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A self-consistent calculation of the electronic structure of a thin Ti(0001) film leads to the

prediction of a band of surface states coincident with the Fermi level and extending a few tenths
of an eV on either side of it. The calculation is performed in a linear combination of Gaussian

orbitals basis. The procedure by which the evaluation of the Hamiltonian matrix is reduced to

summing over three-center integrals as well as the method by which Gaussian bases are selected

are thoroughly described. Observation of the predicted surface band by angle-resolved pho-

toemission is discussed, as well as the question of how general a surface band near the Fermi

energy should be among the hcp d-band metals. A shift of surface atom core levels to 0.25 e&

greater binding energy is predicted, and the origin of this shift is discussed.

I. INTRODUCTION

Recent work has shown that calculation of the sur-
face electronic structure of d-band materials is within
the power of present day computational tech-
niques. ' It is therefore timely to begin a study of
the systematics of surface electronic properties across
the Periodic Table. Among the 3d metals self-
consistent surface-electronic-structure calculations
have been performed only for Cu, ' and Ni. ' (For the
4d's the list includes Nb, 3 Mo, 4 Pd, s and Ag. 6) Ac-
cordingly we present here the results of a self-
consistent calculation of the electronic properties of a
thin (11-layer) Ti(0001) film.

Our numerical method is based on a linear combi-
nation of Gaussian orbitals approach, which permit's

the analytic evaluation of the many integrals that
enter the Hamiltonian matrix. The only physical (as
opposed to numerical) approximation we make is the
assumption of a local exchange-correlation potential.
The data required for the calculation comprise the lo-
cations of the Ti atoms and the assumed (Wigner in-

terpolation) form of the local exchange-correlation
potential. Thus our results are parameter free.

The most striking result of our calculation is shown
in Fig. 1. The density of states in the lower d-band
region narrows dramatically at the surface. This is
due primarily to a quite narrow band of surface states
found to coincide with the Ti Fermi energy, extend-
ing no more than a few tenths of an eV on either
side of it. This result suggests that occupation of the
surface band plays a large role in determining the
strength of the dipole layer at the Ti surface, and
hence the Ti(0001) work function (which we find to
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FIG. 1. Layerwise local density of states (LDOS} for an
11-layer Ti(0001) film. The vacuum level is at energy 0.0.
The dotted line indicates the Fermi level at E = —0,139 a.u.
(=—3.8 eV). Note the strong surface resonance in the
outermost ("1stn) layer.
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be 3.8 eV, in good agreement with experiment').
However further calculations are required to see
whether the coincidence of the Fermi energy with a
surface band is a general feature of the surfaces of
hcp d-band metals, or is simply an accident in the
case of Ti(0001). We also find a core-level shift of
0.25 eV greater binding energy for surface atom core
states than for bulk core states. This is a shift in the
opposite direction to that previously found for
Cu(111) in similar calculations. 6

The remainder of this article is divided into two

main parts. First we review' the scheme by which
the Schrodinger equation for the film is reduced to a
form suitable for numerical computation. Then we

present our results for Ti in detail, focusing on the
possibility of observing the predicted surface states in
angle-resolved photoemission.

II. NUMERICAL APPROXIMATION METHOD

In this section we discuss the calculation of elec-
tronic structure by means of a linear combination of
localized orbitals approach.

Once one decides to represent one's wave function
as a linear combination of'localized orbitals it be-

comes plain that a major task involved in numerical
computation is in evaluating the integrals that enter
the Hamiltonian (and, if the orbitals are not orthogo-
nalized, the overlap) matrix. In order to reduce this

expense, the obvious procedure is to choose Gaus-
sians (or "contracted" Gaussians9) as the localized or-

bitals, since multicenter integrals over Gaussians can

be performed analytically.
However if one is attempting a self-consistent cal-

culation, the choice of a Gaussian basis for the wave

functions is not sufficient to reduce the Schrodinger
equation to a manageable form. Consider for exam-

ple the evaluation of the matrix elements of the elec-
trostatic potential. Such matrix elements are in gen-

eral four-center integrals, since they contain initial

and a final wave functions as well as the charge den-

sity, which, in a self-consistent calculation, is a sum

of squares of linear combinations of Gaussian orbi-

tals. Although the evaluation of four-center integrals

can be carried out analytically for Gaussian orbitals,
the number of such integrals that must be stored
and summed would be prohibitively large. The con-
vergence of direct lattice sums for multipole poten-
tials is also unacceptably slow.

