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Generalized k p interpolation method for electronic band structure: bcc iron
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W'e have developed a series ot' k-dependent model band Hamiltonians in symmetrized polyno-
rnials, centered at points of high symmetry in the Brillouin zone, by means of local-group-
invariant projectors —similar to the familiar Clebsh-Gordan coettlcients of the full rotation
group. We have tested these ideas by applying them to bcc iron. The results show that elec-
tronic structure is exponentially convergent in the expansion order ot the polynomials: Expand-
ing to fourth-order model energy bands tit Korringa-Kohn-Rostoker (KKR) bands to better
than 2 mRy. For the bands of interest, the model scheme was more than 200 times taster than
a fast KKR scheme.

- I. INTRODUCTION

The application of model-Hamiltonian schemes to
problems in physics has been both extensive and in-
tensive. In the case of the band problem, one of the
earliest of such applications was the k p method,
based on perturbation theory. ' Generally this tech-
nique has been restricted to considering the electronic
structure of semiconductors or semimetals for which
only a few bands, local in k space, were of interest. '
The k p method forms a convenient and simple
scheme to interpolate both energy and wave functions.

For general materials, theorists have applied other
methods, such as pseudopotentials, ' parametrized
tight-binding or Slater-Koster method, ' or combined
schemes. ' Alternatively much of recent effort in
band theory has focused on techniques to speed up
first-principles methods to make them comparable
with model-Hamiltonian methods. Since, however,
there will always be problems in which the effects of
a few bands out of many dominate the physics, it is
clear that the smaller secular matrices available in
model Hamiltonians will always have their use.

In this paper we reexamine the idea of k p-like
model Hamiltonians, H (k), which approximate the
energy-band structure in a series of polynomial ex-
pansions about selected high-symmetry points, K;.
By binding the expansions to high-symmetry points,
we preserve, of course, local-point-group symmetry:
the polynomial expansion coefficients are symmetry
restricted by the transformation properties of the
underlying reciprocal lattice and band structure. The
utility of our method will depend on the rate of con-
vergence of the local Hamiltonians as a function of
both the order of the polynomial set and the radius
of the domain of each H (k). To test the ideas we

have made an application to a new Korringa-Kohn-
Rostoker (KKR) band structure of nonmagnetic bcc
iron calculated from Wood's 1962 potential, ' The
results show that fourth-order expansions, made
about the four high-symmetry points, are sutficient
to produce energy bands to within an accuracy ot 2

mky or of order 1% of the d-band width.
The plan of this paper is as follows: Sec. II

discusses the formal development of the theory, Sec.
III the results, and Sec. IV draws our conclusions.

II. FORMAL DEVELOPMENT OF k p

MODEL HAMILTONIAN

In considering local expansions, it is natural to rely
on the k p method. Schrodinger's equation then
takes the following well-known form':

$ H„(k) C (k) = E(k) C„(k)

where the matrix elements H„(k ) may be construct-
ed, using a complete set' of Kohn-Luttinger basis
functions, P„(k, r), as

(k) = d3r P„(K,r)[—d +2(k —K) p+(k —K)

+ V(r)]y (K, r) .

The diagonal terms have the simple form

E„(K)+(k—K) +p „(k—K);
the off-diagonal terms contain only linear expressions
k p„. Here we have defined p„ to be

p„=)I d'r y„"(K, r) py (K, r)
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p„ is nonzero only if the states n and m can be cou-
pled through an operator of angular momentum one.
p„„ is zero when the group of K contains the inver-
sion operator.

We now want to restrict Eq. (I) to a small set of
levels near, for example, the Fermi energy. This can
be done using Lowdin perturbation theory. ' We con-
struct the matrix

, H„.(k)H. (k)
E —H (k)

H„(k)H p(k) Hp (k).&p [E —H .(k)][E—Hpp(k)]

(4)
n and m belong to our small set of interesting levels.
The prime denotes summation outside the selected
set. The model Hamiltonian will be used only over a
finite range of energies. 'hence we can, as usual, re-
place E in Eq. (4) by an average energy E with negli-
gible error. Note also that by construction U„(k,E )
obeys the same transformation properties as H„(k).
We then solve the eigenvalue problem
U(k, E)c = Ec, in order to find the energy levels
Ei(k) and the eigenvectors at each point k.

