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XY model and the superfluid density in two dimensions
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By computing the incremental f'ree energy of the two-dimensional JY model in a state with a
long-wavelength twist of the local short-range order, we evaluate t'or all T ( T, the superfluid
density p, for superfluid systems. Spin-wave excitations in the XY model imply a substantial
{nonuniversal) depletion of' p, at low temperatures. We f'ind that these contributions do not af'-

f'ect the asymptotic universality; as T T, p, /T lbecomes universal and we recover the previous
C

results of Nelson and Kosterlitz. In the Appendix we derive the Kosterlitz recursion relations
by transforming to a sine-Gordon system and using conventional momentum shell integration
techniques.

I. INTRODUCTION

Recently Nelson and Kosterlitz' presented a calcu-
lation of the superfluid density for two-dimensional
superfluid systems. The significant prediction is that

"twist"~of the local short-range order is imposed on
the system. If the twist has wavelength Ao or pitch
kp = 21r/Xp, one expects the free energy to rise by
0 (kp ) over the value for the uniform untwisted
state. The stiffness or helicity modulus Y is defined
according to'

lim p, (T)/TT~T-
C

is a universal quantity. This means that experiments
on real 4He films can be compared quantitatively with
predictions based on models believed to be in the
same universality class. Rudnick's reanalysis2 of
third sound data' supports the theoretical prediction'

Y—=—llzF ( T' kp)

Qkp2
(1.2)

(1.3)

m'ks T,/p, (T,) l12 = —,
'

rr

as do the more recent experimental results of Bishop
and Reppy. 4 We note, however, that the interpreta-
tion of the experimental data is not without some
controversy. '

In this paper we present an. alternative derivation
of the superfluid density in two dimensions which we
feel has several advantages. In the first place we
work completely within the framework of the XY
model. This eliminates the need for the detailed
phenomenology of two-dimensional hydrodynamics.
Second, for the same effort one obtains the leading
low-temperature "spin-wave" depletion of p, . Such
contributions are nonuniversal, and one explicitly
demonstrates the irrelevance of such terms. Hence
we recover, as T T, , the universality of p, /T—and
reproduce the Nelson-Kosterlitz' result (1.1). The
presence of the nonuniversal terms does not affect
the asymptotic proportionality of the critical exponent
rt and p, /Tas T T,

The method employed is based entirely on ideas
and computational techniques introduced previous-
ly. Briefly one imagines that a long-wavelength

where F(T;kp) is the free energy per unit volume of
such a state. The relation (1.3) expresses the free-
energy increment in terms of p, for the case of a su-
perrluid, '

To use Eq. (1.2) we begin with the standard XY
model defined by

X=— —= PJ $ cos[e'( r ) —&'( r ')]
kg T ~~r&

(1.4)

where {r= (x,y) l denote the sites of a square lattice
with lattice constant a, and the sum is over nearest-
neighbor pairs. The angle variables 8'(r) are restrict-
ed to lie —m ( 8' ( m. The twist is introduced by
measuring each 8'(r ) with respect to the local direc-
tion of (short-range) order, i.e., by defining

8'(r) =4(r) +8(r), with 4&(r) =—kpx (1.5)

Hence angles 8 are measured with respect to a rotat-
ing reference frame. ' To calculate p, we merely must
evaluate the free energy, —ksT lnZ, to 0(kp), where

20 139 1979 The American Physical Society



140 TAKAO OHTA AND DAVID JASNO% 20

the partition function Z is given by

Z = Ji exp PJ g cos[II(r) —9(r')d (e}
2' (r, r')

+ rlr(r ) —rp(r ')]

(1.6)

Fortunately the duality transformations used for
tp =—0 can still be applied to Eq. (1.6).

The layout of the remainder of this paper is as fol-
lows. In Sec. II we apply the duality transformation
in order to evaluate Eq. (1.6)) to O(ko ). We isolate
the "spin wave" and vortex contributions to p, . In
Sec. III we evaluate p, by combining the perturbative
results of Sec. II with scaling and the structure of the
Kosterlitz recursion relations. 9 Section IV is devoted
to a brief summary and discussion.