Problems also exist in evaluating the matrix ele-
ments of the exchange-correlation potential. This po-
tential is generally taken, in the local approximation,
to be a nonlinear function of the charge density
n(r), e.g. , const. x n'I3(r). Thus the matrix ele-
ments of the exchange-correlation potential cannot be
evaluated analytically even if a Gaussian wave-

function basis is used.

The method that we have adopted to avoid these
difficulties was first discussed by Sambe and Felton'
in the context of molecular calculations. We choose,
in addition to the Gaussian wave-function basis, a
separate Gaussian basis to represent the spatial varia-
tion of the charge density and self-consistent poten-
tial. Given a charge density expressed in this form,
the 1east-squares fit to the corresponding electrostatic
potential can be carried out after a manageable
number of analytic integrals are computed. A modi-
fied Ewald technique enables the long-range potential
to be handled analytically in Fourier space. Evaluat-
ing and fitting the exchange-correlation potential on a
real-space mesh is also tractable. Once the self-
consistent potential is represented- as a linear combi-
nation of Gaussians, the evaluation of the Hamiltoni-
an matrix requires no worse than three-center analyt-
ic integrals, and therefore becomes a manageable
problem. Least-square fitting this basis to the exact
charge, which is the Brillouin-zone sum of the
squares of the occupied wave functions, requires pre-
cisely the same integrals. On the other hand we are
now faced with a new issue, namely, deciding what
constitutes an adequate basis for the charge density
and the potential.

Ideally, the integrated square error of the large fit
should be evaluated and used as a figure of merit.
This procedure involves sums of four-center in-
tegrals, ho~ever, and has not been practical to carry
out. Therefore we have made use of two some~hat
less stringent criteria to establish the adequacy of a
given charge and potential basis. The first is the glo-
bal requirement of charge conservation. That is we
require that the unconstrained least-squares fit to the
exact charge-density result in a fitted charge density
which has very close to the correct number of elec-
trons per unit cell. Typically in our Ti calculations

, the quality of the charge-density fit did not vary ap-
preciably from iteration to iteration as self-consis-
tency was approached. The basis used in obtaining
the results presented below permitted a charge fit
that was accurate to 1 x 10 in the total charge per
cell. It should be noted that although an uncon-
strained fit of the exact charge to the charge basis was
performed after each iteration, a fit that was con-
strained to give exact charge conservation was used in
order to evaluate the potential. In this way diver-
gences associated with nonsatisfaction of overaB
charge neutrality are avoided. The second criterion is
the requirement that the fitted charge be sensibly
behaved in real space.

When it comes to choosing an adequate charge and
potential basis for a film, the most difficult additional
problem is representing the charge as it drops to zero
in the vacuum region. If the basis is chosen poorly,
the fitted electron number density will show unphysi-
cal oscillations" and even become negative at a dis-
tance from the surface atomic layer where the planar
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average number density is not yet particularly small.
In order to ensure that basis-dependent, unphysical
charge-density oscillations are adequately suppressed
in the vacuum region we evaluate the fitted spatial
charge distribution explicitly. The charge basis we fi-
nally used for Ti was deemed satisfactory in that the
contours of constant charge became fairly flat as one
left the surface and remained flat out to'a distance of
about 4 a.u. beyond the surface atomic layer (see Fig.
2). At this distance the charge density was -0.002
electrons/a. u. compared to an average bulk Ti
valence charge density of 0.034 electrons/a. u. . The
work function associated with the self-consistent fit-
ted charge density turned out to equal 3.8 eV. The
agreement of this value with experimental values,-4 eV, ' is at least partial confirmation that our
basis, which accurately represents the falloff of the
valence charge density down to ——,o

its bulk average

value, is an adequate one.
To complete the description of our calculation we

turn now to the specifics of our wave-function and
charge-potential Gaussian bases. By assumption the
valence wave functions for a Ti film are written in

