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The properties of solitary waves in a three-dimensional monatomic face-centered-cubic lattice
are studied. The atoms of the lattice are assumed to interact via a Morse-type interatomic po-
tential. For the discrete lattice, the equations of motion for the atoms are solved numerically

using a computer-molecular-dynamic technique and, from their solution, the stability of the
waves investigated. It is pointed out that the solitary waves are fairly stable to longitudinal
planar oscillations, somewhat less stable to mutual collisions, and still less stable to transverse
planar oscillations. 1t is also observed that under some conditions coupled longitudinal and
transverse solitary waves can propagate in phase with the same propagation velocity in the lat-
tice. The equations of motion are then derived in the long-wavelength continuum limit and stu-
died in some detail. A comparison of their solutions is made with the results for the discrete-
lattice model and it is shown that the continuum equations are capable of predicting nrany of the

same effects.

I. INTRODUCTION

In this paper we will be concerned with studying
the propagation and interaction of solitary waves in a
face-centered-cubic (fcc) lattice. Our intention will
be to determine the extent to . which the properties of
these waves, well known in many one-dimensional
models, are affected by the additional space dimen-
sions and to assess the likely physical implications of
these properties. Most of the work will be undertak-
en using a computer-molecular-dynamic model,
although extensive analytic work is also presented.

Since the discovery' that solitary-wave solutions of
the Korteweg—de Vries (KdV) equation were stable
to mutual collisions, these stable pulses (solitons)
have received considerable attention. Interest in the
problem arises from the fact that, if relatively stable
pulses exist in real physical systems, they will sub-
stantially affect the manner in which energy is trans-
ported in the system as well as the speed with which
it approaches thermal equilibrium. Early work? on
solitons was devoted to the study of one-dimensional
systems whose equations of motion could at least be
approximated by equations which possessed soliton
solutions. More recently, some progress®~® has been
made in extending the results to multiple dimen-
sions, although the work is largely mathematical in
nature and/or applicable to only rather idealized sys-
tems. In more applied work, Schneider, Stoll, and
Hiwatari’ have observed in a three-dimensional
discrete-lattice model that heat pulses exhibited soli-
tonlike properties, and Ikezi® has experimentally veri-
fied the existence of solitons in plasmas. These latter
results suggest that soliton propagation may indeed
be an important real effect in solids and further stu-
dies are appropriate at this time.

Our motivation for investigating the particular
problem of solitary waves in the fcc lattice arose from
our efforts to explain anomalous effects observed in
computer simulations of shock waves in discrete lat-
tices. Three-dimensional studies of this problem re-
ported by Tsai and co-workers® over the last decade
have suggested that the shock profile is not steady in
time and that the lattice does not immediately attain
thermal equilibrium behind the shock front. Similar’
results'®~'* have since been reported in one-
dimensional models and explained on the basis of
solitary-wave propagation. It remains to determine
whether the same effects are responsible for the
unexpected results in three dimensions. We will ad-
dress this problem in subsequent work and, for the
present time, confine our attention simply to the
properties of solitary waves. Specific points discussed
include the extent to which the fcc lattice can support
solitary waves; the effect of mutual collisions upon
the wave profile; the stability of the profiles to per-
turbations in the direction of propagation as well as
perpendicular to it; and the extent to which longitudi-
nal and transverse oscillations are coupled and how
the energy is exchanged between them.

We begin in Sec. Il by describing the model under
consideration, writing down the equations of motion
for each atom in the lattice, and describing the
method for solving them. In Sec. 11l we present the
results of the numerical studies which have been un-
dertaken using the discrete-lattice model. In particu-
lar, we address the generation of solitary waves and
discuss their stability. It is pointed out that in some
cases it is possible to generate coupled longitudinal
and transverse solitary waves which propagate in
phase at the same velocity. In Sec. IV we derive the
long-wavelength (continuum) limit of the equations
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of motion for the fcc lattice. It is demonstrated that
there exists a steady solution to the two equations
and the solution predicts the coupled solitary waves
found in Sec. lIl. The equations are solved numeri-
cally and an approximate analytic solution is also ob-
tained. Finally, Sec. V contains a summary of the
results and the conclusions drawn as well as some
discussion of the physical implications that the ex-
istence of solitary waves might have on energy
transfer in crystalline solids.

II. MODEL AND EQUATIONS OF MOTION

The model whose properties we wish to study con-
sists of a pure, monatomic, fcc lattice which is made
as long as necessary in the z direction and which is
periodic in the x and y directions. The periodicity in
these directions is characterized by the integers L,
and L,, respectively. Thus, for any function F which
depends upon the velocities and displacements of the
atoms in the lattice we have

F(x +ILag, y +mLyag,z) =F(x,p,z) , Q.1

where /and m are arbitrary integers and ay is the lat-
tice constant or cube edge of the conventional cell.
The atoms will be assumed to interact via a
Morse-type interatomic potential and therefore the
Hamiltonian of the lattice can be written

H=33a+4 S Ty gy
ha i, a
LB
In writing Eq. (2.2) we have adopted the convention
whereby the notation (i, @) denotes the ath particle
in the i th plane normal to the z axis. These planes
are numbered consecutively beginning with the first
located at z=0. Any convenient labeling scheme
may be used to number atoms within a given plane,
but the particular convention used is irrelevant to
further discussion here. This labeling convention is
convenient for some of our later discussions.

