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Hall coefficient of dilute Al-Ga and A1-Ag alloys
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The Hall coefficients of dilute Al-Ga and Al-Ag alloys are calculated in the intermediate
magnetic-field range by path integration. The 4-Op~ {orthogonalized plane wave) Fermi-
surface model is used. The anisotropic electron-impurity relaxation time is included. The com-
putational procedure of the path-integral calculation is described. The calculated Kohler plot

agrees well with experiment. The effect of the anisotropy in the relaxation time on the feature
of the Kohler plot of the alloys is discussed.

I. INTRODUCTION

The Hall coefficient R~ of aluminum is 10 " m'/C
at the high-field limit and agrees with the theoretical,
value given by

R„=1/(n„—n, )

where nI, and n, are the numbers of carriers in the
second- and the third-zone Fermi sheet, respectively.
R~ decreases with the decrease of the magnetic field
8, changing its sign, and at the fow-field limit it ap-
proaches the value given by

Rn = —1/We (= —3.4 x 10 " m'/C)

where % is the conduction-electron concentration. '

The phenomenon is called a high-field —low-field
transition and has been studied by several authors.

One of the most powerful tools to calculate the
galvano-magnetic coefficients in the full range of the
magnetic field is Schockley's tube integral' (or the
Chambers path integrals). Some applied this to me-
tals fige Al, 6 Cd, ' Cu, " and In, '2 and obtained
results which agree well with the experimental values.
Most of the calculations on Al have been made by
1-OP% (orthogonalized plane wave) approximation
and on the assumption of uniform relaxation time.
The simple theory predicts that a plot of RH against
8/pp (pp'. zero-field resistivity) is a unique curve in-

dependent of the kind of the scattering object con-
tained in the matrix. This is the so-called Kohler
rule.

Recently measurements of RII were made on Al
which contained defects or impurity atoms and it was
revealed that the Kohler rule does not hold well. " '

In order to explain the deviation from Kohler's rule
(DKR) the wave-number dependence of the relaxa-
tion time (anisotropic relaxation time) must be taken
into account. Attempts to explain DKR in terms of

I

the anisotropic relaxation time and the simplified
Fermi-surface model have been made by several au-
thors. '" Kesternich et al. ' have divided the Fermi
surface of Al into three parts and assuming that each
part has its individual mean free path have explained
qualitatively the occurrence of a minimum in the
Kohler plot of Al in which defects were introduced.

To obtain a more quantitative agreement between
experiment and the calculation without any adjustable
parameters, we must do the calculation on a more
realistic model of the Fermi surface, taking the more
correct anisotropy of the relaxation time into account.
In the low-field limit we have shown that our exact
calculation about the 4-OPW Fermi surface can ex-
plain the measured RI~ of the dilute Al alloys fairly
well. " In the calculation the scattering potential of
the model pseudopotential was used, and the relaxa-
tion time was obtained by iterative solution of
Boftzmann's equation. In the present work we will
describe the path-integral result about Al-Ga and Al-

Ag alloys by a 4-OPW approximation. We select the
Al-Ga alloy because it has several distinctive features:
it has a large positive RH value at the low-field limit
[Rn = (4.0 or 6.4) && 10 "m'/Cl"'6 and there is a
minimum in Kohler's plot of the alloy. On the other
hand the low-field limit of the RH value of the Al-Ag
alloy is small and negative and its Kohler's plot is
monotonic. The main object of the present calcula-
tion is to see whether such a difference of Kohler's
plot between Al-Ga and Al-Ag can be explained in
terms of the difference of the anisotropy of the relax-
ation time between them.

