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We show that transition-metal impurities in metallic hosts, which have a high crystalline sym-

metry, can have appreciable anisotropic magnetic moments and the anisotropy may change sign

on varying the transition-metal impurity. Our basic model is a spherically symmetric Friedel-

Anderson model, with orbital degeneracy and Hund's-rule couplings. W'e treat this model in a

way which is appropriate to the situation in which an appreciable mixture of ionic configurations

exists in the ground state of the impurity. We calculate, in the Hartree-Fock approximation, the

effect of the crystalline field and the spin-orbit coupling. The crystalline tield acts, in a manner,

to quench any orbital magnetic moment present. The spin-orbit interaction is responsible tor

the reappearance of the orbital magnetic moment, and is, thus, the source of the anisotropic

magnetization. W'e calculate the orbital magnetization induced by the spin-orbit coupling, and

the anisotropy energy is calculated to second order in the spin-orbit coupling. We show that the

model is capable of generating changes in the sign of the anisotropy energy, as has been ob-

served by the low-field-magnetization measurements on very dilute ZnMn and ZnCr alloys.

I. INTRODUCTION

Recent low-field-magnetization measurements' on
very dilute ZnMn and ZnCr single-crystal alloys show
large anisotropy in the magnetization, at low tem-
peratures. The observed effective spin was much
smaller than would be expected from. the ionic confi-
gurations, even if one takes into account the quench-
ing of the orbital angular momentum. The magnetic
anisotropy energy was observed to have opposite sign
in the ZnMn and ZnCr samples. Similar behavior
has been observed in the electron-spin-resonance
spectra of transition-metal impurities in hexagonal
hosts.

The interpretation of anisotropic-magnetization
measurements has been, hitherto, based on an effec-
tive spin Hamiltonian

0 = —D[S, —
3
S(S+1)]+giiiH'S*

+g (H"S"+ e~s~),

where D is known as the anisotropy energy. This
type of Hamiltonian has been justified, microscopical-
ly, in cases where the impurity ions are in well-

defined configurations and have well-defined values
for the effective spins. ' In these cases, the anisotro-

py has been interpreted as being due to the reintro-
duction of the quenched orbital magnetic moment by
the effect of the spin-orbit coupling. More recently
the anisotropy has been explained in terms of the an-
isotropic exchange interactions between the localized
moments and the conduction electrons (Dixon and

Dupree), 4 or alternatively, by small or virtual admix-
tures of other ionic configurations into the ground-
state configuration of the transition-metal impurity
(Barnes er al. ,

' Hirst ).
In this paper we take the opposite, extreme, point

of view. We assume that the transition-metal ion has
an appreciable amount of admixture of ionic confi-
gurations occurring in its ground state, as is typical of
a system with a large virtual-bound-state width. This
model is capable of explaining the nonintegral
number of electrons in the transition-metal d shell
and the concomitant non-half-integer effective spin.
As the ionic model would predict that S = —, for

Mn and that S = 2, L = 2 for Cr + rather than the
observed effective spin S = 1, it is probably a better
standpoint to use the Friedel'-Anderson' virtual-
bound-state approach to these systems. On perform-
ing a Hartree-Fock calculation on the spherically sym-
metric Anderson model, we introduce a crystalline-
field splitting and include spin-orbit coupling, up to
second order. We observe that for hosts with cubic
symmetry the spin-orbit coupling does introduce an
orbital magnetic moment, but the anisotropy effects
are higher than second order in the spin-orbit cou-
pling. In hosts of hexagonal symmetry, we do find
that the magnetic moment induced by the spin-orbit
coupling is anisotropic and furthermore the second-
order contribution of the spin-orbit coupling to the
anisotropy energy can be of either sign depending on
the density of states at the Fermi level. The change
in sign of the anisotropy energy in ZnMn and ZnCr
may be due to this effect.
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II. THE MODEL HAMILTONIAN

The basic model that we consider is the orbitally
degenerate Anderson model, ' which has been modi-
fied to be rotationally invariant in spin space9 and in

coordinate space. ' The Hamiltonian is written in

terms of three components

H =H) +H2+H3 (2.1)

where Ht describes the atomic d orbitals and both the
I

direct and exchange Coulomb interactions between
the electrons in the d orbitals, H~ describes the
conduction-band states, and H3 describes the mixing
between the conduction band and the localized atom-
ic orbitals.