In Eq. (2.2) all quantities have been made nondi-
mensional. H represents, of course, the total energy
in the lattice and has been normalized by D, the dis-
sociation energy of a single, isolated atom pair; V, , is
the velocity of the (i, )th atom, normalized by
(D/m)'2, where m is the atomic mass; T; 4 is the po-
sition vector of the (i, «)th atom, normalized by ao;
Ay is the lattice constant, normalized by rg, the
separation of an isolated atom pair at minimum po-
tential; and R is a dimensionless parameter represent-
ing the degree of nonlinearity in the Morse potential.
The sum over (i, @) runs over all atoms in the lattice
and that over (j, B) is taken over all atoms in the vi-
cinity of the (J, a)th for which the potential interac-
tion is appreciable.

The equation of motion satisfied by the (i, a)th
atom can be found in a straightforward manner from
Eq. (2.2) and the result is

Toa=2RAGF,, , 2.3)

where ﬁ,-_,, is the nondimensional force (normalized
by 2RD/ro) exerted on the (i, a)th atom by the

remaining atoms in the lattice. Explicitly, F; , is
given by

— “2R(AGIF, =T =1
Flo= 3 (¢ 0T
B.J

_e—R(AO|T;.‘a—‘;.'B'—-l)) Tia—Tjg (2.4)
|Tia =Tl

and each dot represents differentiation with respect to

the dimensionless time 7, i.e., the real time normal-

ized by (m/D)a,.

In all our calculations we will be concerned with
solving Eq. (2.3) numerically to determine the tem-
poral evolution of the position and velocity of each
atom in the lattice subject to some specific set of ini-
tial and boundary conditions. From the solution of
these equations, it is then possible to infer all infor-
mation concerning the response of the lattice to any
excitation. The procedure for solving Egs. (2.3) is to
employ a fourth-order Runge-Kutta technique.'”> The
details of the method of solution, as well as a listing
of the appropriate computer program, will be present-
ed elsewhere! and will not be discussed further here.

1Il. NUMERICAL RESULTS FOR DISCRETE LATTICE

In all solutions of Egs. (2.3) we have, unless other-
wise stated, chosen the anharmonicity factor R to be
6.29, a value which leads to a reasonable representa-
tion for a lattice of nickel atoms.!” Furthermore, we
have assumed that only atoms which were separated
by a distance of unity or less (real distance normal-
ized by a,) exerted an appreciable force on one
another. This assumption is equivalent to assuming
that, in the equilibrium lattice, only an atom’s first
and second nearest neighbors contribute significantly
to its potential interaction. The assumption was
found to be reasonable for the currently used value
of R. The lattice constant 4, was then calculated'® so
as to minimize the potential and found to be 1.4034.

A. Generation and collision of solitary waves

In previous work we have used the model
described in this paper to study shock propagation in
solids. In those studies, we observed that, when the
atoms of the lattice are initially at rest in their equili-
brium positions, compression along a crystalline axis
produces a sequence of solitary waves which pro-
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pagate into the lattice. The solitary-wave profiles
used in the computer experiments which are
described in this paper were obtained by isolating a
single solitary wave from this sequence.

An example of the shock-wave calculation is shown
in Fig. 1. For this case, the end-most plane of the
lattice, located at z =0, was driven at a nondimen-
sional velocity U, =1.0 in the z direction. The equa-
tions of motion of the atoms in the lattice were
solved and the velocity-time trajectories of various
planes parallel to the plane at z =0 were plotted. For
this calculation and for all others where the motion
of each atom in a plane is identical, the same results
are obtained regardless of L, and L,, the periodicity
of the lattice in the x and y directions. Therefore, Ly
and L, can both be set to unity so that we need to
solve the equations of motion for only two atoms in
each plane, one located at the corner of the plane and
one located at the center.

In Fig. 1 is plotted the z component of the.velocity
as a function of time 7 for the 40th and 80th planes
in the lattice. (The single subscript is used hereafter
to refer to the plane as a whole.) In order to facilitate
comparisons of the graphs, we have plotted the velo-
city in each case as a function of r — 7o where 7 is
the time at which the propagating disturbance first
excites the plane in question. It is evident from the
figure that a spectrum of solitary waves is evolving
near the front of the disturbance, just as occurs in
one dimension. Asymptotically, the pulses will com-
pletely separate, approach the same constant shape,
and propagate at a steady speed through the lattice.
Consequently, a single solitary wave can be launched
into a lattice by driving the end-most plane with the
solitary-wave profile obtained from the shock-wave
calculations. This is not the only conceivable method
of generating solitary waves in the lattice, but is a
reasonable one.

2.0 To =1.772
(VAO)z
1.0+
] | ! 1
20—
T, = 3.608
(vao),
1.0—
0 ] | ]
0 0.2 0.4 0.6 0.8
T-T,

FIG. 1. Spectrum of solitary waves generated by steady
compression at rate U, =1.0.

In previous studies'® we demonstrated that solitary
waves propagating in a one-dimensional, Morse-
potential lattice are stable to mutual collisions. That

" is, to within the accuracy of our numerical data, two

solitary waves emerged from a collision with the
same profile as prior to the collision. It is of interest
to determine whether similar effects occur in the
three-dimensional, fcc lattice.

