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A theory of the Auger parameter ¢ is introduced and used to interpret measurements on the
3d transition metals. This parameter is the combination of an Auger energy and related core-
level binding energies which formally eliminates the contributions of chemical shifts and refer-
ence levels, permitting the unambiguous extraction of a relaxation energy from measured
quantities. The value of ¢ is the resuit of two competing effects which cancel approximately in
some cases, but not in others. This leads to an interesting variation of ¢ with atomic number.
Our parameter-free calculations describe both the magnitude of this quantity and its strong in-
crease at the end of the transition series, where the character of the screening charge changes

from d-like to s-like.

I. INTRODUCTION

In a recent paper' we used the atom-jellium model,
developed for the study of atomic chemisorption on
simple metals,? to study in detail the static aspects of
the metallic screening of holes created in deeply
bound core levels. The study provided direct theoret-
ical support for a particular model of the metallic
screening process for which the previous support had
been primarily empirical. In this model, the metal
plays the limited role of a structureless source of
screening charge; the spatial distribution of the
screening charge and hence its effect on core-level
spectra is governed by the valence states of the ion-
ized atom.!>~3 A subsequent study® of these binding
energies in 34 transition metals confirmed the utility of
this simple "excited-atom" model of metallic screening.

The measurement considered in Ref. 6 is the
change in the binding energy of core electrons which
accompanies the condensation of free atoms to form
a metal. The analysis of this binding-energy shift is
complicated by several factors. First, experimental
data for the free atoms used as a reference are una-
vailable for transition elements. - Second, the
binding-energy shift results not only from screening
effects, but depends as well on other differences
between the free atom and the solid (the surface
dipole-layer potential, the compression of the free
atom into the volume it occupies in the solid, and
changes in the distribution of valence electrons
among s, p, and d states). In this paper we apply the
theoretical methods developed in Ref. 6 to a meas-
ured quantity which unambiguously focuses on
screening effects, and which, our analysis indicates, is
amenable to a very simple physical interpretation that
is supported by existing measurements.

The Auger parameter ¢ which we wish to consider
is the following combination of core-level binding en-
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ergies w; and the Auger energy w:
§E(w,-—wj—{uk) _"wijk N (11)

where each of the w’s can in turn be expressed as a
total-energy difference. Such an energy parameter
was considered earlier by, e.g., Yin, Tsang, and
Adler.” It shares the advantages of Wagner’s® Auger
parameter o (defined as w; — w;, where / need not
equal i, j, or k) but is somewhat more convenient for
theoretical discussion, since all of the large core-level
binding energies are subtracted out. In terms of the
total energy E(n)) of the entire solid considered as a
function of the occupation of, e.g., the jth level (spin
orbital) of a particular atom, the binding energy of an
electron in this level is given by

w=E©0) —E() . (1.2)

Using the same notation, the Auger energy in terms
of the total energy E (n;,n;,n;) considered as a func-

. tion of the occupations of the ith, jth, and kth levels

of the same atom is
wx=E0,1,1)—-E(1,0,0) . (1.3)

That is, the Auger energy w is the total energy
released when an electron in the jth level of a partic-
ular atom drops into a (previously created) hole in
the ith level and an electron is ejected to vacuum
from the kth level. Note that, as defined in Eqgs.
(1.2) and (1.3), the w’s are all positive quantities.

If the definitions of the w’s [Eqs. (1.2) and (1.3)]
are substituted into the definition of ¢ [Eq. (1.1)],
then we see that £ is formally equivalent to the
change in the binding energy of the jth electron
caused by removing the kth electron; i.e.,

wa}k)—wj, i (1.4)
where /¥ is the binding energy of the jth electron
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in the presence of a hole in the kth level,; i.e., in
terms of total energies E (n;,ny), :

0¥ =E0,00—E(,0) . (1.5)

We see in this way that ¢ is completely independent
of the properties of the ith atomic level. Since we ex-
pect that removing an electron (the kth) will make all
other electrons (in particular the jth) more tightly
bound, we conclude from Eq. (1.4) that in general
£>0. Itis also immediately clear from Eq. (1.4)
that £ is purely a relaxation effect, by which we mean
that, in the language of Ref. 6 or of Fermi-liquid
theory, ¢ involves no terms which are of order lower
than two in occupation-number changes. Each of the
binding energies »; and w/*’ appearing in Eq. (1.4) is
a first-order quantity (a total-energy difference or
equivalently an excitation energy). In contrast to the
w’s, the Auger parameter ¢ is the change in the
first-order quantity w; corresponding to a change in
occupation; it therefore contains no first-order contri-
butions. The physical implications of this mathemati-
cal distinction are that the quantity £ is obscured by
neither chemical shifts nor reference energies, both of
which affect first-order quantities.