The anisotropic relaxation times which were calcu-
lated in our previous work" are used here again.
The direction of the magnetic field is selected parallel
to the [110] axis. The selection of the direction is
optional. Since these alloys have cubic symmetry, we
will get a similar result if we select another direction
of the magnetic field,
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II. THEORY AND COMPUTATIONAL PROCEDURE Cartesian coordinate (see Appendix)

A. Path-iatelra1 equation
2e 1o,t= —

3
—XJ dk, (1 —e I) '

a3

We have briefly mentioned the path-integral pro-
cedure by 4-OPW approximation when the relaxation
time ~ is constant before. ' Here we will give the
more detailed description when v is a function of the
wave number k, supplementing several points that we
have left out before.

We start our computation from the Chambers
equation,

y IkIk' -rat T(k,k')
I g 8

dk v;(k)

dk„"
J k' 7(k")

i v„(k")
i

(2.2)

(2.3)

(2.4)

1

i

64l
"~' r(tt)

(2.1)

where v;(k) and u&(t') are i and j components of the

velocity, fo is. the equilibrium distribution function,
and t, t', and u are time variables. Hereafter the
wave number is expressed by the unit of 2tr/a
where a is the lattice parameter of Al (a -4.04 A)
and the unit of energy and potential is

(g /2m)(2m/a) =0.6777 Ry. We take the z axis par-

allel to the magnetic field 8 and rewrite Eq. (2.1) in a

r(k)/v„(k)f
(2.5)

and

"k integral"

"k' integral";

7 (kk'): "r integral"

whe« - e+/2ttt and «epresents the type of orbits.
The suffix ttt rep.resents x (or y) when k„(or k );s
selected as the independent variable and the suffix n
represents y (or x) when k» (or k„) is selected as the
dependent variable. As for the selection of the vari-
ables, wc will expatiate om it in Sec. IIB. For con-
venience sake we call the. integrals in Eq. (2.2) by the
following terms:

J dk, : "k, integral";

The relaxation time r(k) is given by

1 1r(k) = Co 3 —Xcos—ak»cosz ak, +C20s 3 —gcosak„
t t t

+ C2t~ 3 —Xcosak„cos —,ak» cos-, ak, + C2zs 3 —Xcosak» cosak,

(2.6)

+ C3/Q 6 —Xcos
2

ak» cos
2 ak» —Xcos~2ak» cos

2
ak» + C222 1 —Xcosak» cosak» cosak»3 1 3 1

t t

+ C32~ 6 —Xcos z
ak„cosak» cos-, ak, —Xcos —,ak, cosak» cos , ak, —3 1 3 1

t

where the superfix i is II for the second-zone Fermi
sheet and is III for the third zone. The Fouricr coef-
ficients Co, C200, . . . , are determined by the least-
square fit of Eq. (2.6) to the relaxation times which
we calculated about li31 points of 48 of the Fermi

surface of Al-Ga (1 at. 9/o) and Al-Ag (1 at. %) al-

loys. ' They are given in Table I. The relaxation
times along the (110) section of the second-zone Fer-
mi sheet are shown in Fig. 1.

The computation consists of three main steps: the
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TABLE I. Fourier expansion coefficients of the local relaxation time r(I ) of Al-Ga and Al-Ag alloys.

A 1-Ga Co C2oo C211 C220 C310 C222 C321

zone

11(10-"s)
111 (10-"s)

-10.17
-17.24

—3.77
—2.62

+1.67
+7.53

+4.82
+5.40

+1.03
+2.50

+4.46
+4.37

+3.41
+2.30

A 1-Ag Co C2oo C211 C220 C310 C222 C321

zone
11 (10-"s)
111 (10-"s)

—3.30
+9.57

—1.21

+7.08
+1.11
—5.41

+1.74
—8,00

+0.39
—0.25

+1.11
—0.37

+0.92
—1.70

first is the tracing step ~here we trace an orbit while

computing u, (k) and T(k, k'); the second is the orbi-
tal integration step where k and k' integrals in Eq,
(2.2) are made; the third one is the k, -integration
step. In Secs. II 8—II E we will give a full explanation
of the first and the second steps.