The form of H~ is such that the Coulomb ex-
change interaction, which is responsible for the ten-
dency of the spins to align in parallel, is rotationally
invariant in both spin and coordinate space. Thus
H~ is given by

m0' m, m mm
mrs. ma mar mo

2
m~ m —o m -a mo

mo
0' 0' CT

(2.2)

where d t and d are, respectively, the creation and
destruction operators for an electron, with spin o-, in
an t = 2 orbital with azimuthal quantum number m.

The Coulomb interaction strengths U and J have
been defined, as in Ref. 10, such that the Slater sum
rules

X U =SF =SU+ J

and

$J ~ =F + F2 + F4—=U+S—J

are satisfied. As Dworin and Narath' found, these
definitions of U and J for the spin and rotationally
invariant Hamiltonian do have the advantage that the
other Slater sum rules are more closely satisfied than
in the nonrotationally invariant Hamiltonian. For
this reason, we shall neglect the complications of the
full ionic Hamiltonian, " and use the above simplified
model of the interaction.

The conduction-band Harniltonian is expressed as

In this pa(p) is the d-electron density of states of the
Fermi level. Similarly, the orbital magnetic moment
is expected' to appear when

(Udd Jdd)Pd(P) + I

This condition for the existence of. a nonzero orbital

magnetic moment is more stringent than t'hat for the
appearance of spin magnetism. The effect of a crys-
tal field on these conditions has been discussed in
Ref. 10. A more detailed investigation of the effects
of crystal field for the nonrotationally invariant Ham-
iltonian has been given in the extensive review article
of Coqblin and Blandin. " We shall use values of the
parameters U and J, and the width of the density of
states which allows for the appearance of a magnetic
moment due to the electronic spin, but does not al-
low for an orbital magnetic moment. The electronic
contribution to the magnetic moment is plotted in
Fig. 1. We shall consider the additional features of a
crystalline-field and spin-orbit coupling. We consider
the hexagonal closed-packed structures, in which the

H, = Xe (k)c'-„c-„ (2.3)

where q-„and c-k are the creation and destruction
operators of an electron, with spin cr, in the
conduction-band density of states with Bloch wave
vector k.

The mixing between the atomic orbitals and the
conduction-band states is described by a one-electron
mixing term,

km
(2.4)

In the absence of a crystal field, the Hartree-Fock
solution does exhibit a magnetic moment due to the
aligning of the electron spins, ' whenever

,
'
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FIG. 1. Magnetization due to electron spin, as a function
of the number of d electrons Nd. The upper curve (a) is

the free-ionic spin. The lower curve (b) is calculated in the
Hartree-Fock approximation.
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The point-charge model indicates that the a orbital is
the highest followed by the ~2 and then the e[ orbitals
(see Hirst'). The spin-orbit coupling is expressed as

Hso = ~ g (m o
I
L S

I
m'o. ') dJ d (2.5)

group theory shows that the d orbitals split into a
nondegenerate a level and two doubly degenerate
levels ~~ and ~2. The basis operators for these states
are

a I ~ +1cr . ~in ocr

., : C f.= „,(d.t,. d t—,.),1
2&/2 m

(d i +d i ),1

2

where A. is the spin-orbit coupling strength and the
matrix elements (ma

~
L S ~m'a') are the scalar pro-

ducts of the electron spin and the orbital angular
momentum.

