green's function no longer works: since we
can take

P, [go~, v] =—0, for all go and u,

(5.12) reduces to 0=0. Also, (2.1) becomes

Jd xvvv(I. „v) = Jdd(Ldv)vv;
V V

(12.1a)

(12.1b)

i.e., all so and v satisfy adjoint boundary condi-
tions. Then (2.10)—(2.12) imply that (6.3) also re-
duces to 0= 0. The final result of Sec. V and the
theorem of Sec. VI are therefore no longer valid.
(As mentioned previously, this will also be the
case for Tp &0 if T, contains no derivatives with
respect to x„ in Sec. V, or with respect to x, , in
Sec. VI.) We now turn to a method which is more
general, in the sense that nondifferential equa-
tions can be treated, but also slightly less gener-
al, in that there are additional requirements con-
cerning the e(kn) and the tj (kn) or 4(kn).

The method involves the analytic properties
of e(kn) and g(kn) [or 4'(kn)] at complex k."" In
particular, we require the following in evaluating
G, or 9,: (i) e(kn) and g(x;kn)P(x';kn) are ana. —

lytic functions of k, at fixed real k, and k» except
for branch points off the real axis that they have
in common. [Note that PiP is independent of the
choice of phase for g, in view of the normaliza-
tion condition (4.32b). ] (ii) As ~lmk,

~
~, with

k and k2 flxedq

le(kn) I
-~ (12.2a)

and are partitioned into two sets, corresponding
to sgn(x, —x,') =+ 1 and sgn(x, —x',) = -1. If re-
quired by the boundary conditions, a nonsingular
part 9N~ is to be added to (11.9), as in (10.7) or
(10.9). Equation (11.9) with 4' g gives the bulk
Green's function Qp.

Correlation functions other than single-particle
Green's functions satisfy "effective wave equa-
tions" like (11.1),' and can consequently be written
in forms similar to (11.9).

For the evaluation of G or 9, g 4 in the above re-
quirements.

XIII. PROPERTIES OF e(kn) AND P(kn)

In this section I show that the requirements of
~ec. XII are satisfied in the bulk (except in the "patho-
logical" cases defined below) if H, (k) is an anal-
ytic function of k, for fixed k„and k, . ]We are now

regarding H, (k) as a matrix, with elements
[H,(k)],~ evaluated in some representation; the
preceding statement means that each matrix ele-
ment is an analytic function of k, .) Exceptional
phenomena involving nonanalytic H, (k)—such as
the Kohn anomalies in the phonon frequencies of
a metal" —will have to be treated separately.

I begin by extending the arguments of Krieger"
to a general operator Bp which need not be local
or formally self-adjoint. In this more general
case, Krieger's Eqs. (1), (2), (5)—(7), (10) (after
an obvious correction), and (13)-(17)still hold.
Repeating the treatment with H, -H, yields (19),
and (20) is the same as my (4.32a). Then (21)—(24)
follow as before, so we have the result that e(kn)
and g(x; kn)$t(x'; kn) are analytic functions of k,
except for branch points that they have in common.
If H, is formally self-adjoint, Krieger's (11) holds;
i.e., there can be no branch-point singularities on
the real axis. In the case of an operator which is
not formally self-adjoint, we regard such singu-
larities as "pathological. "

It is easy to see that Krieger's U is the same as
our u~ when Hp Hp write

u(kn) =f(kn)+i@(%n), (13.1a)

with f and g real for R real. Then

u~(kn) =ft(k*n) —igt(k*n) (13.1b)

by (4.15). Schwarz's reflection principle implies
that

That is, the expression in (12.2b) either goes to
zero or remains bounded. [A slightly less strin-
gent requirement is that this expression divided
by e(kn) goes to zero as Imk, sgn(x, —x3) -~, with

x, x', k„k„and Rek, fixed, "almost everywhere"
in the interval ——,

' (Rek, ( —,'.] (iii) The product g
is periodic in reciprocal space:

g(x; k, k, +m„n) iP(x'; k, k, +m„n)

=P(x;kn)iP(x'; kn) . (12.3)

Also, as Imk, sgn(x, —x,') -~,
g(x;kn)hatt(x';kn)=u(x;kn)ut(x';kn)e' ''" " 'e' ""3 *3'

so

f~(k*n) =f r(kn)

g'(k *n) =g r(kn),

(13.2a)

(13.2b)

(13.3)
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Thus u is Krieger's analytic continuation of u"
into the complex plane, and g(x; kn)P~(x', kn) is the
analytic continuation of $(x; kn) tp(x', kn).