the linear combination of localized orbitals form

k ( ) = X ck (tR)@„,l (r —iR)
Q, l, m

4„,t (r —6t) —= «, Xe u„l (r —4 —R~,) . (2)
R

I I

Here the 41 (r —iR) are two-dimensional Bloch
functions based on the localized orbitals u„ I which
are labeled as atomic wave functions. The sum on
R~~ in Eq. (2) runs over the sites in the two-
dimensional Bravais lattice while the sum on + in Eq.
(1) runs over a set of sites within the two-
dimensional unit cell. In the Ti calculations reported
here, the set of +'s includes the locations of all the
Ti nuclei in the unit cell (11 of them for an 11-layer
film) and in addition two sites on either side. of the
film, 1.1 a.u. directly above the surface layer atoms.
These supplementary sites are included in order to al-
low the electrons additional freedom to spill out into
the vacuum. We associate one s and one p„, p~, and

p, Gaussian orbital' with the supplementary wave-
function sites. With each of the Ti nuclear sites we
associate two s-, two p-, and two d-like valence elec-
tron radial functions. " The procedure for choosing
these functions is as follows: Each radial furiction
R„I(r) is initially written as a linear combination of
Gaussians,

4 ~ ~

4 ~

R„I(r) = X c;"'r'e (3)
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FIG. 2. Contour plot of the charge density of a five-layer
Ti(0001) film in a plane normal to the surface and passing
through both of what would be the two Ti atoms in the. bulk
Ti unit cell. The distances are given in a.u. The outermost
contour corresponds to a charge density of 2.0 && 10
electrons/a. u.3, and adjacent contours differ in charge densi-

ty by a factor of 1.3. The outermost contours show
moderate Gibbs (unphysical, basis-set dependent) oscilla-
tions.

in which the o. s are geometrically distributed
between 0.03 and 1.2 & 104 a.u. , a range which per-
mits variational freedom from distances well within
the Ti 1s orbital to those sufficiently large to describe
a 4s state. The c s are then determined by means of
an isolated Ti atom calculation. Radial functions for
the Ti core orbitals are also taken to be of the form
of Eq. (3). Within this basis of Gaussian wave func-
tions the atom Schrodinger equation is solved self-
consistently in the local density approximation. ' The
choice of the o. s is judged to be adequate by conver-
gence studies. Atomic transition state calculations
show that the various Ti ionization potentials are
predicted to within -O.S eV of experimental
values. '5

Rather than using the radial functions that are ob-
tained from the self-consistent atom calculation
directly for the Ti film wave-function basis, two
modifications are made first. Since in an isolated
atom the valence wave functions have long tails, in-
clusion of the contributions of the longest range ei's
in the expansion of the R„~(r) is likely to lead to
overcompleteness problems rather than to increased
accuracy. Thus we re-solve the isolated atom
Schrodinger equation non-self-consistently using the
self-consistent potential previously obtained, but elim-
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inating the terms involving the two smallest n s in
the basis for the radial functions. (The smallest n;
retained was thus 0.19 a.u.) The radial functions so
obtained are guaranteed to be accurate self-consistent
wave functions within each Ti atomic cell, but are
limited in radial extent. It was stated above that the
valence wave-function basis included two each of s,

p, and d radial functions. These are the 4s, Ss, 4p,
Sp, 3d, and 4d wave functions which emerge from the
isolated atom problem. The Ss, Sp, and 4d functions
in a Ti calculation are positive-energy wave func-
tions, artificially confined to a region of the size of a
Ti atom by the e& cutoff. They are orthogonal to the
4s, 4p, and 4d functions and are thus useful to incor-
porate into the film calculation to provide variational
flexibility.

A rigid-core approximation is made, which has
been shown to give excellent agreement with the full
problem in several tests. The matrix elements of the
Hamiltonian and the overlap between Bloch sums (or
Bloch layer sums in the case of slabs) are computed
for both core and valence functions. The matrix ele-
ments of the core-orthogonalized valence functions
are then computed in a fully variational fashion. In
matrix notation, they can be expressed

Hill) = Hllv Sllc+co HltcSCO + SvcgccSCV

S„„=S„„—2SocSco + SvcSccSco

(4)

where the subscripts v and c denote valence and core,
blocks of the partitioned matrix. Explicit use of the
assumption that the atomic core functions are eigen-
functions of the crystal or slab Hamiltonian can alge-
braically simplify Eqs. (4), but leads to somewhat less
accurate results. The density matrix for the orthogo-
nalized Bloch valence functions is re-expanded into
unorthogonalized valence and core form in the pro-
cess of fitting the charge.