We have launched two solitary waves having equal
but oppositely directed velocities from opposite ends
of a lattice and allowed them to approach one another
and eventually collide. By plotting the velocity-time
trajectories of various planes encountered by the soli-
tary waves, the effect of the collision can be ascer-
tained. The results of such a calculation are shown
in Fig. 2 for two solitary waves launched from the
ends of a lattice which was 48 planes long. The ini-
tial solitary-wave profiles were obtained from a
shock-wave calculation with U, =3.0. The top figure
shows the velocity-time trajectory of the 13th plane
in the lattice beginning at the time when the solitary
wave propagating in the positive z direction first en-
counters the plane. For the time shown in this figure
the two waves have not yet collided so that this pro-
file corresponds to the initial solitary-wave profile.
The solitary wave depicted in the figure represents a
rather strong disturbance. In fact, in the neighbor-
hood of the solitary wave the density in the lattice is
increased by about 40%. The two solitary waves en-
counter one another in the vicinity of the 24th plane

6.0
T, = 0.424

(Vl3)z
: 3.0

To = 0.816
3o

(V24 )1.‘

-3.0

-6.0-

3.0 T, = 1.228

(vi3), 0.2 0.4 0.6 0.8
.30} °

FIG. 2. Collision of two solitary waves.
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in the lattice and the trajectory of that plane is shown
in the center of the figure during the time of colli-
sion. Finally, at a much later time, the collision has
been completed and the negative-velocity solitary
wave has reached the 13th plane. Its trajectory is
shown in the bottom of the figure.

It is apparent from the figure that the two solitary
‘waves maintain their shapes only approximately after
the collision. Evidently, some of the energy which
initially resided in the two solitary waves now exists
in the form of oscillations which are left behind by
the waves. Although it is not apparent from the fig-
ure, the amplitude of the solitary waves subsequent
to the collision is decreased by about 3% from the
amplitude prior to the collision. We conclude, then,
that solitary waves in an fcc lattice with a Morse-
potential interaction are not stable to mutual colli-
sions.

In addition to the results discussed above, we have
also observed collisions between solitary waves hav-
ing smaller initial amplitudes. As the amplitude de-
creases, the waves appear to become more stable. In
fact, solitary waves generated by steady compression
with U, =1.0, having initial amplitudes of about 1.8
(as compared with about 5.4 for the U, =3.0 case),
were found to be stable to within our numerical accu-
racy.

It might appear surprising that, although the only
motion in the fcc lattice is one dimensional, the soli-
tary waves do not appear to be so stable as in our
previous one-dimensional chain calculations. The
reason for the apparent anomaly is not completely
clear but two possible explanations may be offered.
First, it must be understood that, even though the
motion in the Morse-potential fcc lattice is planar and
one dimensional, the model is nevertheless different
from a one-dimensional chain with a Morse-potential
interaction. Consider, for instance, the one-
dimensional chain with the atoms initially in their
equilibrium positions. As two neighbors approach
one another, their force of interaction increases
monotonically, reaching a maximum as the separa-
tion distance decreases to zero. In the fcc lattice,
however, as two neighboring planes approach one
another, the force exerted by an atom on its neighbor
in an adjacent plane is not in the same direction as
that of the planar motion. Therefore, as the planes
approach one another, their force of interaction first
increases, reaches a maximum value, and then de-
creases to zero as the planes become coincident. Of
course, it would be possible to reproduce the results
of the fcc calculation with a one-dimensional chain
model by replacing the Morse-potential interaction
with another potential defined so as to give the same
force as a function of separation distance in the two
cases. Second, it is likely that the solitary waves ob-
served in our previous one-dimensional calculation
were not rigorously solitons but only appeared to be

so to within our numerical accuracy. Thus, after
many collisions we would expect that some change in
the solitary-wave profile would be observed. In fact,
we speculated then that such an effect might be
responsible for the apparent tendency for equilibra-
tion that was observed far behind the shock front in
our one-dimensional lattice.

B. Stability of solitary waves to planar
and thermal oscillations

In addition to investigating the effects of mutual
collisions upon the solitary-wave profiles, we have
also examined the effects of relatively small planar
oscillations both along and transverse to the propaga-
tion direction. To perform the calculations we
launched a solitary wave at the end of the lattice and
allowed it to propagate some distance into the interi-
or. At some point ahead of the solitary wave, a few
planes in the quiescent lattice were displaced slightly,
released, and allowed to oscillate. The solitary wave
then eventually passed through the region of the os-
cillating planes and emerged on the other side. The
intention was to determine the effect of the region of
planar oscillations on the solitary-wave profile.

An example of the effect of longitudinal planar os-
cillations is shown in Fig. 3. A solitary wave having

4.0
T, = 0.288
(vb)z
20
(a)
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T, = 0.616
20
(VIS)z :
(b)
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0
\/ \
40—
T, = 2.728
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2.0
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0 Il J
0 0.2 0.4
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FIG. 3. Effects of longitudinal planar oscillations on
solitary-wave profile. (a), (b), and (c) represent solitary
wave before, during, and after traversing the oscillatory re-
gion, respectively.
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an amplitude of 3.6 (generated from compression at
U, =2.0) was launched into the lattice. Just prior to
the time the solitary wave reached the 14th plane in
the lattice, planes 14—18 were uniformly displaced a
distance of 0.1 in the positive z direction and allowed
to oscillate. In Fig. 3(a) is plotted the velocity-time
trajectory of the 6th plane in the lattice which shows
the unperturbed solitary wave. Figure 3(b), on the
other hand, shows the same disturbance as it pro-
pagates past the 15th plane in the lattice which clearly
lies within the region of longitudinal oscillations. The
shape of the original solitary wave is obviously dis-
torted as it propagates through the region. Finally, in
Fig. 3(c) we have plotted the trajectory of the 67th
plane in the lattice at the time when the original dis-
turbance first reaches it. By this time the original
solitary wave has completely traversed the region of
longitudinal oscillations. Though not shown, the tra-
jectories of some later planes have also been plotted
to demonstrate that the shape of the emerging soli-
tary wave did not change.