Now consider requirement (ii) of Sec. XII. We
assume that the k, dependence of e'"''" "' domin-
ates the k, dependence of u'(x;kn}u(x', kn) for x,'
0 x„and that u~(x; kn)u(x', kn) remains bounded for
x,'=x» as ~lmk, ~-~. [As mentioned in Sec.
XII, it is actually sufficient that ut(x;kn)u(x', kn)/
e(kn) -0 for x,' =x, .j If V, is local —V,(x, x')
=V,(x}5(x—x')—we make two further assumptions:
(i) T, contains at least one derivative with respect
to x, and (ii) if 8"/Bx," is the highest derivative
with respect to x3 in To, then k," dominates the
factor multiplying it in

u~(x; kn) e-'" *T,e '"' u(x; kn)

as ~Imk, ~- ~. We regard cases for which these
assumptions are not satisfied, i.e., cases in which
the dominant k, dependence arises from
u~(x; kn)u(x', kn) rather than e'"' '" "', as "patho-
logical. "

Equation (12.2b) follows immediately from the
first assumption of the preceding paragraph. To
get (12.2a}, note that (4.6b) and (4.32a) give

H (KK', k)-=— dxf dx'e ""'"'"
0

v V

xH (x x')e''"'"""'

Since

(13.9)

Ho(K —K, K' —K, k+ Ko) =Ho(KK', k), (13.10)

u(K —K, ;k+K„n) satisfies the same equation as
u(K;kn). Then we can take

e(%+ K, n) =e(kn),

u(K —K, ;k+ K„n) =Au(K; kn),

(13.11)

(13.12)

where A is a constant. Equations (13.7) and (13.12)
give

u(x; k+ K, n) =A|t(kn) e '" W (x; kn) (13.13)

ol

g(x; k+ K, n) = Ax(kn) g(x; kn) . (13.14a)

Similarly,

Q H, (KK', k) u(K', Rz) =c(kn)u(K kn), (13.8)
K'

with

6(kn) = dxu (x; kn)e '~'*T,e'"'"u(x; kn) q(x;k+ K, n) =Ax(kn)q(x; kn) . (13.14b)

w

+ dx dx'u~ x; e-'"'"
v V

x Vo(x, x')e'"'*'u(x', kn) . (13.4) so

AK~(kn)A„"(kn) = 1, (13.15)

The normalization condition (4.32b) then yields

If V, is nonlocal, the dominant k, dependence
comes from e''3'"3 ""in the second term. If V,
is local, the dominant k, dependence comes from
k3 in the first term. In either case, we have
(12.2a).

Suppose that the k, dependence arising from u~

and u in (13.4) can be disregarded as
~
Imk,

~

-~.
Also suppose that V, (x,x') is nonzero only for

mk

e(kn) e""0~' ~~ V, nonlocal,

e (kn) ~ k,", V, local .
(13.5)

(13.6)

We expect (13;5) to be typical for phonons or elec-
trons in a localized representation (in models
where the force constants or overlap integrals are
truncated), and (13.6) with n =2 to be typical for
electrons satisfying the Schrodinger equation (in
models where the potential is local).

Finally, we turn to requirement (iii} of Sec. XII.
In view of (4.4b), u(x) can be expanded in a Fourier
series:

g(x; k+ K, n) $'(x', k+ K, n) =g(x;kn) tt ~(x',kn} .
(13.16)

One expects that 4'(x;kn)kt(%', kn) will ordinarily
have the same properties as g(x;kn)$ (x', kn) as a
function of k. One can investigate the behavior of
4 for a given perturbation H —Bo by making use of
the Lippmann-Schwinger equation. '4

XIV. EVALUATION OF GREEN'S FUNCTION

In this section I treat only Qp explicitly, but
the procedure and final result are valid for Qp

as well if Zo(k) is an analytic function of k3. (The
arguments of the preceding section still apply if
Ho-Ho+Zo —p.) My final result also holds for
G and g, with Q-4, provided that 4(kn) meets
the requirements of Sec. XII.