In Sec. III, we shall calculate the Green's function
for this model, in the Hartree-Fock approximation.
From this we shall calculate the g shift and the mag-
netic anisotropy energy. The calculation is separated
into three stages. The first step is that of solving the
Hartree-Fock equations for the Anderson model, in
which we have included the crystal fields. The spin-
orbit coupling is introduced as a perturbation on the
Hartree-Fock solutions. This is not treated as a sim-
ple perturbation, as it does have the effect of displac-
ing the minima of the approximate energy functional.
We take into account the effect that the perturbation
has on the Hartree-Fock self-consistency equations.
The last step of the calculation is that of calculating
the energy of the perturbed solution. A comparison
with the effective spin Hamiltonian, allo~s us to ex-
tract the g shift and the anisotropy parameter.

III. ONE-PARTICLE GREEN'S FUNCTION

We shall evaluate the one-particle Green's function in the Anderson, ' Hartree-Fock approximation scheme.
The Green's function is defined by

(3.I)

where T is the time-ordering operator and the brackets ( ) r denote thermal averaging. In the Hartree-Fock ap-
proximation, the Coulomb interaction terms in H~ are replaced by the form

+gjgg(4t 4 (4t 4 )r+(4t 4& )r4t +4t 4 (4 4t )r+4 4t (4t 4 )r)

(3.2)

We shall see that the factors (4&t 4 ) are nonzero, only by virtue of the spin-orbit coupling. Thus we have
replaced the interaction by one which is quadratic in the fermion operators, and so the Hamiltonian H~ is com-
posed of two types of terms; the one-electron Hamiltonians describing the up and down spin electron states; and
the terms which scatter the electrons between the various localized electronic states. The coefficients of these
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terms have to be evauated self-consistently. We shall show, however, that the coefficients of the scattering terms
are only of the order of magnitude of A. , the spin-orbit coupling matrix elements.

The above type of approximation is known to give misleading predictions about the magnetic phase diagram,
in particular the sharpness of the transition from magnetic to nonmagnetic behavior. Despite the inadequacies of
the Hartree-Fock approximation, it does give a good description of the low-temperature physics. Therefore, we
shall use this approximation as a guideline to the true behavior of the system at T =0. We calculate the single-
particle Green's function from the Fourier transform of the equations of motion

i (—TA (t) B(t'))p
= 5(t —t') ([A (t),B(t')] )p+i (T[A (t),H(t)] B(t'))p . (3.3)

To second order in A., the spin-orbit coupling strength, we find the Green's function to be given by

1

c0 —e —X —)c (m cr I L S
I
m a )

[A. (m crl L S Im'cr') —(Udd —Jddg ) (cp~~ 4 ~ ) +Jddh (4~~ 4~ )]
m &m' (~ 6 X —)c(m crl L ' S I ma)) (eu —e —X —)c(m'crl L ' S Im cr))

in which the Hartree-Fock self-energy X is given by

(3.4)

V kV. kx UddNIN" Ir + -x (Udd Jdd) Nm 0+ J"ddNIII n+x-
m- m-~m k ru —e~(k)

and N are the occupation numbers of the localized orbitals. The thermal equilibrium expectation values N
and (4 4 ~ ) tt are found self-consistently. The occupation number of the localized orbitals are given by

N =—„I f(co —p,) im((4;4t ))dc0,1

where f (cu —p) is the Fermi-Dirac distribution function. The off-diagonal matrix element (4 4 ) is first
order in the spin-orbit-coupling matrix elements

(4t 4 )tt= I +(U —J)5
&m +Xm —

&m
—Xm

~(mcrIL S Im'a. ')(N N)—
&m +Xm —

&m
—

&m

+J(l —8 ) &~~
&m +X —

&m

it(m —al L S lm' a')(N—
&m +Xm —

&m
—Xm

1+(U IS..)—'- .. .+X.—.—.—.+Xm--

J2 N .—N

+X —~ —X
(3.5)