Making a polynomial expansion of Uin terms of
the components k —K, it is easy to see that the first
term contributes only to the orders 0, 1, and 2. The
second term contributes to the orders 2, 3, 4,
and the nth term has no contributions to lower orders
than n. The polynomials we use are basis functions
for irreducible representations of the group of K.
When K has cubical symmetry they are just Kubic
harmonics, multiplied by an even power of k. It is
possible to reorder the expansion (4) in the following

way:

U„„(k,E) = $A„'( E) P;J(k —K) . (5)
aij

P,&(k) is a polynomial belonging to the, 1th row of
the jth representation o. of the group of K. The coef-
ficients 3 are determined by a general form of the
Wigner-Eckart theorem. This is caused by the fact
that a nth order term couples states through (I'i5)".
They can be written as a product of a generalized
Clebsch-Gordan coefficient and a reduced matrix ele-
ment. This structure is similar to that used to deter-
mine the symmetry of model-Hamiltonian matrix ele-
ments in the Slater-Koster scheme. ' Because we
have chosen our point K to be a high-symmetry
point, many of the coefficients are zero, dictated by

symmetry; others are equal. This substantially
reduces the number of necessary parameters for a
given order,

Expression (5) can now be used to construct model
Hamiltonians. We simply use the reduced matrix
elements as energy-independent adjustable parame-
ters. Also we truncate the series (5) at some order
Mof (k —K). In this way it is clear that our scheme
can be used only in a limited energy range. Looking
at Eq. (4) we see that the variation in energy E must
be small compared to the difference E —E', where E'
denotes the energy of the nearest level not represent-
ed within the model Hamiltonian. The interaction
with core levels appears to be negligible.

III. RESULTS USING KKR BANDS OF bcc IRON

As a test case we used a KKR band-structure cal-
culation, based on the potential given by Wood and

TABLE I. Energy levels fitted at four high-symmetry points.

Highest core —2.79 (r)5) -2 82 (Hi5) —2.81 (P4) —2.79 (N4)

Conduction
band

First unused

higher level

O.O96 (r, )

O.641 (r,',)

0.763 (I &2)

2.65 (r»)

0,413 (H]2)

0.850 (H25)

1.476 (Hi5)

0.539 (P )

0.786 (P3)

1.4O1 (P4)

0.395 (N, )
O.542 (N, )(', )

O.763 (N, )
0.783 (N4)
o.873 (N, )
1331 (N', )

Size of model
Hamiltonian

6x6 5x5 5x5 6x6

Local region
parameter r„

0.71 0.58 0.41 0.38
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TABLE III. Product representations of H.

H)2
I

H2s

0.6

I

H2s

H) + H2+ H(2

I I

H)s +H2s

I I

H)s + H2s

H) + H)2+ H)s + H2s

0.2

0.0
I h H F P 0 N 1 f h P H G N

FIG. 1. Energy bands of bcc iron along high-symmetry
directions. The solid dots are KKR bands; the solid lines
were produced by the k p scheme. The fit is quite close re-
flecting the overall 2 mky error.

a lattice parameter a =5.4057 (a.u.). Although this
calculation is old by current standards, his Table IV
allowed us a simple confirmation of the (new) KKR
bands. The main part of his table is correct within
some 7 mRy. Beside three typing errors [(1,7,0)
band 1 should be 0.432; (3,5, 1) band 5 should be
0.829; (3,3,2) band 3 should be 0.598] there is a sys-
tematic difference in the structure associated with the
I ~ level. Our values are lower by about 20 mky. A

possible cause could be that in Wood's calculation the
mesh for the radial integration near zero was not fine
enough, introducing errors mainly in the I =0 parts. '
Our KKR results were converged to better than 2

mRy.
Table I lists the levels we have used for our expan-

sions around the points I, H, P, and N. In Fig. I the
band structure is displayed along the lines of high
symmetry (dotted points). The calculation was done
at 55 points in the irreducible wedge of the Brillouin
zone (a "vi/4a" mesh). Comparing this band struc-
ture to Callway's, we find that we are in close agree-
ment. ~' We have changed our representations along
the D and 6 lines to be more compatible with N.