It is assumed that the eigenfunctions of Hp or
H, +Zo —p (or H or H+Z —p) for real k com-
prise a complete set:

u(x; kn) =Q e'"'"u(K; kn) .
K

Then (4.6) becomes

(13.7) (14.1)x;kv ~ x',kn =5 x —x'

with k ranging over the first Brillouin zone. The
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factor of I/N results from our normalization
convention (4.32). Equation (5.1) will then be
satisfied by

1 ~ P(x;kn)T|)t(x';kn) (14.2)

Letting the values of k become continuous (so
that N 'Z~ —fBzdk J'~', &,dk, ), we have

)'))(irx', c) f dkGt(xi';kc),
BZ

(14.3a)

Gt(xx';ke) -=QGt(xx';kne),
n

i/2
Gt(xx', knc) —= dk, ' - '. , (14.3c)

kv +$5

(14.3b)

where we are now temporarily restricting the
treatment to the retarded Qreen's function Gp,
the general case will be considered at the end of
this section.

We evaluate the integral of (14.3c) by using
the contour C shown in Fig. 1(a) of Ref. 1, for
sgn(x, —x3) =+1, or in Fig. 1(b), for sgn(x, —x3)
=- 1. [Translate the notation of Ref. 1 by letting
k, -k3 and m/a- —,'. Also note that one is free to
choose sgn(0) =+1 or —1.] Let

G sc (xx';kne)

where the k„, are those values of k3 satisfying

«(kk„,n) =e

for which

Rev, (kk„,n) sgn(x3 —x3) &0, k„, real,

Imk„, sgn(x, —x3) &0, k„, complex.

(14.8)

(14.9a)

(14.9b)

g(k, )~y(k, }/[e —e(k,)]
on the right-hand, downward side of C' for the
nth sheet are the same as those for the left-hand,
upward side of C' for the (n+1)th sheet, and
vice versa. [If the order of the branch point is
greater than 1, then more than two sheets have
to be brought into the argument, but the conclu-
sion (14.10) is unchanged. ] The same is true for
a branch point connecting the nth and (n —1)th
sheets. Therefore

QGsc (xx';knc) =0, (14.10)

so (14.3b) and (14.7) give

Consider a branch point of order 1 (in the ter-
minology of Ref. 10) connecting the nth and (n+1)th
Riemann sheets, as depicted in Fig. 1 of Ref. 1.
The values of

(x);kk,n)T))'(x';kk, u)=-- sgn x, —x3 dk,
c

' e —e(kk, n)
(14.4)

where C' consists of curves around the branch
points of e(k3) and ))(k3)P(k3), as indicated in
Fig. 1 of Ref. 1. Then

Gp =Grec +G y +G +sum of residues at poles

&& sgn(x, —xs) . (14.11)

The general Green's function Go(xx', kg) is ob-
tained by simply adding a general nonsingular
part:

.~ g(x;Kk„,n)T)) t(x', kk„,n)

x 2wi sgn(x3 —xs), (14.5)

where G» and G„are defined by (14.4), with C'
replaced by the vertical segments of t" or the
horizontal segment at infinity.

Equations (12.2) and (12.3), respectively,
imply that G„=O and G~ =0. By analogy with
(3.4) of Ref. 1, there is a residue

—t))(x;kk„,n) tt) t(x', kk„,n)/v3(k, k„, +5k„„n) (14.6)

&&sgn(x, —x,') +Gee(xx';knc),

(14.7)

at each pole k„, +5k„„where &(k„,+5k„,) =&+i5.
Application of the argument involving (3.6)-(3.8)
of Ref. 1 then gives

.~ g(x;kk„,n) g t(x', kk„,n)

v3(kk„,n)

&sgn(x3- x3) +Go (xx', ka) .

(14.12)

This is identical in form to (7.10). There is one
apparent difference, in that the k„, of the present
section have been partitioned in a particular way
according to (14.9). One can alter the constants
n in (7.9c), however, so as to go from the ori-
ginal partitioning of the k„, to any other partition-
ing. That is, if we want to remove k3 from the
set of k„', and place it among the set of k'„„we
just let

o. (x';kk&n) - o. (x';kk&n) + 2wi 7|) (x';kksn)/v&(kksn) .