We turn now to the question of the charge-
potential basis for Ti. The choice of such a basis is

already made at the level of the isolated Ti atom cal-
culation. Since the charge varies as the wave func-
tion square it seems clear that a reasonable basis
~ould be a set of Gaussians whose o, s were double
the o. s in the wave-function basis. However it is
important to make allowance for the singular nature
of the screened nuclear potential at r 0. Accord-
ingly in the potential basis we include not only a set

2

of Gaussians, {e ' j, but also one additional term of
-apr 2

the form e a /r, where ao i. s given a value of —102

a.u. to simplify multicenter integral summations in
the bulk or film. The inclusion of the Gaussian
screened Coulomb term in the potential basis does
increase the expense of the calculation of the Hamil-
tonian matrix, but less than would the attempt to fit
the r ' potential by having only Gaussians but more
of them. In the Ti atom calculation 20 e~'s are used

t

geometrically distributed between 0.04 and
2.4 F10~ a.u. Of this set, the value o. =88.6 is as-
signed to the Gaussian screened Coulomb term.

It is important to calculate the electronic structure
of bulk hcp Ti as a preliminary step before proceed-
ing to the film calculation. This not only allows us to
test both sets of basis functions, but provides a com-
pletely parallel self-consistent band structure to aid in
interpreting the surface results. For bulk Ti we de-
fined a charge-potential basis as follows: Consider
three lines parallel to the c axis. Two of the lines
pass through the two Ti atoms in the hcp unit cell,
while the third passes through the octahedral intersti-
tial sites. ' Along each of these lines we center
Gaussians every —c, starting in a plane containing a

Ti nucleus. To sites that coincide with a Ti nucleus
we assign the same set of Gaussians as we used suc-
cessfully in the atomic Ti calculation, except that the
two longest-ranged Gaussians are omitted because
they would lead to overcompleteness in the solid.
With all the other sites ee associate three Gaussians
with o.'s equal to 0.327, 0.658, and 1.32 a.u. These
relatively long-ranged Gaussians are included to per-
mit charge to flow into the bonding regions of the Ti
solid. With this basis, we find that an unconstrained
fit to the self-consistent exact Ti charge density gives
overall charge neutrality to -0.01%, and a bulk Ti
band structure (see Fig. 3) that is quite similar to
that of Jepsen, "which. agrees with Fermi-surface
data. (Our band structure differs from that of Jepsen
in some details; but differences are to be expected
since Jepsen's calculation is non-self-consistent while
ours is self-consistent. )

In order to select an adequate basis for the charge
and potential just outside a Ti film, we proceeded
from the bulk Ti calculation to that of a three-layer
(0001) film. In such a film there are only three Ti
atoms per unit cell, and consequently numerical ex-
perimentation is still relatively inexpensive. The
charge-potential basis that was finally adopted for the
three-layer film involved the use of the same fitting
sites and Gaussians for the interior of the film as
were used in the bulk Ti calculation. Outside the
film we added additional sites along the three lines
parallel to the c axis defined above, at distances of

1 (3nc) abo—ve the surface atomic layer, with

n =0, 1, 2, 3, 4, and 5. Two Gaussians were associat-
ed with each of these sites with o. s of 0.162 and
0.327 a.u. The n's of 0.658 and 1.32 that were in-
cluded at the non-nuclear sites in the Ti bulk were
dropped in the surface sites because no large varia-
tion on this short a scale is expected outside the sur-
face. Although (cf. Fig. 2) the charge fit obtained
using this basis could certainly be improved upon,
i.e., the unphysical "Gibbs oscillations"" in the
valence charge density appear already when it has

only dropped to
2o its bulk average value, the fact
1
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FIG. 3. Self-consistent nonrelativistic bulk band structure of hcp Ti.

that the work function obtained using this charge
density differs from experiment' by only 0.2 eV sug-
gests that the basis is adequate. %e assumed an un-
reconstructed, unrelaxed geometry for the Ti film, in
accordance with low-energy electron diffraction
(LEED) data and calculations. '9

Having found a reasonably good basis to describe a
three-layer film the modifications necessary to ex-
pand to a thicker film are obvious; one uses the same
basis outside and on the. surface, and the bulk basis
in the interior.