Comparison of Figs. 3(a) and 3(c) indicates that
the longitudinal planar oscillations have had an insig-
nificant effect upon the original solitary-wave profile.
In fact, to within our numerical accuracy, the profile
was found not to have changed at all. These results
might appear surprising since the pulses were found
to be unstable to mutual collisions which involve
only longitudinal planar oscillations. Apparently,
however, the oscillations discussed above were too
small a perturbation to make any change in the wave
profiles observable numerically. Perhaps if the oscil-
latory region were much longer, or the oscillations of
larger amplitude, a notable effect would have been
seen.

Calculations identical to those above, except that
the five planes were displaced in the transverse (y)
direction, have also been carried out. It is interesting
to note that a displacement of the planes in the
transverse direction will give rise to both longitudinal
and transverse oscillations, whereas displacement in
the longitudinal direction produces only longitudinal
oscillations. (This point is discussed further later.)
Consequently, we cannot examine the stability of the
solitary waves to completely transverse oscillations,
but only to oscillations which contain a mixture of
both. Furthermore, although the planes were dis-
placed by the same amount in the two calculations,
the change in the energy in the lattice due to the
transverse displacement is approximately a factor of
two less than that due to the longitudinal displace-
ment.

The results of propagating the solitary wave
through the region containing transverse planar oscil-
lations are shown in Fig. 4. Again, in Fig. 4(a) is
shown the unperturbed solitary wave and in Fig. 4(b)
the disturbance during the time it traverses the re-
gion of planar oscillations. Figure 4(c) represents the

40—
Tq =0.288
(Vb)z
20
(a)
0 | |
T, =0.616
2.0
(Vlﬁ)z
(b)
| l
0
N
4.0—
To = 2.728
(V67)z
20—
(c)
0 | |
0 0.2 0.4

T-T,
FIG. 4. Effects of transverse and longitudinal oscillations
on solitary-wave profile. (a), (b), and (c) represent solitary

wave before, during, and after traversing oscillatory region,
respectively.

resulting disturbance which emerges from the oscilla-
tory region. As can be seen from the figure, the
transverse oscillations have significantly affected the
size of the original solitary wave. In fact, the ampli-
tude of the pulse, which was about 3.60 prior to
traversing the oscillatory region has been reduced to
about 3.12. Again, in order to be certain that the
emerging pulse was indeed a solitary wave, we have
followed its propagation farther than the 70th plane
into the lattice and observed no change in shape.
Finally, we have allowed the solitary wave to pro-
pagate through a region which contained random,
thermal oscillations. The length of the region was
the same as for the previous calculations and the
cross section contained 32 atoms (L, =L,=4). The
thermal energy per particle was the same as the ener-
gy per particle associated with the mixture of
transverse and longitudinal planar oscillations. Again
some decay of the initial solitary-wave amplitude was
observed. We should point out, however, that the
finite size-of the lattice in the transverse directions
unavoidably gives rise to some planar oscillations.
These planar oscillations, which are unexpected in
macroscopic, equilibrated crystals, no doubt accentu-
ate the decay of the solitary-wave profiles. Neverthe-
less, we expect some decay of the profiles even in the
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absence of planar oscillations although the decay
should be slower than that observed here. Unfor-
tunately, capability of treating only small systems is a
fundamental limitation of computer molecular
dynamics.

C. Coupled solitary waves

~ The instability of the original solitary wave to
transverse planar oscillations can be explained in part
by the generation of coupled longitudinal and
transverse solitary waves. We have observed these
waves in the numerical data from which Fig. 4 was
plotted. Specifically, it was found that there existed a
solitary wave which propagated in phase with the em-
erging longitudinal wave but which produced a distur-
bance in the transverse (y) direction.

The effect is demonstrated in Fig. 5 in which we
have plotted the velocity-time trajectory of the 70th
plane. The upper part of the graph is identical to Fig.
4(c) and represents the emerging longitudinal pulse.
On the lower part of the graph is plotted the y com-
ponent of the velocity of the same plane beginning at
the same time. As can be seen from the figure, the
transverse solitary wave has somewhat smaller ampli-
tude than the longitudinal wave and propagates in
phase with it. We have also computed the energy of
the initial-wave profile and compared it with that of
the final coupled waves. The final energy was found
to be about 10% less in the coupled configuration,
suggesting that part of the energy in the initial wave
is given up to thermal oscillations.

4.0
To = 2.736
(V7O)z
2.0
0 |
20
(v0),
]
0
0 0.2

T-To

FIG. 5. Coupled longitudinal and transverse solitary
waves.