We continue the analysis by taking the total ener-
gies contributing to ¢ [through Egs. (1.2) and (1.5)]
to be analytic functions of n; and n, the number of
electrons in the jth and kth atomic levels. Doing this
allows us to expand the total energy differences of in-
terest in Taylor series in the relevant occupation-
number changes, e.g.,

E(nj+8n) —E(n) = BE 3ny
an;

1 §’E
+ === Gn)i+ - - . (1.6)
2 anjz 4
The convergence of such series for the case in which
|8m| =1 has been studied by Slater.” Now it has
been formally demonstrated by Janak'® that within

the density-functional formalism,!'~!4

E
2L e, 1.7

an, K ( )
where ¢, is the orbital eigenenergy appearing in the
Schrédinger-like equation of the Kohn-Sham self-
consistent-field method.!? Thus, for example

]
0 =EO) —E(D)=—e++ 2L 4 ... . (1.8)
2 Bn,-

This relationship between the binding energy w; and
the orbital eigenenergy ¢;, together with the expres-
sion for the Auger parameter £ in terms of binding
energies [Eq. (1.4)], makes it clear that to leading
order ¢ is given simply by
aij

Our analysis of the Auger parameter ¢ up to this
point is equally valid for free atoms and solids. For
the study of free atoms, Eq. (1.9) is all that is re-
quired. That is, self-consistent-field calculations can
be carried out for several occupations of the kth
atomic level; the variation of the jth atomic level
with n, then gives ¢ according to Eq.(1.9)."°

Calculations based on Eq. (1.9) for solids are un-
fortunately far more difficult. Even without the com-
plications introduced by the presence of core holes,
an energy-band calculation would be required. The
removal of core electrons from particular atoms in the
crystal destroys the translational invariance on which
energy-band theory is based, making the calculation
of core levels such as ¢; and their variation with
vastly more difficult yet. It is in order to avoid this
compounded difficulty that we use the excited-atom
model" %! of the metallic screening process.

Equation (1.9) indicates that the quantity of in-
terest is the variation of the jth core level as charge is
removed from the kth core level. In a solid, the re-
moval of charge from the kth level is accompanied by
the arrival of screening charge which preserves local
neutrality. The variation of the jth core level of the
solid ejs during such a process is simulated in the
excited-atom model by the variation of the jth level
of the free atom ¢/ as charge is "excited" from the
kth level to the lowest empty valence level, i.e.,

(e —8) — () = €' (n —8,n, +3)
—efmony) (1.10)

where the second argument of ej‘ is the occupation of
the valence level. (This equation states simply that
the effect of the screening charge on the core levels
of the metal is similar to the effect of additional
valence charge on the core levels of a free atom—see
Refs. 1 and 6.) Substituting this approximation to
the n, dependence of e,-s into our expression for the
Auger parameter ¢ [Eq. (1.9)], we obtain