In the analysis of Sec. III we shall require the ap-
propriate renormalization-group recursion relations.
Various derivations have been presented, " most of
which rely on eliminating vortex (or charge) pairs at
greater and greater separations. In the Apperidix we

present a derivation of the recursion relations based
on ordinary momentum-shell integration techniques
which have proven so useful in higher dimensions.
Our derivation is based on earlier work on the sine-
Gordon system by Ohta" and has some similarities
with a derivation by Wiegmann. ' Further discussion
is reserved for the Appendix.

II. DUALITY TRANSFORMATION

exp(PJcosr0) —= X 1„(PJ)exp(inru)
g~—oo

(2.1)

is inserted for the integrand in Eq. (1.6). The func-
tions l„are modified Bessel functions of the first
kind. This introduces an integer n (r, r ') for each
nearest-neighbor bond of the real lattice, yielding

We are concerned with the superfluid density or
more generally, the helicity modulus, at low tempera-
tures and at temperatures near the critical point. In
these regions there are two types of excitations, spin
waves and vortices, which make their respective con-
tributions to the helicity modulus and effectively de-
plete p, . The exact duality transformation (to be dis-
cussed below) extracts the vortex configurations au-
tomatically, but spin-wave effects are implicitly con-
tained in the expressions. In fact if we use an ap-
proximate version such as the Villairi model, ' the in-
teractions among spin waves are completely discard-
ed. After the duality transformation we calculate Y'

or p, at low temperatures so that we can separate out
the respective contributions.

The duality transformation has been discussed by
Jose et al. ' and Savit. ' We indicate the steps in-
volved in the transformation of Eq. (1.6). First the
representation

Z =
J~ g X l„t-„,,l(pJ) exp(in(r, r') [8(r) —II(r')]+in(r, r') [C&(r) —rp(r')]}

(r, r ') n(r, r ') —oo

(2.2)

The 8(r) variables can be integrated oui yielding a
Kronecker 5 condition on the n variables for bonds
emanating from a given site. As shown in Refs. 10
and 15 the constraints on the n (r, r') can automati-
cally be satisfied by going to the dual lattice (R }. We
need not repeat the argument here; the only new
feature is a redefinition for the C variables appropri-
ate to the dual lattice. From Fig. 1 we define

The remaining steps of the dual transformation are
identical to those of Savit. " The 1„ in Eq. (2.2) must
be exponentiated to produce a Hamiltonian for furth-

tp(R) = —, [tp(r) +tp(r+ae„)] (2.3) xR

which is an exact interpolation in view of the linear
dependence assumed in Eq. (1.5). Recalling'a that
n (r, r ') can be represented as the difference of two
integers S(R) defined on the associated dual lattice
sites (R }, we have

n(r, r') [C&(r) —4(r')] = [S(R+ae~) —S(R)1
x [rP(R) —tP(R+ae„)], (2.4)

where e„and e~ are unit vectors.

:: r+Oex

FIG. I. Direct lattice sites (r } indicated by the dots and
the associated dual lattice sites (R } indicated by the crosses.
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er manipulations. One finds directly

where

LCD is)

{S}-—~
(2.5)

+ i $ [s(K+ae, ) —s(K)]

x [q3(K) —q3(R+ae„)] (2.6)

For pJ )) I the coefficients Dte are given by

x, = X g, D„(pJ)[s(R) —s(K')]"
(R, R 'le

vortex excitations, which are associated with the in-

teger degrees of freedom [m (R)}. The terms in Eq.
(2.6) involving D3 and D4 are required to obtain the
incremental free energy (hence the helicity modulus
and p, ) to order ksT/J and y3 (see below). However
a dimensional analysis of Eq. (2.6) suggests that the
coupling constant D4 is irrelevant near the critical
point. Nonetheless this term cannot be neglected for
a consistent description of the spin-wave contribu-
tion. We shall return to this point in our summary
below.