The last technical matter that must be discussed is
how we solve the Schrodinger equation for a film as
thick as 11 layers. It is important to carry out calcu-
lations for such a thick film if one wishes to obtain a
description of surface states in which interference
between the surface states corresponding to the oppo-
site sides of the film does not occur and split them in

energy. In addition for thinner films it is often not
easy to determine which states actually are the sur-
face states, because there is not enough bulk region
for their wave functions to decay to zero.

Since an 11-layer Ti(0001) film has 11 Ti atoms
per unit cell, and thus our wave-function basis in-
volves the solution of a 206 x 206 generalized eigen-
value problem, it is clear that a self-consistent cal-
culation of such a film would be extremely time con-
suming. However to obtain an approximately self-
consistent description of the 11-layer film is quite

straightforward. The idea is to take advantage of the
rapid "healing" of the potential as a function of depth
below the outer atomic layer. In order to make this
idea quantitative we compare the intracentral layer
Hamiltonian matrix elements, as well as those
between the 2nd and 3rd, and 2nd and 4th layers of a
self-consistent five-layer film, with the corresponding
matrix elements for what we will call a "bulk Ti film. "

Clearly it is not trivial to compare the Hamiltonian
matrix for a five-layer Ti film numerically with that
for bulk Ti, because k, is a good quantum number
for the latter geometry but not for the former. Thus
we imagine the case of a Ti film in which the poten-
tial energy is fixed to equal that of self-consistent
bulk Ti shifted by a constant, " i.e., the charge is not
allowed to relax to its self-consistent form for the
film. The Hamiltonian matrix for this potential must
represent the properties of bulk Ti. But since it has
been evaluated as though a film calculation were be-
ing performed, only k„ahd k~ are treated as good
quantum numbers. Thus the "bulk film" Hamiltonian
matrix is easy to compare with that of an actual film.
The comparison of the five-layer film's interior layer
matrix elements with the corresponding elements of a
five- or seven-layer "bulk film" reveals agreement to
within —1%. This continues to hold true after core
orthogonalization. Thus we "stretch" the Hamiltonian
matrix of a self-consistent 5-layer film to that of
an 11-layer film which is self-consistent to an excel-
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lent approximation by filling in the blocks of the ma-

trix corresponding to interior layers with appropriate
blocks of the "bulk film" Hamiltonian.

This completes our description of the novel techni-
. cal features of the Ti film calculation. W'e turn now
to a discussion of the results.

III. CALCULATED STATES OF AN

ELEVEN-LAYER Ti(0001) FILM

As noted in the Introduction, the most striking
result for the Ti film is the prediction of a band of
surface states and resonances coincident with the
Fermi level, which lies at —0.139 a.u. relative to the
vacuum. In this section we describe the angular-
momentum character of these surface states and dis-
cuss their dispersion. We also take up the question
of the possible obs'ervation of the Ti surface band via
angle-resolved ultraviolet photoemission spectroscopy
(ARUPS).

The surface Brillouin zone (SBZ) and the labeling
of its symmetry points and lines are shown in Fig. 4.
Energies of the states of the 11-layer slab along these
lines are plotted in Figs. 5(a) and (b) for even and
odd symmetry with respect to the center plane of the
slab.

Examination of the wave functions reveals that
states which are peaked at the surface exist
throughout much of the SBZ. These are indicated by
heavy lines in Fig. 5. There is a pair of reasonably
strongly surface-peaked states at I at —0.14099 a.u.
and —0.14074 a.u. , but at k~~ values near I these sur-
face states are mixed with the bulk Ti bands and thus
are only weak surface resonances. To make such
statements more quantitative, we compare the orbital

FIG. 4. Two-dimensional Brillouin zone (2-D BZ) for the
hcp (0001) surface.

populations" in the surface layer and averaged over
the three central layers of the film, for the wave
functions of the surface resonance states. For the
surface states at I", the surface to bulk population ra-
tios are 30 and 90 for the states at —0.14099 and
—0.140'74 a.u. , respectively; ho~ever for the states
near the Fermi level and for k~~ one-sixth of the way
from I to M the most surfacelike state shows a
surface-bulk ratio of -6, and for k~~ one-eighth of
the way from 5 to K the maximum surface-bulk ratio
is 7. Thus the I surface state retains its identity over
too small a portion of the SBZ to be of physical signi-
ficance.