de/f Oef

an an. (1.11)
k v

=
where, once again, we use the superscripts S and 4 to
distinguish between quantities appropriate to the solid
and to the free atom. As with Eq. (1.9), Eq. (1.11)
is correct to leading order (second) in occupation-
number changes; terms of the next order (third) are
accounted for by evaluating Eqs. (1.9) and (1.11) at
ny=n =%. The valence occupation number n, is set
to preserve charge neutrality, as prescribed by the
model'”: n,=nd +1, where n? is the occupation in
the free unexcited atom. (While the labels jand k
refer to individual spin orbitals, implying that n; =1
and n, =1 correspond to full occupation, the label v
refers to all of the valence states taken together, and
so in general n, will be greater than unity.) This
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method of including next-to-leading-order terms is
entirely analogous to the analysis used in Ref. 6 and
that leading to Slater’s transition-state concept.’
Equation (1.11) is our basic result and one of its
implications is immediate. This equation tells us that
the Auger parameter ¢ represents the effect on the
Jth level of moving charge from the kth level to a
valence level, and this implies that ¢ will be small
when the levels corresponding to k and v belong to
the same principal-quantum-number shell. Since the
electron distributions associated with different states
belonging to a given principal-quantum-number shell
are all concentrated in a common annular region sur-
rounding the nucleus, and since the annular regions
corresponding to different principal-quantum-number
shells are almost mutually exclusive, the electrostatic
effects of transferring charge between different shells
are much larger than those caused by transfers within
the same shell. Thus, for example, we expect on
the basis of Eq. (1.11) that ¢ for the LMM transition
(initial state—hole in n =2 shell; final state—two
holes in n =3 shell) in the first transition-metal
series will increase sharply with increasing atomic
number as the metallic screening charge changes in
character from 3d to 4s with the filling of the 4 band
at the end of the series.

II. RESULTS AND COMPARISON
WITH EXPERIMENT

We evaluate ¢ for the case just mentioned, an
LMM core Auger line for solid metals in the first
transition series, from K to Zn. We would like to
avoid the complications of multiplet structure as
much as possible and so we do not consider the case
LMy3M,; (final state—two 3p holes); but on the oth-
er hand the seemingly ideal case'® LM M, (final
state—two 3s holes) corresponds to lines that are too
weak to permit the assembling of sufficient data for
comparison with experiment. The remaining possibil-
ity is LM M,3;, we choose the particular case
L3M\M,;CP) (initial state—2p3;; hole; final state—
one 3s hole and one 3p hole, in relative triplet
state).'®

Even for this case there is very little experimental
data; we use values that were obtained by Davis and
Shirley.!® To calculate the derivatives in Eq. (1.11),
we solve the density-functional equations of Kohn
and Sham!? '3 self-consistently for the atom of in-
terest, with the relevant orbital occupation numbers,
and extract the derivatives numerically by performing
the evaluations at two closely spaced values of n; and
of n,. We solve the equations in their spin-polarized
form,'? using the local-density approximation for ex-
change and correlation.!*2° Our assumption of
spherical symmetry for the free atom means that the
Schrédinger-like equation of the Kohn-Sham method

reduces to a one-dimensional radial differential equa-
tion, which we solve numerically. The particular
choice of valence state to simulate the metallic
screening charge?! is discussed below and in the Ap-
pendix.

Figure 1 gives our results; we note again that our
theory has no adjustable parameters. The substantial
increase in ¢ which we associate with filling of the d
shell at the end of the series is seen in both the
theory and the experiment.!*2? The data are con-
sistent with the argument made above that ¢ is an
intrinsically positive quantity. We can only speculate
that the rapid variation among the transition metals
seen in the experimental data (if confirmed by fur-
ther measurements) might be related to magnetic ef-
fects not included in our analysis.

As an aside, we note that results of this type are
often presented by giving a table comparing experi-
mental Auger energies with "theoretical” (or "sem-
iempirical") Auger energies obtained by combining a
calculated Auger parameter ¢ with measured core-
level binding energies (i.e., wy = w; — w; — wx — £).
Thus for Sc, e.g., the experimental LM, M;CP)
Auger energy (referred to the Fermi level'®) is 319.0
eV, while our value for this quantity is 318.4 eV.
This form of presentation does not however make
the fractional error involved in the theory as ap-
parent.

To provide an independent measure of the accura-
cy of our treatment of &, we calculate ¢ for the
L3M M,;(CP) Auger line in an Ar atom, and com-
pare this in Table I with the experimental value.?
We include, in addition, data for the KL,L,;CP) line

e  EXPERIMENT
6.  —— THEORY 3

AUGER PARAMETER ¢ (eV)

| | | | I | 1 | L 1 1
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn

1

FIG. 1. Comparison of calculated values of the Auger
parameter ¢ for the 3d transition series with experimental
values (see Ref. 19). The Auger line considered is
L3M M,;CGP). Error bars reflect only the uncertainty in
the values of the Auger energy, and not the core-level bind-
ing energies.
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TABLE I. Comparison of measured and calculated values of ¢ for two free atoms, and two me-
tals outside the series given in Fig. 1. In the calculation for the metals, 8/9n, was taken to be

8/8ny, and not 9/8n,, as discussed in the text.