If the p = 2 term in Eq. (2.6) is treated as a pertur-
bation, the integration over S(R) is easily per-
formed. One first eliminates all linear terms in

S(R) via the transformation (shift)

D = I+ +o[(PJ) ']
PJ 2PJ

ISk=~k+ — &k
D,f(k)

(2.10)

D„=(PJ)-'+ o[(PJ)-4]
where Fourier variables are defined in general ac-

cording to

D, = o[(PJ)-'] (2.7) ~-„=$~(K)e "" (2.11)

The sum in Eq, (2.6) runs over dual lattice sites and

(R, R') denotes nearest-neighbor pairs. Note the
S(R) are integers. A final transformation'p removes
this restriction and yields

The remaining variable o-k lies in the range
—~ & o.-& ~ and 16

k

$-k=—23rm-k —f~(k) d3-k (2.12)

Z =~ d [S} $ exp[+3+K, )
{m}-—~

(2.8) with

where Xo is given in Eq. (2.6) but with S(R) lying
in the range —~ & S(R) (~, and

f(k) g [I elk 3 [2

(2.13)

X.=2~1 pm(K)s(K), (2.9)
/„'y(k) =(I —e ")(I—e ')

To first order in D4 we have

with [m(K)} integers. The term associated with the
"external disturbance" q3(R) is consistent with that
of Wiegmann'3; when 4& —=0, Eqs. (2.8) and (2.9)
agree precisely with the form derived by Savit. "

The incremental free energy is to be calculated as
an expansion in ksT/J and in the fugacity y for the

z =zpz [c), (2.14)

Z [e}== /exp(X[m, 413))

{m}

(2.15)

where Zp is independent of the 4 (or twist) variables

and

with

3C[m, c) =—
I

" "+, —V(kt, kt. k3, k4)4k 4k 4k 4k
2D2 ~ k f(k) 4 ~ D2 "klktk3k4 t 2 3 4

', JI V(k; —k, q, —q)f( —k)@-,4 q
(2.16)

The potential Vis defined by

V( k},k3 k3, k4)

4

—,
' g II (I —e ' ) 8( kt + k3 + k3 + k4)

i 1

IIf(k)
i~i

(2.17)
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Now the partition function (2.15) is evaluated in a manner similar to that of Jose et al. ' At sufficiently low
temperatures only the terms with m (R-) =0, + 1 are important; higher terms are shown to be irrelevant under re-
normalization transformations near the critical point (see also the Appendix). The vortex pair correlation func-
tion (lm-l') is proportional to y2, where y is the fugacity. To leading order in krT/J and y we have for the in-

cremental free energy

6 lnZ = lnZ [4}
1

4»' q D2 f(k) »' q f(q)
(2.18)

and

f(k) = lf (k) I'/f(k) (2.20)

Furthermore, following the work of Jose et al. ' we
have

where, for notational convenience we have redefined

V(k, q) = f(—k) V(k, —k, q, —q)f(—q) (2.19)

tion. ' We note

lim f, =1(k)
k„-0

lim Jt V(k, q) =-
km q

~ 2
X

(3.3)

t ' 1 —2m/D2

(lm l') =44r — Ji —[1 —Jo(qr)]-dI'

a ~ a 0
(2.21)

Here Jo(x) is the Bessel function of the first kind.
The fugacity y is proportional to exp( —4r2/2D2). In
Eq. (2.18) we have kept terms of order l@l2 which
contribute to Y or p, .

The expression in the brackets of Eq. (2.18) has a
physical interpretation. The first term includes the
incremental ground-state energy and the effect of
spin-wave interactions [recall D2 ' =-PJ[1 —(2PJ) ']}.
The second term can also be interpreted as a spin-
wave depletion of p„while the terms involving

(l m
l ) clearly imply the contribution of vortex exci-

tations.
The expression (2.18) is applicable at low tempera-

tures, In Sec. III we use scaling along with the recur-
sion relations to evaluate p, up to the critical tem-
perature.

The result is

D4 4~2 .pY= +
3

—
2

lim
D2 4D2 D2 i-0 f(k)

I

(lm-, l')

f(q) (3.4)

where D2 and D4 are given in Eq. (2.7), f(k) is de-
fined in Eq. (2.13) and (lm l ) is given in Eq.
(2.21).