On the other hand, a band of well defined surface
states splits off the top of the second band continu-
um approximately half way out along the I -X-M and
I -T-K lines, and exists over most of the outer por-
tion of the SBZ. In the vicinity of K, this band of
states merges into the third band continuum to be-
come a surface resonance. Approaching the K point
itself, however, this resonance sharpens and becomes
a true surface state again at K, lying at —0.1386 a.u.
This is possible because of the additional symmetry
of the K point. The surface state has the symmetry
of bulk P~ and P2 states, while the continuum in
which it is embedded is composed of P3 symmetry
states (cf. Fig. 3). Thus the continuum cannot mix
with and broaden the surface s.ate. This state is near
the middle of a gap between P~ and P2 continua, ap-
proximately 1.5 eV from the nearest such band edge.
As a result, the evanescent tail of the surface state
wave function is very rapidly decaying, making it
more localized at K than anywhere else in the SBZ.
The surface-bulk population ratio is 3.3 x 10~. This
band of surface states and resonances is quite flat and
straddles the Fermi energy. It contributes the peak
in the surface LDOS shown in Fig. 1. The band
should be empty around its maximum at M, and oc-
cupied elsewhere with one possible exception. At K,
the surface state connected with this band lies just at
the Fermi energy, and it is not possible to say with
certainty whether it is occupied or not within the ac-
curacy of the calculation.

There is another surface state at K of P3 sym-
metry, lying in the —1 eV gap between the lowest P3
bulk bands, at —0.1666 a.u. This state exists over
only a small portion of the SBZ and, like the previ-
ously discussed state at I, will contribute little to
physically interesting surface properties.

It should be pointed out that there exist higher sur-
face bands in addition to those riear the Fermi ener-
gy. But in view of the local orbital nature of our cal-
culation, we do not consider states within an eV or so
of the vacuum level to be accurately described, and
so do not discuss them further.

The angular-momentum character of the Ti surface
band is illustrated in Figs. 6—9; Note that the peak at
Eq is absent in the 3z —r' partial LDOS, while it is
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FIG. 5. Two-dimensional bpnd structure for the 11-layer Ti film. Panels (a) and (b) correspond, respectively, to states which
are even and odd under reflection in the central plane. The line I -X-M is a symmetry line. The dashed and solid dispersion re-
lations for this line accordingly represent states which are even and odd uri'der reflection in a plane normal to the surface and
passing through the I"-Af line. States near the Fermi level (which is at —0.139 a.u.) that are strongly surface-peaked are indicated
by heavy dispersion curves.

strong in the (xz,yz) and (xy, x' —y') partial
LDOS's. Near the M-T'-K line the surface states
are predominantly of this character. The large sur-
face peak in the s-p partial LDOS, in Fig. 9, does not
give a fair indication of the relative s-p character of
the surface band. Most of this peak is from wave
functions centered on the supplementary fitting sites

outside the outer Ti atomic layer (cf. Sec. II). While
these are s-p in symmetry relative to their center, it is
difficult to know how to decompose this partial
LDOS in an angular-momentum breakdown about
the surface atom. It presumably has significant d
character.

%e turn finally to the question of the possible ob-
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FIG. .6. Local (xy, x —y ) density of states vs layer. Note
the strong surface resonance which coincides with the Fermi
level (dashed line) at —0.139 a.u.

FIG. 7, Local (xz,yz) density of states vs layer. Again the
surface resonance at the Fermi level (dashed line) appears
strongly in the surface layer. The scale on the ordinate is
identical to that in Figs. 6, 8, and 9.

servation of the Ti surface band. Early UPS data of
Eastman' does not show a peak at the Ti Fermi en-
ergy. However in this experiment there was rather
severe contamination of the Ti sample by H, as evi-
denced by a large peak —5 eV below the Fermi ener-
gy, which increased with the addition of H2. More-
over the Ti in the experiment was polycrystalline, and
we can make no statement regarding Ti surface states
on other than the (0001) face.