In the absence of the spin-orbit coupling, the crystal field quenches the orbital magnetic moment. The introduc-
tion of spin-orbit coupling reintroduces an extra magnetic moment which is orbital in origin. To first order in the
spin-orbit coupling, we find that

m ET

m Wm'

h.p (mcrlL S lma) (mcrlL lma. )
[I —(U —J)p ][I—(U —J)p — ] —J'p p

(3.6)

~here p is the density of states at the Fermi level. The first term of this expression is just the form of SM
that one should expect for an insulator. There, with m referring to spherical harmonics one would have
(m'a'I Lima) =0 for m'=m. While for m &m', we have (4t cp ) to be first order in )c. The last term in

this expression is a/purely metallic contribution. It depends on the density of states at the Fermi level p, and
vanishes when p =0. The density of states at the Fermi level behaves as p =ImX/(e —tc,)' so the last
term is negligible when the virtual bound state is far from the Fermi level. When the virtual bound state lies
near the Fermi level the last term becomes of comparable magnitude to the first. Thus the orbital magnetic mo-
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ment is unquenched due to the spin-orbit coupling, and is enhanced by the orbital enhancement factor

[[1 —(U —J)p ][1—(U —J)p ] —J p p )

For host materials which have hexagonal symmetry we find that the induced orbital magnetic moment is aniso-
tropic and can be large. The derivation of the g factor from 2, the g shift, along the principal axis of the crystal
b,g]] is calculated as

Pe] t Pal &

+
U —J)p, t] [1 —(U —j)p, , t] —j p, , tp, , l [1 —'(U —j)p, , tl [1 —(U —j)p, , t] —j . (3.7)

We calculate the anisotropy energy from the difference of the energies (3.2) of the Hartree-Fock solutions which
have the spin polarization parallel and perpendicular to the principal axis. The anisotropy energy D is proportion-
al to A. and consists of two types of terms, those involving the diagonal matrix elements of the spin-orbit interac-
tion and those involving the nondiagonal matrix elements. %e find that the anisotropy energy is given by

4p {(1—Up& ~)[1+(U—J)p&~(1 —5Up&~)] 4U'J'p&~p—& ~)
D = —h.

'
[1 —(U —J)pz~] [1 —(U —J)p& ~] —j'p~~p&

, ~ p [(1 —Up, ) [1+(U—J)p —Jp, ] —J p, p

[1 —(U —J)pt ][1—(U —J)pt 1
—J'pt pt

2X (Ng~-Nt ) 3)t.'(Nt —No ) 2Z'(N„—N„).
F2o 1 o Fl o0 + F1 t 1 )

+2a + ~2rr El rr /la 61o + ~l tr ~0tr ~1o 6] t + Xl t
—El ~

—Xl
~

8)t. (Ngt —Nyt) 2h. (Ngt —Ntt) 3A. (Ntt —NPl)+-- F 2tl l
E2) X2t 62) ~2) 62) + ~2) ~1 j ~l j +1 t + 1t +0) ~0)

2tt (Nt t Ngt) 3X'(Not —Nll)
Fl t2~

— Foll &

61 t + Xl t
—62) —X2) ~0t + ~0t —61) —$1)

in which F is given by

(3.8)

F m

Nm —W ~

&m - —
&m - —

&m — —&m-
t

x
5 U(N —N )'

&m +Xm —
&m

—&m

(U —J) (N —N„)1+
&m a ~m a &m'a' ~m'rr'

J(N . —N„)
&m -o+ ~m -~ &m'-a' ~m' —~'

x
(U —J) (N~ —N~ )

I

4U'J'(N. . N. .) (N.—.—N. .)