We have also observed coupled solitary waves in
our study of the effects of thermal oscillations upon
the wave profile. In that case transverse solitary
waves were found to propagate in both transverse
directions. In all likelihood they arose from the
planar oscillations generated by the finite size of the
crystal discussed earlier. In Sec. IV we will see that
the continuum limit of the equations of motion
predicts the existence of these coupled solutions and
we will discuss their properties in greater detail.

IV. CONTINUUM EQUATIONS

In this section we will derive, interpret, and present
some special solutions to the continuum equations
for planar oscillations in the fcc lattice. This limit can
be expected to be valid whenever the excitations
which the equations describe have wavelengths much
longer than the interatomic spacing. The purpose of
obtaining and solving the equations is to compare the
results with those obtained previously for the discrete
lattice. As will be seen, the relatively simple continu-
um equations predict results at least qualitatively
similar to those obtained in Sec. III.

A. Derivation of continuum equations
for planar oscillations

In order to make the calculations as simple as pos-
sible we will assume that only nearest-neighbor in-
teractions are significant. Including more distant
neighbors is not expected to affect qualitatively the
nature of the results. This is especially true for our
case where the anharmonicity factor is rather large.
Furthermore, since we are concerned only with
planar oscillations, each atom in a plane normal to
the z direction will be assumed to have the same
velocity and displacement. The velocities and dis-
placements have a y component (transverse) and a z
component (longitudinal) but, for simplicity, the x
components have been set equal to zero throughout.

We are interested in solving Eq. (2.3), viz.,

=, —2R(4,4|T, =T gl—-1
rk,,,=2RA02(e 0 ke ‘l’ﬁl
5B

_ "k (Aol a—-r),pl—l)) Tha"Tj8

‘Tk,a—?j,ﬁl /
4.0

in the limit in which the displacements of all particles
from their equilibrium positions are small. The sum
over jand 8 now runs over the 12 nearest neighbors
to particle (k, @) which are shown in Fig. 6.

For the case of planar oscillations, the displacement
of particle (k, @) from its equilibrium position is
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2 TABLE 1. Position vectors from lattice site (k, ) to
| neighboring lattice sites. /, j, and k are unit vectors in the
o9 ] ! o535 three Cartesian directions.
| l}]o i -:)6 X
| [ . - —
: (k@) Neighbor 8% T o
I |
012 o8
/}""_""' "71’3 z 1 1o 1
/ =3 / 7 2 /
/ /4
Y 2 1.1
2 2
I
12 12
i i 3 —5i=3J
FIG. 6. Location of nearest neighbors to atom (k, a). 2 2
» 1~
4 -5 + 7
5 STk
identical to the displacement of the entire plane k | 1
from its equilibrium position. Therefore, we can 6 —5J +5k
write
o 7 —Livdg
Tp—Tha=T18" —Tha’ +S;—Sk . 4.2) 2/t 3
8 R
where the superscript 0 denotes the position vector to 2/ T3
the equlllbrlum position of the particle, and the vec- Le s
tors SJ and S, are the displacements of planes j and 9 Si—5k
k, respectively, from their equilibrium positions. The Lo
position vectors joining the equilibrium site of atom 10 —3i =Tk
(k, &) with those of its 12 nearest neighbors are given ] 1
in Table I. 11 —5i—7k
If we now substitute Eq. (4.2) into Eq. (4.1), ex-
pand the resulting equation, and retain only terms 12 %j_ %,;

through second order in S, we obtain

§k =4R2 2 ((?}'BO—?&“O) {2(_1:}_50_?[('“0) * (§j —§k) + (§J —§k)2 ‘6(1 +R)[(f},ﬁof?k,a0) * (§J —gk)]z}
B.J :

+2(§j_§k)(?j,ﬂo_?k.a0) : (§1_§k)) . \ 4.3)
In deriving Eq. (4.3) we have noted that, for nearest-neighbor interactions only, the lattice constant Ay is given
by V2.
We now perform the sum in Eq. (4.3) using the values of the equilibrium position vectors given in Table I.

After much tedious algebra, we obtain the following equations for the transverse and longitudinal displacements
of the kth plane:

(80)y =4R*{(Sgs1 + Sk1 —25¢), + (1 =3R) [(Sy 41 — 8y (Ska1 = Si) ; — (Sk—1 — Si), (Sk—1 — S 1},

(81): =8R((Sg41 + Sic1 —28); +%(1 = R)(Sk41 = Si) 7 = (Se—1 — S 7] +%(1 =3R)[(Sk1 =S} — Sk — S A .

(4.4)
In Egs. (4.4), the subscripts y and z denote the components of the displacement in the y and z directions, respec-
tively. Since we are interested in the case in which the wavelength of the disturbance is much larger than the lat-
tice spacing, we can expand Sx4; and S,_; in a Taylor series about S with the result that

BSk 1 azsk 1 63Sk ] 64Sk L

~ S 4 1 WL
Sk+1—Sk ak + 202 T3 e ar YL 4.5)
Substitution of Eq. (4.5) into Egs. (4.4) then produces
928, 3s, 1 9%S, aS, 92S,  98%S, S,
=4R[4 L -3R > 22|,
a7 9k? 12 9kt + a3 0k 9Kk? | 8k? 8k (4.6a)
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9s, - 3’8, 1 9%S, 9S, 85,
L =8R}|— +——F +3(0—-R)—
972 9k 12 Kkt (1-R) 9k dk

where we have now dropped the subscript k<. Terms
through fourth order have been retained in obtaining
Eq. (4.6).