Case Eexpr (€V) Etheory (€V)
Ar atom (L3M1M233P) 12.72 i 12.4
Ne atom (KL;L,3*P) 18.22 19.5
Na metal (KL,L,33P) 10.1° 11.3
Mg metal (KL,L,3;3P) 10.4° 12.4

2See Ref. 23.
bSee Ref. 26.

in Ne.2 [Note in this connection that the experi-
mental results for the atoms can be checked by
evaluating Eq. (1.4) directly using atomic outer-shell
optical data.?* The values obtained in this way differ
from those in Table I (obtained from inner-shell
Auger data and core-level binding energies) by <0.2
eV.]

Our calculation gives ¢(L3;M,M,3°P) for Ar
correctly to 0.3 eV. This suggests that in the 3d
series (which has an Ar core and in which we consid-
er the same Auger line), our treatment gives an accu-
rate value for the "intra-atomic" part of £.2

The error in Ne for ¢(KL,L,3*P) is larger (1.3 eV)
than the error noted for Ar. This suggests that, for
this line and core structure, the local-density approxi-
mation used in our calculations is not as accurate,
and that such an error would be present if we were to
study the KL,L,;CP) line in metals with the Ne
core. The results given for Na and Mg metal?¢ in
Table I are consistent with this expectation. Note,
however, that the calculated screening ("extra-
atomic") contribution to ¢ given by the excited-atom
approximation is also uncertain by a similar amount
(see below).

We have argued above that the intra-atomic aspects
of our calculations for the 3d transition metals pos-
sess an accuracy more like that of our result for free
atomic Ar than that of the result for free atomic Ne.
Consistent with this argument is the fact that the
Auger parameter ¢ for the transition metals cannot
be significantly smaller than our calculated values
without violating the requirement that ¢ > 0.

III. DISCUSSION OF THE
EXCITED-ATOM MODEL

One of the basic points of our three studies of
core-hole relaxation effects (the present work and
Refs. 1 and 6) is that the excited-atom model of the
metallic screening of core holes provides an effective
way of simplifying an otherwise very complicated

problem. We discuss below our understanding of the
limitations of this model.

Now one of the most important virtues of the
model is that it distinguishes between those cases in
which the screening electron penetrates and perturbs
the ionized atom, and those cases in which the
screening electron is forced to reside "outside" the
ionized atom. One reason that we call attention to
this particular aspect of the model is that it is in this
regard that it differs most strongly from the other
commonly used model of core-hole screening, that of
simple dielectric-response theory.?” Since relaxation
effects involve in a basic way the electrostatic effect
of the screening charge on the core,?® the distribution
of the screening charge is particularly important in
cases where the screening electron can penetrate the
ionized atom. This is the case for transition metals,
where the screening charge is accommodated in the
open d shell.?? To determine the character of the
screening charge in the transition series, we com-
bined the results of self-consistent energy band calcu-
lations with the equivalent-core concept.’® The band
calculations show that the number of d electrons in-
creases by almost exactly unity as we move from
each metal to the next in the 34 transition series.
Now in the equivalent-core approximation, the pres-
ence of a core hole in an atom of atomic number Z
transforms its valence aspects into those of the atom
of atomic number Z +1. Applying this notion locally
in a transition metal thus suggests simply that a core
hole is screened by the addition of a d electron. This
combination of the band-calculation results with the
equivalent-core concept worked very well in our
analysis of core-level binding-energy shifts,® but this
represents only empirical evidence for its validity.

In sharp contrast to the situation in transition me-
tals is the case of rare-gas atoms implanted in metals.
Because the valence shell of the rare-gas atom is
filled, the screening charge is forced to remain out-
side the atom. This exclusion of the screening charge
can also be seen in our study of the core holes in
chemisorbed chlorine.! Because the 3p shell of Cl
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fills as part of the chemisorption process, it behaves
like a rare-gas atom in not accepting additional charge
when a core hole is introduced.