(14.13)

The present result and the result of Sec. VII are
thus completely equivalent.
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XV. SUMMARY

The main result of this paper is a simple ex-
pression":

.~ 4 (x;kk„,n)4t(x';kk„, n)

x sgn(x, —x',), (15.1)

He(kn) =~(1n)e(1 n) . (15.3a)

where k =(k„k2) and

v3(kn) = aq(kn) (15.2)

This is the contribution from one planar wave
vector k to the singular part of the Qreen's func-
tion G(xx', e) that goes with the eigenvalue equation

The adjoint problem is

H V(kn) =a*(kn)4 (kn) . (15.3b)

If H is formally self-adjoint, i.e., if II =II, then

V(kn) =q (k+n) .
The 4„, are those values of k3 for which

e(kk„,n) =c .

(15.4)

(15.5)

They are arbitrarily partitioned into two sets
k'„, and k„, (with no overlap between the sets); it
is understood that the sum of (15.1) is over the
k'„, if sgn(x, —x3) =+1, and the k„, if sgn(x3 —x~)=- 1.

Written more completely and explicitly, my
result for the Qreen's function is

G(xx', c) f dF (xGx', ka),
BZ

. '~ q (x;kk'„,n)4'(x', kk„',n), „~4(x;kk„,n) 4~(x', kk„,n)

(15.6a)

+g [n(x';kk;, n)4(x;kk'„, n) +o.(x',kk„,n))k(x;kk„,n)] .
nl

(15.6b)

The integral of (15.6a) is over the first two-di-
mensional Brillouin zone. The values of the
coefficients o.(x',kk„',n) are determined by the
boundary conditions (or dispersion relation" )
imposed on G(xx', ~) at fixed x' and e. With the
right choice for the partitioning of the k„, into
k'„, and k„„one can frequently eliminate the last,
nonsingular term in (15.6b). For example, the
"retarded" Green's function G' is given by (15.6)
without the last term when we choose

Imk~) ~0q k„g coDlplex,

Re v, (Kk„',n)» O,

(15.7a)

(15.7b)

The exact Green's function g(xx', E) is given
by (15.6) with 4'(x;kn) -4'(x;kn&), etc., where

[H+Z(E) —)u]4(kn&) =&(knq)4'(kng),

[H +Z(e) —p, ]4'(kna) =a*(kne) V(knc),

(15.8a)

(15.8b)

(15.8c)
s&(kn&)

V3 knf

Q and g are the Qreen's functions for a system
with an interface. (There are actually two
Qreen's functions Q and Q, corresponding to
the two media on opposite sides of the interface. )
The bulk Qreen's functions Qo and go are given by
(15.6) with 4'-)I), where )t) is a solution to (15.3)

with H-Ho (or Ho+Zo —p).
As we have seen, two independent approaches

lead to the same expression (15.6). The first
approach, valid for partial differential eigen-
value equations, requires that g(k, ) be differ-
entiable and )I)(k3) continuous at k3

——k„,. The
second approach, valid for more general eigen-
value equations, requires that e(k3) and )j)(k3) be
analytic functions of k3 everywhere except at
branch points. As we showed, in extending the
results of Ref. 12, this will be the case if Ho(k)
is an analytic function of 43.

This paper was concerned exclusively with
time-independent Qreen's functions. To get
from our result for, e.g. , G(xx';e(&u)) to the re-
sult for the time-dependent Qreen's function
G(xx';f - f'), one would have to perform an in-
verse Fourier transform with respect to the
frequency tu. [Ordinarily, &(~) =m or &u'.] Sim-
ilarly, to get the temperature Qreen's function
G(xx', r), one would have to evaluate a Fourier
series involving G(xx', E(i&a„)), td„=nvlPII 'In ap-.
plication, however, it is usually more convenient
just to work directly with G(c(u&)) or G(e (i&a„)).

Our closed-form expression for G(&)—i.e., Eq.
(15.6)—should prove useful in both numerical cal-
culations for particular systems'6 and analytical
studies of the general properties of interfaces. '"
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