Equations (4.6) describe the propagation of planar
disturbances in the fcc lattice in the continuum limit.
Although the result has been obtained for the Morse
potential, a similar result can obviously be obtained
for any interatomic potential whose associated forces
are expanded to second order as in Eq. (4.3). If we
neglect third- and fourth-order terms (retain only the
first term on the. right-hand side of the equations) we
obtain simply the linear wave equations. Thus, the
longitudinal and transverse sound speeds are given in
our normalization by

C,=2V2R
and 4.7
C,=2R

That the ratio of these two velocities is given by V2
can be inferred from elastic-constant data and the
well-known fact that for cubic crystals'®

12
G Cy
=== ) (4.8)
G lC44]

The ratio of the elastic constants C;;/Ca4 has been
shown'’ to approach two in the limit of nearest-
neighbor interactions only.

The more interesting effects in Eqs. (4.6), how-
ever, are contained in the higher-order terms. The
third-order terms represent, to lowest order, the non-
linear effects of the potential whereas the fourth-
order terms (linear) account for the dispersive nature
of the lattice. It is also clear that if these higher-
order terms are retained, Eq. (4.6) predicts that a
transverse disturbance cannot propagate in the ab-
sence of a longitudinal disturbance. Thus, setting
S, =0 in Eq. (4.6b) leads to only trivial, nonoscillato-
1y solutions for S,. If, however, one sets S, =0, a
solution for S, can be found from Eq. (4.6b). Our
discrete-lattice results have verified this effect as we
pointed out in Sec. III B. In that discussion we noted
that displacing planes of atoms in the transverse
direction produced both longitudinal and transverse
oscillations, but a displacement in the longitudinal
direction produced only longitudinal oscillations.

Equations (4.6) are obviously difficult to solve and
we will be interested only in obtaining approximate
special solutions. Our primary interest will be in us-
ing the equations to predict analytically the longitudi-
nal solitary-wave profile and in further studying the
properties of the coupled solitary waves discovered in
Sec. III.

+31-3R)

s, oS,

| (4.6b)

The equations can be somewhat simplified by not-
ing that solitary waves represent steady, traveling-
wave solutions to the equations of motion. Thus, we
assume solutions of the form

S,=S,(k—C7)=S5,(8) ,
S,=S,(k—=Cr)=S,(¢) , (4.9)

where C is the propagation velocity of the resulting
wave form, and substitute into Egs. (4.6). If we de-
fine the components of the planar velocity as

3
T (4.10)
_ 95,
YT
Egs. (4.6) become
u'=au—4Buv , (4.11a)
V' =yv—8v2—Bu’ . (4.11b)

The primes denote differentiation with respect to ¢
and the constants are defined as follows:

a=12(C*C2-1) ,

B=3BR-1/C ,

(4.12)
y=12(C¥/C?-1) ,

5=18(R-1)/C .

In Secs. IVB and IV C we obtain and discuss some
solutions to Egs. (4.11).

_ B. Longitudinal solitary waves

The simplest solution of Eqgs. (4.11) results when-
ever no transverse disturbance exists so that u can be
set equal to zero throughout. We then have

v =yv—35v% . » (4.13)

If Eq. (4.13) is multiplied by V', it can be integrated

twice provided that we require that the function and
its derivatives vanish at infinity. Performing the cal-
culation we find

v=3L sech(3/70) . (4.14)

In obtaining Eq. (4.14) we have assumed y > 0; the
solution for y < 0 is oscillatory, does not vanish at
infinity, and will not be considered here. Analytic
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FIG. 7. Comparison of numerical and analytic longitudi-
nal solitary-wave profiles. The dashed curve represents the
numerical results for the discrete lattice; the solid curve
represents a plot of Eq. (4.14).

approximations for solitary-wave profiles similar to
this result have been discussed in the literature.'

In order to compare the wave profile predicted by
Eq. (4.14) with our numerical data for the discrete
lattice, we plotted the velocity-time trajectory of a
plane of atoms in the lattice as a solitary wave
traversed it. The propagation velocity, C, of the soli-
tary wave was obtained from the computer data and
substituted into Eqs. (4.12). The resulting constants
were then used to calculate the profile in Eq. (4.14).
Results of the calculation are shown in Fig. 7 in
which are plotted the numerical and analytic wave
profiles as a function of the parameter ¢£&/C. The two
profiles are in reasonably good agreement. We have
also compared a number of other profiles for both
higher- and lower-amplitude solitary waves. How-
ever, as the amplitude of the wave increases, its
width decreases. The discrepancy between analytic
and numerical results then increases owing to the
inadequacy of the continuum approximation.

C. Coupled solitary waves

We now wish to determine whether we can predict
from Egs. (4.11) the coupled longitudinal and
transverse solitary waves observed previously. We
begin by obtaining an approximate analytic solution
to the equations valid in the limit ¥ —0. The tech-
nique may be viewed as the first step in an iterative
procedure; in principle, it may be repeated as often as
desirable.

Equation (4.14) represents the solution of Eq.
(4.11b) for u =0. Substituting the result into Eq.
(4.11a) we obtain an equation for the first approxi-
mationgto u, namely,

u"=au —Q%Zsechz(%\/;f)u . (4.15)

Equation (4.15) is linear and second order and is
similar to the time-independent Schroedinger equa-
tion. Since « > 0, one expects® that bounded solu-
tions exist only for certain discrete values of C and
that the corresponding functions « vanish at infinity.