Tracing step

(2.7)

The wave-number space is divided into tetrahedra
and apices of which are Go = (0, 0, 0}, G~ = (1, 1, 1(,
G2= (1, —1, 1), and G3 = (0, 0, 2(. In one
tetrahedron, the 4-OPW Fermi surface is given by an
equation

S(k„,k, , k„Z,) =0,
where 5 is the determinant

k' —I.

Voo2

Voo2

VI 11

Voo2

(k —G, (' —Z

Voo2

6.

r of A(Ga(&0 s)

FIG. 1. Local relaxation time of Al-Ga and Al-Ag on the
f110] central orbit of the second zone Fermi sheet. The or-
bit is shown by a dashed curve. L shows f111] direction.

(2.8)
In these equations V111 and Vpp2 are the Fourier com-
ponents of the pseudopotential of Al at G1 and G3,
E~ is the Fermi energy. The parameters determined
by Ashcroft are used in the above; consequently
V111

——0.0179 Ry, Vpp2 =0.0562 Ry, and EF =0,85605
Ry'

The tracing program is called LOOPER. To start
LOOPER 'we must give the starting point coordinates
(k„,k~, k, ), in which k, is fixed to some constant
value. One of k„and k~ is assigned as the indepen-
dent variable, which is denoted as k; the other is
assigned as the dependent variable which is denoted as
k„. The value of k must be given exactly but the
value of k„ is of course approximate, As the initial
data we must also give the values of 6;
(i =0, I, 2, 3), the value of a step interval Ak which
is usually taken to be 0.01, and the sign of BF/Bk„

The LooPER has the following functions: (i) The
LQQPER solves Eq. (2.7) by Newton's approximation
to get a more accurate value of k„by which
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~S~ (10 '0. (ii) Starting from the initial point, it, so
to speak, gropes its way. At every point (which is

numbered as I) it computes BS/Bk, (I represents x, y,
or z) and BS/BE, from which dk„/dk
= —(BS/Bk )/(BS/Bk„) and v;(k) = —(BS/Bk;)/
(BS/BE) are computed. Now we adapt the notation
by which the wave number, the velocity, relaxation
time, k and k' integrals at I th point or I'th point are
denoted as k(/), u(/), r(i), I, and JITh.e r in-

tegral from the starting point (where I = I) to the I th
point is also denoted as T(/, I). (iii) To go to the
(I +1)th point from the I th point, k (I + I), and
k„(/+ I) are given by

D. Conductivity tensor and the Ha11 coefficient

In the present direction of the magnetic field, the
a tensor is given by

a11 ~12 0

~21 ~22

0 0 o33
t

(2.9)

~here o-12 = —o-21 and a-11= o-22, The equalities are
used to check the error of the computation, which is
of order of 1%. The Hall coefficient RH is given by

k (I+ I) =k (I) + 5k
gn+/IHl ( II + HI)/gg (2.10)

and
where superfixes II and III represent the second- and
third-zone contributions, respectively, and

k„(/+I) =k„(/) + " dk
dk„

dk I

~11022 ~21~12 0 22 + ~21
2 2 ' (2.1 I)

(iv) The LooPER always checks whether BE/Bk„has
the correct sign. This is necessary for the LOOPER

not to lose its correct orbit. (v) It checks whether
(dk„/dk ) (l. If ~dk„/dk ( )I it changes the role of
independent and dependent variables. (vi) The
LOOPER computes the radius of curvature k„of the
orbit at every point and when k„, becomes very
small, the step interval b, k is automatically short-
ened. (vii) While tracing an orbit the LOOPER coml-

putes the r integral T(I, 1). The data of u;(/),
T(l, I), and other information which is necessary
to make the next computation step are written down
in a file on a magnetic disk. (viii) When the LQQPER

steps out from the original tetrahedron, it automati-
cally selects the new G; values which give the coordi-
nates of apices of the new tetrahedron in which the
LooPER is located. (ix) When the LooPER comes
back after /NI, steps to near the starting point (I = I),
it stops.