One might expect that the proper use of the model
for such systems would amount to introducing the
screening charge into the next (empty) principal-
quantum-number shell, e.g., the 4s level in the case
of implanted Ar. However, limited evidence suggests
that the physical picture implicit in such use of the
model is not completely correct. This evidence is
contained in our studies of chemisorbed alkali atoms.
According to the equivalent-core concept, a rare-gas
atom containing a core hole that has been screened
by contact with a metal is similar to an alkali atom
(in contact with the metal). Alkali atoms are very
electropositive and tend to lose their outermost
valence electron to the metal, as seen in our study of
chemisorption.? The valence electron of the alkali is
very similar to the screening electron of the rare gas
with a core hole, and so the fact that the alkalis tend
to give up this electron suggests that the screening
electron in the case of rare-gas atoms is not best
thought of as residing in orbitals of the atom, but
rather as residing in the metal. The excited-atom
model therefore does not seem to contain the essen-
tial physics of metallic screening for these systems.
The model has however given numerically successful
results for rare gases embedded in metallic foils.?
The resolution of this apparent paradox can be seen
in the contour plots of the electron density associated
with alkali chemisorption (see Fig. 3 of Ref. 2),
which show that, although the alkali valence level
loses its electron to the metal, metallic screening
results in a screening-charge distribution residing at
an average distance from the ionized atom that is
similar to the average distance of charge in the atom-
ic orbital. Since core-level relaxation energies depend
only on this average distance, the excited-atom model
provides a reasonable estimate of relaxation energies
even though the physical picture it embodies is not
entirely correct. Weishould not lose sight of the fact
that, even in such cases, the model does contain the
physical aspect of greatest quantitative importance—
the exclusion of the screening charge from the interi-
or of the ionized atom. The volume excluded in this
way varies from one rare-gas implant to the next and
is responsible for the observed®!3? variation of the
screening energy. A recent study of relaxation ener-
gies for rare-gas implants by Waclawski, Gadzuk, and
Herbst?! synthesizes the excited-atom and dielectric-
response models of screening, using the former to
justify a rigid exclusion of the screening charge from
the interior of the atom and the latter to approximate
its distribution outside the atom.

The discussion above deals with the limiting cases
in which the screening charge resides either inside or
outside the ionized atom, the prototypes being transi-
tion metals and. rare-gas implants in metals. We con-

sider now the intermediate case of simple (and no-
ble) metals. These metals constitute an intermediate
case because the screening charge is partially inside
the atomic cell and partially outside. This situation
raises several questions with regard to the excited-
atom model. First, the screening charge is almost
certainly not dominated by states of a single angular-
momentum character; the question arises of whether
we should, for example, try to estimate the contribu-
tion of p-like (in addition to s-like) electrons.
Second, the fact that the Thomas-Fermi screening
length is smaller than the Wigner-Seitz radius of
these sytems suggests that neutrality is maintained in
each atomic cell, which in turn suggests that the
screening charge is compressed into the cell in much
the same way that the free-atom electron density is
compressed into the neutral atomic cells of the metal-
lic ground state.>* We have estimated these effects
and found them both to be approximately 1 eV in
magnitude, with the compression effect somewhat
larger for Cu and Zn than for Na and Mg.

Compression and p admixture act in opposite direc-
tions on the magnitude of the Auger parameter.
While it might be possible to elaborate the excited-
atom model to account for these effects, we have
‘adopted a view that is consistent with our under-
standing of the rare-gas implant case, namely, that
these effects are fundamentally beyond the scope of
the simple model. We have chose, therefore, to re-
tain its simplicity by ignoring compression effects and
by taking the screening charge to have s character
whenever it is not confined to the interior of the
atom (as it is for transition metals). )