Recent unpublished results of Rabalais and Igna-
tiev26 for apparently clean Ti(0001) show what may
be a surface state about 1 eV below the Fermi level.
This peak, however, mysteriously disappears above
160'C, which is not understood.

Unfortunately the selection rules for angle-resolved
photoemission do not distinguish surface from bulk
states for the Ti(0001) surface. These selection rules

, apply only when the parallel component of the pho-
toelectron wave vector is zero or lies along a mirror
plane, i.e., for an hcp (0001) surface, only along the

line I'-X-M in the SBZ.
At I, i.e., for electrons exiting along the surface

normal, a glance at the bulk band structure (Fig. 3)
shows that all the occupied states are of the same
symmetry h~ and 42, and thus are invariant to rota-
tions of +120' about the taxis." Thus at I no
states should be seen at normal incidence, and all the
states should increase in intensity (depending on
their photoemission matrix elements) for p-polarized
light as the angle of incidence increases off-normal.

At M, as along the line I'-X-M, the only symmetry
operation for the Ti film is reflection across the I -M
axis, and all the occupied states are even under this
reflection [cf. Figs. 5(a) and (b)]. Thus for light whose
E vector is in the plane of the surface perpendicular
to the I"-M direction no photoemission should be
seen for any k~] along I -M. On the other hand as E
is rotated into the I -M direction or is rotated out of
the surface plane, photoemission should be seen.

It is at the E point in the SBZ that surface and
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IV. DISCUSSION
I

'The surface density of states for Ti(0001) is
strongly modified in the lower portion of the d band.
In the bulk, the Fermi level lies at a minimum
between two peaks in the DOS, while at the surface
these peaks appear to merge and sharpen, with the
new maximum falling just at EF, as shown in Fig. 1.
The fact that the surface LDOS peak falls at the bulk
minimum is closely related to the fact that. the peak is
composed primarily of surface state contributions.

7

FIG. 8. Local 3z —r density of states vs layer. Here the
surface resonance near the Fermi level is so weak that it
cannot be resolved. The scale on the ordinate is the same
as in Figs. 6, 7, and 9.

bulk states of different symmetries lie in the same
energy range. However recalling that the final elec-
tron wave function in a photoemission matrix ele-
ment contains a single outgoing plane wave in the
direction of the detector and otherwise only ingoing
plane waves, it is obvious that at K the final electron
wave function does not have any special symmetry
quantum number. Consequently orientation of the
photon polarization vector will not permit one selec-
tively to enhance the bulk or surface states at K.
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FIG. 9. Local s-p density of states vs layer. The scale on

the ordinate is the same as in Figs. 6, 7, and 8. The surface
resonance at the Fermi level (dashed line} is very strong.
However, most of this peak comes from the supplementary
wave-function fitting site we have placed outside the outer
Ti atomic layer. Consequently it would be incorrect to
deduce from this figure that the surface band is heavily s-

p —like.

0.0—0.4

The bulk DOS minimum reflects a low concentration
of bands in this energy range, which results in a large
gap region in the projected bulk band structure.

Narrowing of the surface density of states is com-
monly anticipated from a simple argument based on a
one-state nearest-neighbor tight-binding model: The
mean-square bandwidth (second moment) is propor-
tional to the number of neighbors, so reduced coordi-
nation at the surface implied, reduced bandwidth.
Calculations for the (111) surfaces of fcc Cu and Pd,
which have local geometry similar to (0001) hcp Ti,
do show such narrowing. ' In these cases, the d-

band DOS falls well below the vacuum level, and can
be isolated to permit a second-moment calculation.
The second-moment decrease found in Cu and Pd is
somewhat smaller than that predicted from neighbor
counting.

For Ti(0001) the narrowing and peaking of the sur-
face DOS near EF involves only the lower d bands,
and is qualitatively different from the narrowing dis-
cussed above for Cu and Pd. The top of the Ti d
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band falls slightly above the vacuum level, so the
present calculations cannot give dependable results
for the upper portions of these bands. It is the
second moment of the complete set of bands which is
supposed to narrow by the neighbor effect, and this
is determined primarily by the band extremes. The
rearrangement of weight near EF, while dramatic
compared to the Cu and Pd results, may have little
effect on the second moment. If it had been possible
to examine the d-band second moment we expect
that a degree of narrowing comparable to that found
for Cu and Pd (111)would have been found.