To solve the equation we make the change of vari-
able

y =sech(—;~x/§§) (4.16)
and substitute into Eq. (4.15) to produce
_'.21_2ﬂ+L 1 —2,2) 94
i AZL y)dy2 AL y)dy

: =au—-6-%xyzu . (4.17)

We now assume that the solution to Eq. (4.17) can
be represented in the form of the series

u=7 uym¥ (4.18)
p=0

where m is a positive number, and substitute into Eq.
(4.17). Equating coefficients of y?' in the resulting
expression then yields the recursion relation

=Y m +20=2)(m +21-1) —24yp/5
; V(m +21)2—4a !

4.19)

By assumption ¥y # 0 so that the denominator of
Eq. (4.19) must vanish for / =0. Thus, we obtain
the eigenvalue equation

Tmly=a , (4.20)
which becomes

C? m*—4

C_12 = m 4.21)

after using Eqs. (4.12). This result indeed predicts
that solutions to Eq. (4.17) exist only for certain
well-defined values of C. Furthermore, if the series
represented by Eq. (4.18) is to terminate, the numer-
ator of Eq. (4.19) must vanish for some value of /.
This condition implies

m=1{-(41-3) +[1 +16 BR —1)/(R =]} ,
: (4.22)

where all constants have been expressed in terms of
R. Of course, m must be greater than zero in order
for the solution to remain bounded at infinity.

As a specific example, let us now evaluate the
solution for the case R =6.29. In that case, Eq.
(4.22) predicts that the only solution which leads to
m >0 and y > 0 occurs for / =1 and m =3.21. Sub-
stitution of m into Eq. (4.21) then yields C =1.66C;
and, from this value of C, the remaining constants
can be calculated from Eq. (4.12). Only the zeroth
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term then survies in the expansion of Eq. (4.18) and
we have

u =ugsech>2'(2.3¢) . (4.23)

The corresponding expression for v, obtained from
Eq. (4.14), is

v=9.8sech?(2.3¢) . (4.24)

In principle, Eq. (4.23) could now be used in Eq.
(4.11b) to obtain a second approximation to v.

It is important to emphasize that Eqs. (4.23) and
(4.24) represent only a rather crude approximation to
Eq. (4.11) which can be expected to be valid only as
u tends to zero. The solution predicts, for instance,
that the amplitude of the longitudinal solitary wave in
the coupled-wave profile is identical to that for an
isolated longitudinal wave having the same value of
C; actually the amplitude is diminshed from that of
the isolated wave. Furthermore, the value of uj can-
not be obtained in the lowest-order solutions to the
equations and this parameter must be fit to the data.
Finally, the lowest-order approximation yields only
one acceptable eigenvalue and, thus, one solution to
the equations. Other solutions are, however, possible
as u increases from zero and these are no doubt
predicted by higher-order approximations. Despite
these shortcomings, the analytic solution is nonethe-
less valuable because it does predict that coupled-
wave solutions do exist and, as we shall see, predicts
the shapes of the wave profiles rather well for
u << v.

Because of the limitations of the analytic solution
we have also obtained numerical solutions of Egs.
(4.11). Our efforts have been confined to obtaining
solutions which propagate in phase, that is, to solu-
tions which reach their maximum at the same value
of ¢ Only solutions having this property have been
observed in our studies of the discrete-lattice equa-
tions. The numerical procedure was as follows: A
value for vp,, was assumed (arbitrarily chosen at
£=0) and up., obtained from the differential equa-
tions. Specifically, if we multiply Eq. (4.11a) by u’,
Eq. (4.11b) by 2v', and add the resulting expression
is in the form of an exact differential. Integrating
and evaluating the resulting equation at ¢ =0 yield

28vmax/3 —-Y 2

a/z_zﬁvmax “.25)

Umax = VUmax [

These values of u,x and vy, Were used as initial
conditions and a fourth-order Runge-Kutta scheme
employed to solve Egs. (4.11). As expected from the
analytic result, the numerical solutions were found to
diverge as |£] — o unless the appropriate value of C,
found by trial and error, was used.

We have performed a number of numerical solu-
tions of Eqs. (4.11) in the manner discussed assum-
ing various values of v, In no case were we able

to obtain convergent solutions for values of v,y less
than or equal to the value predicted by the analytic
technique in lowest order, namely, vy =9.8. The
result suggests that there exists a threshold, occurring
at the eigenvalue C =1.66C,, below which the cou-
pled solitary waves cannot propagate in phase. Un-
fortunately, the threshold is sufficiently high that one
cannot expect that the continuum equations are a
reasonable quantitative approximation to the
discrete-lattice equations and a direct comparison of
the results is not possible. Nonetheless, it is interest-
ing that these equations predict both the existence of
the coupled waves as well as the fact that they obey a
threshold.

An example of a numerical solution is shown by
the solid curve in Fig. 8. The solution was obtained
by assuming a value of v, given by 10.24 and was
found to converge provided C was given by 29.9 or
1.68C,. A plot of u obtained from the resulting solu-
tion is shown in the lower half of the figure; un., was
found to be approximately 1.5 as can be verified from
Eq. (4.25).