At sufficiently low temperatures we may neglect
the vortex contributions as they carry a coefficient
proportional to y —exp( —Pc). We then obtain

PY =PJ —,
' +O(1/PJ), — (3.5)

which implies, according to Eq. (1.3), that the low-

temperature superfluid density is expected to behave
like

III. CALCULATION OF THE SUPERFLUID DENSITY

p, (T) I ktt Tm

p, (0) 4 lr2p, (0)
(3.6)

4F=, J~~ k„'l4-„l'Y(k)
2(isa~

where Na2 is the total area and identify

Y= lim lim Y(k)k~k~

(3.1)

(3.2)

The final limit k~ 0 corresponds to our taking at
the end a function 4 which varies in the X direc-

I

The final result (2.18) yields the superfluid density
at low temperatures. Consistent with Eq. (1.2) we

may write

Equation (3.6) shows that at low temperatures p, has
a linear dependence due to spin-wave excitations; the
vortex contributions have been left out of Eq. (3.6).

The low-temperature result (3.6) applies to the lat-
tice XI'model defined in Eq. (1.4). We do not
necessarily expect the linear T dependence in real su-
perfluid films. We shall return to this point in the
summary below.

When D2 approaches
2

~ from below, the third
1

term in Eq. (3.4) diverges. In order to avoid this dif-
ficulty we employ a renormalization-group procedure
which is essentially the same as that of Nelson and
Kosterlitz. ' We sketch only the essential features.
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First note that the helicity modulus scales accord-
ing to

PY —= 1 (D, , D, ,y) =1 [D,(&)D,4e ",y(l)], (3.7)

where the transformation involves a scale change
a ae'. Relation (3.7) is equivalent to the Joseph-
son relation' applied to the case at hand. ' The equa-
tions for D2(l) and y(l) follow from the Kosterlitz
recursion relations; in the Appendix we suggest an al-

ternative derivation based on the sine-Gordon model.
The method of Jose et al. can be used to extract the
recursion relations directly from Eq. (3.4).

From Eq. (A17) we obtain

[D (~)] ' = (2/n ) [1 + —,
'

m c (i t i) ' ']

and y(~) =0, where c is a nonuniversal positive con-
stant and )t

~

=
) T —T, l/T„T, being the transition

temperature. Thus the helicity modulus and super-
fluid density for T & T, are given by

PY(T) = [D2(~)] '=(2/n) [1+—vrc(~t~)'t2], (3.8)
1 't

[1+—'rrc(~t[)'t'], ~t[-0 . (3.9)
kBT ~g2 2

Equation (3.9) agrees with the result of Nelson and
Kosterlitz. '

0.8
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0
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O. Z 0.4 0.6 0.8
I

I.0

FIG. 2. Numerical evaluation of the helicity modulus
Y'/k~T, =(h/m) p, /k&T, . Curve (a} follows from the

present work using the initial conditions D2(0) =
(PJ) '[1+(2PJ) '] and y(0) =exp[ —~ /2D2(0)l. Curve
(b) corresponds to the work of Nelson and Kosterlitz (Ref.
1) so that D2(0) = (PJ) '. Curve (c) represents the results
of the self-consistent approach of Pokrovskii and Uimin
(Rer. 19).

IV. SUMMARY AND FINAL COMMENTS

In Secs. I—III we have studied the behavior of the
superfluid density in two dimensions via the evalua-
tion of the helicity modulus for the XYspin system.
Near the critical point, where vortex excitations are
important, the present result agrees with that of Nel-
son and Kosterlitz', Eq. (3.9) demonstrates the
universality of p, /Tas T T, . Nelson and K—oster-

litz derived Eq. (3.9) by an alternative method. They
began with a model Hamiltonian for a two-
dimensional superfluid which is equivalent to the
generalized Villain model. ' '" lf we approximate
D2 '

by PJ and neglect D4 completely in Eq. (3.4), Y
is just the renormalized coupling constant of the gen-
eralized Villain model. As has been noted above, D4
is irrelevant and the difference between D2 ' and PJ
disappears after successive renormalization transfor-
mations. This reflects the fact that the vortex excita-
tions dominate the spin-wave excitations near T, .
Hence our value of p, (T)/ktt T agrees with theirs at
Tc ~

On the other hand the spin-wave excitations cannot
be neglected at sufficiently low temperatures. As
noted by Banavar, ' one expects such excitations to
be nonuniversal and to provide, for class'ical spin
models, a linear decrease of p, with temperature.
Pokrovskii and Uimin' computed p, for the XY

model using a self-consistent approach. Their result
at low temperatures is consistent with the present
results although they find a larger decrease near the
critical point.