&mcr + ~mrr +m'cr' ~m'cr' ~m —c' + ~m —a ~m' -o ~m' —cr'
J

(U —J) (N —N )

&m -rr + ~mu &m' -a' Xm' —o'
J

N —N ~ ~ N —N

(e„+X —e —X )(e +X —e —X )

Again, this has a form of insulating nature and terms
which are purely metallic. It is seen that the diagonal
terms, which involve the density of states at the Fer-
mi level, are of the same form as the nondiagonal
terms, which involve F, These terms have both
signs, and each term is enhancement factor. Each
enhancement factor becomes smallest for a different
value of the total number of d electrons

Nq= g N . Thus the anisotropic part of the en-

ergy may change sign, as the total number of d elec-
trons is varied, in agreement with experiments on 3d
impurities in hexagonal hosts. The calculated
behavior of the anisotropy energy is shown in Fig. 2.
In this graph, we have taken the parameter to have
the values U =2.5 eV, J =1 eV, ImX=1 eV,
crystal-field splitting hE =0.125 eV, and X =0.01 eV.
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FIG. 2. Anisotropy energy D plotted against the number
of electrons in the d-shell N~. The points mark the calculat-
ed values, the curves are obtained by interpolation.

FIG. 3. g shift parallel to the axis of hexagonal symmetry,
as a function of N&.

It is seen that two transition-metal impurities, that
occupy adjacent positions in the rows of the Periodic
Table, may. exhibit completely different anisotropy
when they are placed in the same hexagonal host me-
tal. There is some limited experimental evidence for
this type of behavior, for measurements on ZnCr and
ZnMn alloys. In Fig. 3 we plot the calculated varia-
tion of the g shift, 4g~~, as the number of d electrons
is varied. We have used the same parameters as in
Fig. 1. The dominant feature of this curve is the
minima of hg at Nq =5. The small value of the g
shift at Nq =5 is due to the change in the dominant
spin character of the density of states at the Fermi
level. This minima of the g shift is in accord with
Hund's rules, which predict that for an isolated S-
state ion (3d5) the g shift vanishes. The general
trends seen in Figs. 2 and 3 have not been verified
experimentally. No systematic investigations have
been made on how the magnetic anisotropy of an im-

purity, in the same hexagonal host metal, depends on
the number of electrons in the impurities d shell. We
may compare our results with the experimental data
on Mn and Cr impurities in Zn hosts. In the
electron-spin-resonance measurements on ZnMn,
Devine and Moret find that the g factor is close to
the value for free electrons. However, the g factor
does show a small anisotropy. The g factor for the
magnetic field along the principal axis g~~ is measured
as 2.0065, while the g factor perpendiocular to the
principal axis is 2.0015. They estimate the anisotropy
to be D = —7 meV. Our calculation does give the
result that for Nq =5, the g shift and its anisotropy
will be small. We also find that the anisotropy ener-
gy D is negative. Electron-spin-resonance data on
ZnMn does not exist, so we do not have any accurate
information on the g factor. However, we do have
accurate information on the anisotropy energy D
from Symko's low-field-magnetization data. Symko

et al. give the anisotropy energy of ZnCr to be posi-
tive D =+6.8 meV, which is of similar magnitude
but of opposite sign to that which he finds for ZnMn
D = —6 meV. As can be seen from Fig. 2, we do
have a change in sign in the anisotropy energy occur-
ring between Nd =4 and N~ =5. At the values of
Nq =4 corresponding to Cr'+ and Nd =5 correspond-
ing to Mn2+ we do have the magnitudes of D to be
similar. Although this calculation does not deal with
the effects of changing the host material, we do
predict that the variation in the anisotropy effects
should be larger for materials with wide conduction
bands, as has been implied by Moret and Devine.
Thus, we conclude that the Friedel-Anderson model
provides an adequate description of the magnetic an-
isotropy of transition-metal impurities in hexagonal
metallic hosts. The model describes the manner in
which the anisotropy energy D varies and changes
sign, as the number of electrons in the d shell is
varied. The calculation is in agreement with the ex-
perimental results on ZnMn and ZnCr alloys. We
have also calculated the anisotropic g factor. This ex-
hibits trends that are expected on the basis of Hund's
rule for isolated ions, though one must include the
coupling between the conduction electrons and the d
orbitals to obtain meaningful results.
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