Since u is considerably less than v one expects that
the analytic solution represented by Egs. (4.23) and
(4.24) might well be a reasonable approximation to
the numerical result. This is in fact found to be the
case as can be seen from the top graph in which the
dashed curve represents the solution given by Eq.

10.0

5.0

0.0
-0.05

0 | J
-0.05 0 0.05

&/c

FIG. 8. Comparison of numerical and analytic solutions
of Egs. (4.11). The dashed line represents the analytic solu-
tion, the solid line the numerical solution.
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(4.24). Furthermore, when we set ug in Eq. (4.23)
equal to 1.5 and attempted to plot the results on the
lower half of the graph along with the numerical
solution for u, the graphs were found to be coin-
cident to within the accuracy with which we could
plot the data. Consequently, we conclude that the
analytic solution is a reasonable approximation to the
coupled solitary-wave profile for values of vp,, near
the threshold value of 9.8.

Equations (4.11) merit further study. We have
confined our attention in this investigation only to
solutions which have their maximum at the same
value of ¢£&. We have been unable to prove from the
differential equations, however, that all solutions
which vanish at infinity have this property. Thus,
although we have not observed it in solutions to the
discrete-lattice equations, there remains the possibili-
ty that coupled waves exist which propagate out of
phase. It is interesting to note that if such solutions
exist they too obey a threshold effect, although not
necessarily the same one discussed previously. In
fact, it is shown in the Appendix that for a/l bounded
solutions to Egs. (4.11), C must obey the condition

1/2

2R (4.26)

c
Z|T+R

For R =6.29, this yields C > 1.31C; which is sub-
stantially lower than the value C > 1.66C; suggested
for the in-phase solutions.

V. SUMMARY AND CONCLUSIONS

We have undertaken both computer-molecular-
dynamic as well as some analytic studies of solitary-
wave propagation in the three-dimensional fcc
Morse-potential lattice. It has been found that the
lattice is capable of supporting the propagation of sol-
itary waves as in one-dimension. The basic conclu-
sions reached regarding the properties of the solitary
waves are as follows: (i) Longitudinal solitary waves
are not stable to mutual collisions, the degree of sta-
bility decreasing as the amplitude of the colliding soli-
tary waves increases. Nevertheless, even in a mutual
collision, which represents a rather strong longitudi-
nal disturbance, the solitary wave retains its integrity
fairly well. (ii) The solitary waves are extremely
stable to small longitudinal planar oscillations. (iii)
Longitudinal solitary waves are not stable to small,
transverse planar oscillations. However, even in this
case, most of the energy associated with the initial
solitary wave remains localized in the form of a cou-
pled longitudinal and transverse solitary wave. (iv)
Solitary waves appear to be more stable to random
thermal oscillations than to coherent planar oscilla-
tions, although it is difficult to determine this con-
clusively from computer simulations.

Our calculations suggest that, for a variety of per-
turbations, the energy initially associated with a soli-
tary wave tends to remain localized within the wave,
although there may be an exchange of energy
between longitudinal and transverse oscillations.
Therefore, despite the absence of total stability of the
solitary waves, they will nonetheless be important in
three-dimensional energy-transport problems. For
instance, computer simulations have shown that soli-
tary waves are generated whenever a solid is subject-
ed to shock compression and they will, no doubt, be
generated in other nonequilibrium problems as well.
Their fair degree of stability, then, insures that soli-
tary waves will substantially affect, at least initially,
both the relaxation time and the manner in which
thermal equilibrium is re-established after a distur-
bance. Furthermore, for systems of realistic dimen-
sions which are initially in thermal equilibrium, the
solitary waves are likely to be more stable than the
calculations reported here suggest because of the ab-
sence of coherent planar oscillations in the back-
ground.

APPENDIX

The purpose of this Appendix is to prove that for
solutions of Egs. (4.11) which vanish at infinity, the
eigenvalues obey a threshold condition. That is, we
demonstrate that for solutions of the equations to ex-
ist we must have

C? 2R
I > T3 R (A1)
Consider Egs. (4.11), viz.,
u'"=oau—4Buv ,
(A2)

v'=yv—58v:—Bu? .

If the solution for u is to vanish at infinity, then it
must have a maximum in a region where u is positive
and/or a minimum in a region where u is negative.
The final result is independent of which of these si-
tuations exists, so let us assume that ¥ has a max-
imum value u*at ¢ =¢* and that u* > 0. Further-
more, let us denote the value of v at £€*by v* If uis
to be a maximum at £ = £* its second derivative
evaluated at £* must be negative. Consequently,
from Eq. (A2) we have

(a—4Bv*)u* <0 (A3)

and, since u* >0,

ry @
v>4B. (A4)

If we multiply the first of Egs. (A2) by u' and the
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second by 2v', add, and integrate, we obtain
W)+ (W)= Jau? +yvi—250° ~28u’v =0

(A5)

We now apply relation (AS5) at £ =¢* to produce
Ta—4BvMu +v*2Ay—2/38v") =0 . (A6)

Equations (A4) and (A6) ihply that v* must obey

the relation
o + < 3Y
— <v*= . A7
ag =¥ T 2s (A7)
In order for a solution to exist, then, we must have
that 3
(] Y
— < . A8
483 25 (A8)
Expressing the constants in terms of C and R [see
Egs. (4.12)] yields finally
£ 2R

c > T+R (A9)
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