The size of the several model-Hamiltonian matrices
is governed by the band structure around the high-

TABLE II. Product representations of r,

symmetry points. For I and N we used 6 x 6 ma-
trices, for H and P 5 x 5 matrices. These choices
were sufficient but not necessary ones, and were dic-
tated by convenience. We were interested that our
model Hamiltonian only fit in the 3d-band neighbor-
hood of the Fermi energy. Group theory furnishes
us the representations o. which appear in the ma-
trices. (See Tables 11—V for this reduction in the Ap-
pendix. ) Detailed information we can, of course, ob-
tain only from the Clebsch-Gordan coefficients.
With their aid it is possible to construct the matrix
elements, A list of the number of adjustable parame-
ters is given in Table VI. Fits up to fourth order in

k —K around I, H, and P needed only about 30
parameters. Numerically this problem can be han-
dled using a Marquardt algorithm. " The low sym-
metry of the N point dictated that a fourth-order fit
would involve an excessive number of free parame-
ters. We have therefore used a lower-order fit
around N and correspondingly shrunk that region. In
addition we have used some sixth-order parameters
at H and I ."

For each of the high-symmetry points the 55 k
points were ordered in increasing distance to K. We
then determine the parameters in such a way that
they gave the best approximation to the energy
values of the first n points. Then the rms error of
the fit was calculated and also the distance i„of the
point k„ to K. (r„ is the radius of the region that is

covered by the fitting scheme. ) The results are given
in Fig. 2, order meaning the highest power of k —K
used in the expansions. These data suggest that for a
given order the rms error is an exponentially increas-
ing function of the distance, covered by the fit. Also
for a given finite region the rms error decreases ex-

I

r2s

TABLE IV. Product representations of P.

r2s

P3 P4

I

r2s
I

r2s r, +r„+r,', +r,',

res+ r2s

I I
res+ r2s

r) + r2+ r)2

P3 P) + P2+ P3

P4+ Ps

P4+ Ps

Pt + P3+ P4+ Ps
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TABLE V. Product representations of N.

Ni N2 N3 N4 N,

Ni N2 N3 N4 Ni

N2 N2 N, N4 N3 N2

N3 N4 N) N2 N3

N4 N4 N3 N2 N4

N) Nt N2 N3 N4 N,

ponentially as a function of order. As seen from
Table VI the number of symmetry independent
parameters increases as the square of the order, with
the N point having the largest number per order. At
I" we have the greatest accuracy; the accuracy at H is

less, although the point symmetry is the same as at
I . This is a reflection of the presence of the level

H~5, which is relatively near, and our desire for small
matrices. At P and N the situation is worse, because
there the symmetry is even lower.

One can hope to get better fits by concentrating all
effort on EF, the Fermi energy. This idea was tested
by introducing weight factors exp j y[EF —E(k)] ).—
However, the overall fit was then much worse, be-
cause energy values which can be fitted least well
dominated the structure. Our final results show on a
band by band basis an error independent of energy;

%'e have separately considered model Hamiltonians
about four high-symmetry points. In order to use
our scheme we need, of course, to be able to move
smoothly throughout the Brillouin zone. In principle
it would be possible to employ a single expansion

U)

E
LU

CI

2—

0 order
t

2 ordern

order
th

TABLE VI. Number of symmetry-independent parame-
ters as a function of order for the bcc high-symmetry points.

order N

0.0 O.S 1.0

13 13

30

13

69

FIG. 2. Logarithm of best rms fitting error (in mRy)
around I as a function of the radius r„of the included initial

k points, and as a function of the order of the highest poly-
nomial used the k p scheme. H is at 1.16 a.u. For a fixed
radius the error decreases exponentially as a function of
order.
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point —I for example —and derive everything from
that one expansion. In practice this involves too
many bands and parameters to be convenient. The
k p idea looses simplicity.