The other two metals from the left side of the tran-
sition series for which self-consistent surface calcula-
tions have been carried out are Nb (Ref. 3) and Mo
(Ref. 4). Both calculations were for the (100) face of
these bcc materials, so the analogy with the present
case is not strong. However, for Nb the surface DOS
is maximum in the first major minimum of the bulk
DOS, with a number of surface states and resonances
contributing. The Fermi level lies just below the
bulk DOS minimum; so while there is some surface
enhancement of the Fermi level DOS at the surface,
most of these surface state bands are empty. In Mo,
there is also surface enhancement of the DOS in the
corresponding bulk minimum. In this case, EF lies
within the minimum, and several bands of surface
states and resonances occur at EF.

A major question raised in the current results is
the interplay between self-consistency and the surface
spectrum. The partially occupied surface state band
of Ti(0001) seems to play a significant role in deter-
rnining the surface dipole. It is not clear whether this
should be expected to hold for other hcp (0001) me-
tal surfaces. For Sc, with one less electron than Ti, a
rigid-band picture would suggest that the correspond-
ing surface states should be predominantly unoccu-
pied. Whether this is true, or whether the spectrum
changes significantly and the rigid-band picture
breaks down, remains to be seen. In the former
case, we would expect a substantial decrease in the
surface dipole. The Nb, ' and Mo, ' results suggest
rigid-band behavior with respect to the analogous
surface DOS features, but work functions and dipoles
have not been calculated. Furthermore, the
geometric differences may be too great to draw any
inferences about the present case.

Core-level shifts at surfaces are another interesting
consequence of the self-consistent surface potential.
In a similar previous calculation for Cu(111), the sur-
face core levels were found to be shifted upward rela-
tive to the bulk (in the direction of lesser absolute
binding energy) by -0.5 eV. An upward surface
core shift of 0.4 eV has recently been found experi-
mentally for Au polycrystallane films. 29 In the present
work, we find a downward shift (direction of greater
absolute binding energy) of 0.25 eV at the Ti(0001)
surface.

This retrograde core shift is, in fact, consistent with
a simple physical picture of surface self-consistency
for transition metals. Let us neglect the s-p elec-
trons, and imagine that the d-band surface LDOS is
simply a narrowed version of the bulk DOS. Since
the Fermi level is panned by the bulk, the center of
gravity of the surface LDOS will also have to change
to preserve charge neutrality at the surface. For a
more than half-filled d band, the center of gravity
must shift upward at the surface, while for a less
than half filled band it should shift downward. The
shift is accomplished by an electrostatic screening po-
tential, which is felt equally by the core levels.

The assumptions of the above arguments are suffi-
ciently naive that it is somewhat surprising to see
even the predicted trend borne out in the few calcula-
tions that have examined this effect. Strict applica-
tion of the argument to Cu and Au would suggest no
effect, since the d band is filled. However, s-d hy-
bridization should break down this strict exclusion.
For both the Cu calculation and the Au experiment,
the surface d-band centers of gravity were computed,
and found to shift essentially the same amount as the
core levels. This gives further support to the screen-
ing potential mechanism for the core shifts.

Another plausible model predicting the direction of
the surface core shift can be given. In this model, we
simply compare the bulk and atomic core levels (rela-
tive to the vacuum), and argue that a surface atom
should be somewhat more like a free atom. For Ti,
the atom core levels are 2.3 eV lower than the bulk
levels, and the surface core levels are 0.25 eV lower.
For Cu(111) on the other hand, the atom and sur-
face levels are 2.6 and 0.5 eV higher, respectively.
We must be careful to note that these differences
refer to the core eigenvalues calculated within the lo-
cal exchange-correlation potential approximation for
the free atom, surface atom, and solid. Measured
core energies are shifted by relaxation effects, and
while intra-atomic relaxation should be the same in
all cases, the inter-atomic relaxation present (and
presumably equal) for the bulk and surface atoms is
absent for the free atom. Thus experimentally
measured core levels should not in general follow the
bulk-surface free-atom trend unless the inter-atomic
relaxation can be accurately estimated and subtracted.
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