C. Orbital-integration step

The program called PATH works in this step. It
reads W, data of u;(/), T(I, 1), and other necessary
information from the file made by the LOOPER. We
will show how the integrand of the k' integral at
point I on an orbit is calculated. It takes another
point I' where I 's are I, I —l, l —2, ..., 2, 1,N„.. ., I + l, l.

PATH also knows the values of the velocity u/(I').
The exponential factor is computed by

E. Types of orbits

There are six types of orbits when B Il [110]. They
are denoted as a, a' (second zone); b, c, d, and e
(third zone). The typical orbits of each group are
shown in Figs. 2(a) and 2(b). The numbers of orbits
computed are: 49 a and a' orbits, 16 b orbits, 27 c
orbits, 17 d orbits, and 9 e orbits. In the computation
of o- tensor, we can make use of the symmetry of or-
bits to save computation time.

We suggest that r (k, ) defined by Eq. (2.5) be
called "orbital relaxation time of the o. orbit" and
show it in Figs. 3(a) and 3(b). The orbital relaxation
time is closely related to the high-field —intermediate-
field transition of an orbit. From orbit to orbit r (k,)
varies, which will-be referred to as the "anisotropy of
the orbital relaxation time". To avoid confusion we
call the relaxation time defined at point k by Eq.
(2.6) as "local relaxation time". On an orbit the local
relaxation time is not uniform, which will be referred
to as the "anisotropy of the local relaxation time".
We also define ro = r (0), the orbital relaxation time
of the a orbit at k, =0, and measure co by the unit of—1

Tp . We have made computations for these values of
co7p for which map =1.94, 0.194, 0.0642, 0.0194, and
0.00642 for Al-Ga and cusp =2.0, 0.2, 0.064, 0.002,
and 0.0064 for Al-Ag.

III. RESULTS AND DISCUSSION

Thus the necessary data are all known. Varying I'

from I to N, and from N, to I, the k' integral is
achieved numerically.

The final results are shown in Fig. 4 where large
open circles are for Al-Ga and large open squares are
for Al-Ag. In the figure, the experimental values are
also shown for Al-Ga (o, +), for Al-Ag (x), and for
pure Al( ~). The zero-field resistivity po in the hor-
izontal axis has been calculated for the relaxation
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FIG. 2. Typical cyclotron orbits when the magnetic field is parallel to the [110] axis. (a) The second-zone orbits which are
denoted as a and a'. (b) The third-zone orbits which are denoted as b, c, d, and e. The Brillouin-zone boundary is shown by

thin li~~~. W"s are corners of fcc Brillouin zone.
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FIG. 3. Orbital relaxation time of every orbit as function of k, . The solid curves are for the second zone and the dotted
curves are for the third zone; (a) for Al-Ga and (b) for Al-Ag.
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FIG. 4. Kohler's plot of RH of Al and Al alloys. 0,
calculated values of Al-Ga; C3, calculated values of Al-Ag;
, experimental values of pure Al; o, experimental values
of Al-Ga; +, experimental values of very dilute Al-Ga
alloys. The difference of + data from o data is due to the
residual impurity in the solvent (see Ret. 16).
experimental values of Al-Ag.
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times given by Eq. (2.6), by means of the computa-
tional program which was reported in the previous pa-

per. " pp =0.094 p, O cm/at. % for Al-Ga and
pp= 1.23 p, Q cm/at. % for Al-Ag. The results of the
computation agree quite well with the experimental
curves. The individual contributions RH and RH' are
shown in Fig. 5, in which they are plotted against
QJTp. From the figure we see that RH is nearly equal
to the high-field limiting value at NTp ~1. When
co~p ~1, most electrons revolve around their orbits
more than once before they decay to I/e. Electrons
go through all the variations of u(k) or r(k) on
their orbits, and the resultant o-~or RH does not
depend on the anisotropy of v (k) or r(k).