As noted above the linear decrease of p, at low
temperatures is characteristic of classical spin models
(even in higher dimensionality). ln three dimensions
the quantal XY model yields the proper low-

temperature behavior expected for bulk superfluid
systems. ' Hence it is doubtful that the classical XY
model used here correctly predicts the low-

temperature behavior of helium films. A proper (ap-
proximate) quantum mechanical calcuiation has not
yet been done presumably because spin-wave ideas,
in their simplest forms, require spontaneous order
which is precluded.

The results of the various computations are sum-
marized in Fig. 2. The present results, labeled (a) in
the figure, are for the "model" dependences

D (0) =(t3J) '[1+(2PJ) ']

and

y (0) =exp[—7r'/2D, ]

While the universal critical behavior is not modified,
the numerical results will differ slightly at lower tem-
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peratures if the functional dependence of Dq on PJ is
modified.

We finally note that a renormalization scheme us-

ing a Migdal ' approximation has been applied by
Berker and Nelson" to evaluate p, for 'He-'He films.

Here we have used a continuum notation and intro-
duced a parameter y controlling the strength of the
self-interaction. (See Refs. 10 and 13 for further de-
tails. )

We imagine that S(x) is divided into two parts

S(x) =St'i(x) +S' '(x) (A3)
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Sk=Sk"'

S-„=S-„, for
~
k

~

& p,

(A4)

where St'i-(x) contains the low wave-number infor-
mation of S(x) and St~l(x) contains the high wave-
number information, If p, is a wave number defined
such that p, « A =—a ', we have approximately

APPENDIX: RECURSION RELATIONS

In this Appendix we discuss the renormalization of
the coupling constant D& and the fugacity y which
characterize the Kosterlitz-Thouless phase transition
and enter Eqs. (2.18) and (2.21). Kosterlitz'3 derived
a set of recursion relations for D~ and y for the
Coulomb gas system in two dimensions using a posi-
tion space renormalization-group method. Recently
Jose et al. ' obtained the same renormalization-group
equations from the approximate calculation of the LY
model spin-pair correlation function. If it were possi-
ble to describe the Kosterlitz-Thouless phase transi-
tion in terms of a model Hamiltonian with a continu-
ous field, more conventional momentum shell in-

tegration schemes could be applied. Furthermore,
additional insights into the structure of Kosterlitz-
Thouless phase transitions might be obtained.

As has been noted by many authors, the sine-
Gordon system is related to the models which exhibit
Kosterlitz-Thouless transitions. In a previous publi-
cation' one of us studied approximately renormaliza-
tion of the sine-Gordon system using an infinitesimal
recursion method. A portion of the computation was

incomplete; here we re-examine the problem using a
finite momentum shell recursion method.

Consider the partition function (2.8). We are only
interest in uniform phase properties, so we set C —=0.
If we further retain only terms with m (R) =0, + I,
the partition function is approximated by

The parameter p, will play the role of a lower
momentum cutoff. We shall, according to Eq. (A2),
define the zero-order correlation function by

G ( x —y ) —= (S'"( x )S"'( y ))

d2 iq (x—y) h— (AS)

where h (x) is a rather general smoothing function
defined such that

h(x) =1, for x » 1

=0, for x «1 (A6)

For the two forms

ht(x) =x'/(I +x')

hp(x) =x'/(I +x') (A7)

(St~ (0)S ~ (r)) = Ko(rtii, ) for rA && I
1

2n D'

ln — for rA « 1
1 A

2mDp p,

many of the details can be worked out explicitly. For
example, if h(x) = h, (x), we have from Eq. (AS)

Z = J d[S}exp[DC, [S}]

where 3.', is of the sine-Gordon type:
0

X, [S}=—,'D, J( (VS)'

+2ya ~

J cos[2rrS(x)] (A2)

where Ko(x) is the modified Bessel function of the
second kind.