After some experimentation we found that Gaus-
sian interpolation between the points worked well:
the Gaussian function cuts off the expansions faster
than the exponentially growing errors. It is possible
to extend the sum over four high-symmetry points
from the —th of the zone used in Eq. (6) to sums

over several high-symmetry points of one zone or
over multiple high-symmetry points in extended
zones. In practice we have found that such exten-
sions were not necessary. The partial fits are com-
bined to one global fit in the following way'.

$k [exp[ a—(k K—)'jr'(K)]E&(K, k))EJ(k) =- "

Xk exp[ —n(k —K)2/«2(K)]
(6)

«(K) is a radius of a sphere around K. n can be
chosen freely, to give an optimal result. We restrict
ourselves to energy values lower than 0'.9 Ry. We
found that a =10 gave an overall optimal fit for bcc
iron, using the r's in Table I.

In Fig. 1 we present the initial set of bcc Fe bands
along high-symmetry lines as dots and the global fit-
ted bands from expansion (6) as lines. The overall
agreement is quite good, reflecting the overall 2 mRy
rms error. The lowest band along I to H exhibits
one of the largest errors of the scheme. This is due
to the fact that the midpoint along 5 from I to H is
the furthest from any of the chosen expansion points
and the lowest A~ band has large width and strong
curvature in the neighborhood of H. Such a region
can be easily repaired by the addition of selected
parameters: we have preserved this error in Fig. 1 to
remind the reader that derivatives have one higher
order of error than bands themselves, and that our
k p method does suffer somewhat in the "joining" re-
gions along symmetry lines. The addition of one
more diagonal I parameter makes the I ~ fitting

error invisible.
As an application of the scheme we present in Fig. 3

the density of states of paramagnetic bcc iron calcu-
lated from the scheme and using a linear tetrahedron
method. We have used 1500 tetrahedrons in

48 th of
the Brillouin zone. The structure is similar to that
calculated by Moruzzi, Janak, and Williams. '

IV. DISCUSSION AND CONCLUSION

The generalized k p method forms a convenient
and simple means to interpolate electronic structure.
By fitting larger and larger neighborhoods of the
high-symmetry points the parameters can be sequen-
tially developed in orders. Then one can make better
fits by increasing the order and simultaneously the
radius of the region. In this way partial fits are
derived in a relatively easy and straight forward way.
The combination of partial fits into one global fit is
also simple. The resultant global fit has its largest er-
rors at k points furthest from the high-symmetry
points.

For simplicity we have applied our method to a
well-known case: bcc Fe. For this case the overall
simplicity and speed of the fastest KKR methods is
not more than one order of magnitude more costly
than the interpolation scheme. On our machine five
converged bands took 8 seconds per k point by KKR,
whereas the same five took 0.02 seconds by the k p
scheme. We anticipate that our ideas will find their
greatest application in interpolating the band structure
of complex multiatom per unit cell materials. Finally
although the applications we have made here depend-
ed only on energy, it is clear that properties depen-
dent on wave functions may also be interpolated by
means of the same ideas. ' We hope to return to
these in a future publication.
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APPENDIX: PARAMETERS, MATRICES,
AND TECHNIQUES FOR bcc k p

MODEL HAMILTONIANS

FIG. 3. Density of states of paramagnetic bcc iron. The
structure is similar to that of Ref. 13.