To explain the reason for the difference of the field
dependence of RH between two alloys in the range
pIrp (0.1, it is convenient to rewrite Eq. (2.10)

0'2 I/0pB + 02I /'0pB''
H

5/o p'

(3.1)

where op= I/pp.
In Figs. 6(a) and 6(b) we show the terms in the

numerator 02I/0 pB (i =II,III) and the denominator
6/op for both alloys, in the case of Al-Ga by dashed
curves and in the case of Al-Ag by dotted curves.
Since the denominators 5/op of both alloys are near-

ly equal, it follows that the difference of the field
dependence of RH between the two alloys in the
range comes from the difference of their numerators.
The quantity 0 2I/op B tends to a constant in the low-

field condition, and

lim (oqI/ITpB) = lim RHB~ B~

FIG. 5, Calculated values of RH against GOTp. (a) Al-Ga,
(b) Al-Ag. 0, the second-zone contribution, RH. , the
third-zone contribution, RH'. 0, the resultant

R„(=R,", + R„"').
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FIG. 6. (a) Two terms in the numerator of Eq. (3.1),
o2I/o. p B and o.&ll&I/'up2B against corp. (b) The denominator of
Eq. (3.1). In (a) and (b), the dashed curves are for Al-Ga
and the dotted curves are for Al-Ag.
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Since a qI/ao28 of Al-Ag and o2I.'/cr08 of Al-Ga are
nearly constant in the range M'rp (0.06, we can con-.

clude that the second-zone Fermi sheet of Al-Ag and
the third-zone Fermi sheet of Al-Ga are nearly in the
low-field condition in the range. This is also to be
seen from Figs. 7 and 8 where we plot the
(do 2'/dk) /8against k, for orbits of the second zone
and the third zone of both alloys. The dotted curves
are for co7'p =0.064, the dashed curves are for
~7'p =0.02 and the solid curves are for ~7'p =0.0064.
If any two curves of a Fermi sheet for two values of
&Tp, say &'Tp} and ~'rp2, coincide or nearly coincide,
we can safely say that the sheet attains the low-
field condition in the range between MTp~ and ~7p2.
It is also to be noted that if a group of orbits attains
the low-field condition, its (do "/dk, )/8 curve
shows a kind of structure which reflects the anisotro-
py of the orbital relaxation time 7 (k,), while the
curve is smooth if it is in the intermediate-field con-
dition. According to the discussion above with the

examination of Figs. 7 and 8, for Al-Ga, most of the
b, c, d, and e orbits are nearly in the low-field condi-
tion in the range of covp & 0.02, while most of the
a orbits are still in the intermediate-field condition.
For Al-Ag, however, a orbits are nearly in the low-
field condition, while b, d, and e orbits are still in the
intermediate-field condition.

The behavior of an orbit in the lower cusp region is
largely affected by the anisotropy of the local relaxa-
tion time r(k) on the orbit. Under the situation in
which the electronic velocity varies widely in a life of
an electron, the contribution of the electron to the
conductivity is much dependent on the magnetic-field
strength. As an example, we can consider electrons
excited at a corner of the a orbit of Al-Ga. Since
r(k) is markedly long at the corner, v (k) varies
abruptly there; the integrand of the k' integral
changes its sign in the lives of the electrons in the
field as low as Q)7p =0.02. Accordingly at one time in
their lives they make a negative contribution to o-2~

~ ~

»

LLj

c
C

1

I

l I
t
I
II
t
t
t

'U

E

C:

~ ~
~ ~
~ ~
~ ~
~ ~

~ ~

4

)

N

U

0,
0~

Q Ve ~e~ ~ ~ V~ ~V
a ~ ~ ~~»

~~ ~~

-Q.5 ' I

Q.5
I

1.0
0.