We now eliminate from Eq. (A2) the variable
St'i(x) and attempt to rewrite the Hamiltonian (A2)
with renormalized constants. To order y~ we have,
after integration over St"(x), before any rescaling,

I

r~

()3C'[St'l(x)} =——(Dq) l
("7St'~) +2ya J~ (cos2rrS(x))t i+ —(2ya ) ' (cos27rS(x) cos2wS(y)), (A9)

X X
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where ( )& implies a cumulant average and the superscript (2) implies an average over the St2~ field using the
propagator in Eq. (AS). We have only Gaussian integrals with continuous fields so, for example,

and

(cos24rS(x))'" = [cos22rS"'(x)]e ' (A lOa)

(eos2rrS(x) eos2rrS(y)) t = —e " ((e ~ ~ ~ —1) cos(24r[S ' (x) +S ' (y)]]8 2

+(e' G'" "—I) eOS(24r[S"'.(X) —S"'(y)]]) (AIOb)

The result (Aloa) yields the renormalization of y
while a contribution to VS " must be extracted from
Eq. (Alob). Higher harmonics such as cos4rr S ' (x)
are generated but can be sho~n to be irrelevant.
Rescaling is accomplished be defining S"'(x)
S[x/(A/p)], which returns us to a field S(x) with
Fourier components out to k = A. (The spin rescal-
ing factor is unity in the present calculation. )

The renormalization of y is straightforward, From
Eq. (A9) we have

, ""dk kG(0) =(24rD2) 'J~ h-
k p,

= (2~D,)-'(c, +InA/I. ) . (A12)

(A13)

The recursion relation for D2 involves the integral

p oo
2I= ' drr (e~G" —I)Jp

2( ) 2e —4e G(0)

p

y4

4—2 &/D
2m'ci

exp
D2 p

where we have approximated

(Al 1)

We break the integral up into the ranges
0 & r & A ' = a and A ' ( r. In the first range we
approximate G(r) by G(0); the appearance of an in-
tegral in this range is an artifact of the continuum
notation we have been using. In the outer range we
use the fact that G (r) is in fact a function g (pr) as,
can be seen in Eq. (A8). Using these facts and ap-
proximations we find

4 2w D2 I 4

D2(I4) = D2 +44r y (I4) —, exp ~ ——~ + ~ dx x'(e4~ «"& I)3 2 1 2mc~ p oa
2

4
I t

(A14)

Equations (Al 1) and (A14) are the recursion rela-
tions to order y'. Differentiating Eqs. (All) and
(A14) with respect to I4 and putting A = I4 we convert
to a differential form with dl =—dt4/p, ,

d2 I = 4 — y'(I) +O(y'), (A15)
dl D2(l)

2(l) 2 2 2 22r=44r2y2(l) + 0 y2 4—
d/ D2

(A16)

y y exp( —4rc&/D2) =y exp( —2c~)

t

In writing these equations we have neglected the con-
stant ct appearing in Eq. (A12). For a wide class of
smoothing functions such as h~(x) =—xt'/(I +x~)
ct ———0, and the leading correction to the InA/p, term
is O[(I4/A)e]. For alternate choices ct becomes small-
er the sharper the function h(x). In any event a
simple redefinition

retains the structure. of the recursion relations.
The results (A15) and (A16) in the regime

D2 ——
2

m are equivalent to the recursion relations

derived by Kosterlitz and Jose et a/. ' Note that
our D2 = 21as defined in Ref. 9 and D2 = K ' as
used in Ref. 10.

Finally, following Kosterlitz ' we consider the con-
served quantity,

[—,
'

rr —D2(l) ]' —rr4y2(I) = C (A17)

for D2(l) =
2

2r. The constant C (independent of I)
1

is identified as being proportional to the reduced tem-
perature, i.e., C = c'(T, —T)/T, = c2~t ~, where c is
nonuniversal. Although c and T, are nonuniversal
we estimate the values which folio~ from the intial
conditions D2=(1/PJ) [1+1/(2PJ)] and
y(0) =exp[ —2r'/2D2] as kttT, /J =0.917 and c =1.2.
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