The k p techniques we have derived will, of
course, work for every lattice. Since the band struc-
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TABLE VII. Symmetry adapted polynomials (I" centered) up to fourth order.

r, :1;";r', x'+y'+z',
I 2'. —
I 12.'(x2 —y2) 3'/2, 3z2 —r2; (x2 —y2) r23'/2, (3z2 —r2) r2; (x —y )3'/, 2z —x4 —y;
r»..x,y, z; xr,yr, zr; x,y,z;
I"z5.'z(x —y ),x(y —z ),y{z —xz);

Ir, :—
12'. Xyz;

I

I",5.xy(x —y ),yz(y —z ),zx(z —x ).
lr».xy,yz, zx,' xyr, yzr2, zxr, xyz, yzx, zxy;

ture of bcc transition metals forms an active field of
research, we include in this Appendix our explicit
results for the interested reader. Further results are
available in Ref. 12.

The actual form of the model Hamiltonians can be
found in the following way. First we have to decide
what levels are important. It appeared to be unneces-
sary and even undesirable to include the core levels.
At I the choice is then an obvious one. At H we
first tried to incorporate the H15 levels, but it turned
out to be better not to do so.

Let us illustrate the matrix construction by looking
at I. The levels of interest here are I1, I"25, and I 12.

By making a group multiplication table it is easy to
see which representations appear (Table II). To find
explicit information about the specific rows of the

representation we have to look at the generalized
Clebsch-Gordan coefficients. Given the representa-
tion matrices Ds'(R) they can be calculated, up to a
phase factor, from the projector

QDg~k(R)Dp((R)D r (R) . (7)
R

Our matrices were all real. Examples for I are
given'4 in Tables 'VII and VIII. %e have not includ-
ed some I 15 representations to preserve simplicity.

TABLE VIII. Fourth-order matrix, I centered.

(1/1) = c1 + c4r + c13r + c14(x +y + z ),
(X2 y2/1) c531/2(X2 y2) + C15 1/2(X2 y2) r2 + C16 1/2(X4 y4)

(3z —r /1) =e5(3z —r ) +c15(3z2 —r )r +C16(2Z4 —x —y ).
(x —y /x —y ) =c2+c6r +c17r +e18(x +y +z4) —c7(3z —r ) —c19(3z —r )r —c2p(2z —x —y )
(3z2 —r2/X2 y2) C731/2(X2 y2) C1931/2(X2 y2) r2 c2031/2(x4 y4)

(3z —r /3z —r ) =e2+c6r +C1~r +c18(x +y +z )+c7(3z —r ) +c19(3z —r )r'+c20(2z4 —x —y )
(xy/1) = C8xy +C21xyr +C22xyz .2 2

(yz/l) = cgyz + ez)yzr + ezzyzx

(zx/1) =c8zx+c21zxr +e22zxy .

(xy/x —y2) = c23xy(x —y ).
(yz/x —yz) = e&3yz(y———z ) + —3 e9yz + 3c&4yzr + —3 zc—yzx .

1 1 1 1

(zx/x y )
2 c23zx (z —x ) —

2
3 c9zx ——3 c24zxr —

2
3 c2&zxy

(xy/3z —r ) =c9xy +c24xyr +c25xyz .

(yz/3z —r ) = 3' c23y—z (y —z ) ——c9yz — c&4yzr ——e&—5yzx .

(zx/3z —r ) =
2

3 ' e23zx(z —x ) —
2 e9zx ——c24zxr —

2 c25zxy .2 2 1 1/2 2 2 1 1 2 1 2

/x )=C3+ 10r +C26 + 27((x +y +z)+ 11(3z r )+C28(3z —r)r +c29(2z —x —y).
(yz/xy) =c]zzx+c30zxr +c3tzxy
(zx/xy) = e12yz + e30yzr + c31yzx .2 2

(yz/yz) e3+c/Qr +c&6r +c&7(x +y +z ) +c&&(3x —r ) +czs(3x —r )r +cq9(2x —y —z ).
(zx/yz) = c12xy + c3pxyr + c31xyz2 2

(zx/zx) =c3+c10r +C26 +C27(x +y +z )+C11(3y r )+C28(3y —r )r +e29(2y —x —z ).
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