I

O.5
I

1.Q

FIG. 7. (do.2~/dk, )/8 against k, for Al-Ga, where the su-
perscript represents the type of the orbits. The dotted
curves are for m~p =0.0642, the dashed curves are for
cu7'p =0.0194 and the solid curves are for corp =0.00642.

FIG. 8. (der/~/dk, )/8 against k, for Al-Ag, where the su-
perscript represents the type of the orbits. The dotted
curves are for ~7p =0.064, the dashed curves are for
QJTp =0.02, and the solid curves are for cvVp =0.0064.
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and at the other time they make a positive contribu-
tion. With decrease of cavo the negative contribution
decreases and therefore crq~/opB increases as shown
if Fig. 6(a). The increment is nearly cancelled by the
increment of the denominator and we can find only a
slight minimum in the curve of RHu of Fig. 5(a).

The occurrence of the minimum in the curve of
RH'of Al-Ga in Fig. 5(a) is understood in terms of
the behavior of the third-zone sheet of the alloy: in
the range o'q'~'/crp2B is nearly constant, but with de-
crease of corp the denominator 6/ap goes on increas-
ing which results in the minimum. The minimum is
superposed with the minimum of RH and the
minimum of the resultant R~ curve becomes con-
spicuous. In Al-Ag the a orbits attain the low-field
condition in the range since r(k) is more isotropic
and the electrons at the corner transit to the low field
along with the electrons at the other parts of the or-
bit. Thus a.q~~/op 8 is nearly constant but o.qI'/o. pB
still goes on decreasing since most of the third-zone
orbits are still in the intermediate-field condition,
which results in the monotonic RH curve of Al-Ag.

In this calculation, we have neglected the depen-
dence of the relaxation time on the magnetic-field
strength. The present result shows that at least for
the Hall coefficient, we can explain the DKR by the
anisotropy of the zero-field relaxation time.

From the above we conclude that the path integral
is a quite efficacious device in the calculation of the
galvano-magnetic coefficient if we use a realistic
Fermi-surface model taking the proper anisotropic re-
laxation time into account.

The programs LooPER and PATH are available
from the author.
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APPENDIX

If there are no open orbits, Eq. (2.1) is rewritten

e' " — - imp & du
d k v;(k) I —exp —t

1

du
dt v& t exp —, . Al

t ru'

de dkT dE

I&,EI
(A2)

where dkT is the line element along a path and '7~E
is the projection of VI,E in the orbital plane. The
time variables are rewritten

1

dk&'

eB IV, 'EI
and

dkT".B Iv EI
(A3)

We substitute Eqs. (A2) and (A3) into Eq. (Al) and
integrate with E to obtain

The volume element d k in the wave-number space is

given by

dua,j= 3 X& dk, I —exp —
)y

t

dkT " —, dkT' g +" dky"
&) v;(k) t) uj(k') exp—

,
eB, ~ ~' .(k")Iv, "EI

We express k and E in units of 2m/a and (A'2/2m)(2m/a)2 respectively and rewrite Eq. (A4)

(A4)

'I

dky"
a,~= ——g I dk, 1 —exp —

pp
3 B J 0 (k")Iv "EI

dkT"
x exp -co '

(A5)

We introduce the integral operators

dky-VgF.

Iv, EI

and

k rr

T k, k' ".(k-) IV,-EI

(A6)

(A7)
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Equation (A6) is rewritten

(dk +dk )' "7
' 2' 1/2'a~' 'az

tik„Bk»
~

t2 1/2

dk„

t 2'1/2
de
dk„

gE &E

t)k» I
Bk„

2. 1/2

iu, [ l+ ""'
dk„

&

' 2'1/2'

Qky

dk„V'jE vy

and similar1y

dky VgF. vx (A9)

The Eq. (A7) is also rewritten similarly. The rewritten operators are substituted into Eq. (AS) and we obtain
Eq. (2.2).
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