We can summarize the above discussion as follows.
The excited-atom model of core-hole screening is
most appropriate when the screening charge can be
accommodated inside the ionized atom, as in the tran-
sition metals. This is fortunate because the screening
energy is largest in this case and also because the
model accurately describes the large perturbation of
the other valence states by the screening charge.
When the screening charge resides in the outermost
valence shell, as in simple metals, the model over-
simplifies the portion of the screening-charge distribu-
tion residing outside the atomic cell. When it resides
outside the atom entirely, as in rare-gas implants, the
physical picture implied by the model is probably in-
correct. Nonetheless, for both simple metals and
rare-gas implants, by correctly describing the volume
close to the atomic core from which the screening
charge is excluded by orthogonality requirements, the
model provides screening-energy estimates of suffi-
cient accuracy for many purposes.
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APPENDIX: CHARACTER OF THE VALENCE
SCREENING CHARGE

In using the excited-atom model to discuss the
Auger parameter ¢, we wish to think about the free
atom for the case in which there are between 0 and 2
core holes, which would imply the presence of
between 0 and 2 additional (screening) electrons in
the valence shell. For the case of no core holes, we
want the electronic configuration of the atom (the
distribution of electrons among s, p, and d subshells)
to be similar to that which the atom has in the unex-
cited solid.>> For Ca through Cu, the configurations
were taken to be 3d"*%%45'4 with » running from 0

Then, from Eq..(1.4), we have
£=[E%0,0) — ES(1,0)] - [ES(0,1) — ES(1,1)]

0 L 9ef(,
E‘S(O,ﬂk)_E‘S(l,nk)=‘f‘l ejs(n_,,nk) dn/= "st(lynk) +L njm)“d

1 1 N N
—f ae,(l ) nk+f0 n,[a‘f;:f'(’) ~ ae,;:,,l)
J

to 9; for K and Zn they were 3d%s! and 3d'%s?,
respectively. These, to within 0.1 electron, are the
configurations obtained in a band calculation,*® with
all fourth-shell (non-d-like) valence electrons taken
to be s-like. Using the equivalent-core approxima-
tion®® indicates that the appropriate configurations for
the two-core-hole case are 3d"*%%45'4 with n =1 for
K through n =9 for Co; and 3d'%s24p™ with m =0
for Ni through m =2 for Zn.’’ As discussed in the
text, the derivative 9/9n, in these cases was always
taken to be a derivative with respect to s occupation,
and not p occupation.

Now note that in the range from 0 to 2 core holes,
the character of the screening charge changes
(between d and s-p) for the cases of Ni, Cu, and K,
which corresponds to a discontinuity in é)e;‘/é)nv.38
This fact turns out to make a power-series formula-
tion of ¢ of the type discussed in the text very
cumbersome to use for these cases; it is much more
convenient to proceed in the following way.

We use Eq. (1.7) and integrate by parts to obtain

on, (A1)

dﬂj . (A2)

The excited-atom model in the form of Eq. (1.10) can be used to express derivatives of €(n,n,) in terms of

derivatives of €;'(n;,ng,n,)

(A3)

and a similar equation with 8/9n, replaced by 9/9n;. The atomic valence occupation number is set to preserve
charge neutrality, as prescribed by the model: n,=nl+(1—n;) + (1 —n), with n{ the valence occupation in the
free unexcited atom (in the solid conflguratlon) Within the context of the excited-atom approximation, there-
fore, Eq. (A2) becomes

U 0/ (Lme,n +1—n)  9¢/(Lm,nd +1—ny)
§—f [ onyg dn, dn

ej”(nJ,O,n,? +2 —n,)
on,

+f [[ dej'(n;, 0, n., +2—nj)

Ay, 1,nd +1— Ay, 1,nd +1—
_ [ an (ﬂj n nj) _ ae_, (H/ n n,) dnj ) (A4)

ony on,

The ranges of integration here were divided into segments in which the screening charge maintained a given char-
acter,® and the midpoint rule was used to evaluate the integral over each segment.
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where n and n} are the numbers of spin-up and spin-down
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larization to the intra-atomic aspects of this problem is the
singlet-triplet splitting of the LM M,3; Auger line, which

for the 3d transition metals is typically ~—10 eV.

22We mention two other sources of data for the Auger line
studied here, for Cu and Zn: G. Schon, J. Electron Spect.
1, 377 (1972/73) (data given yield £ =2.5 eV for Cu); J.-
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