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The response of an unpinned, incommensurate charge-density wave (CDW) to external per-
turbations in the presence of free quasiparticles is studied. The CDW can act as a charged lat-
tice but the proportion of the total charge density assigned to the CDW and to quasiparticles
depends on the external conditions. If the collisions between quasiparticles can be ignored, the
effective charge of the CDW is different in the static and dynamic limits. In the static limit the
quasiparticles relax to screen spatial variations and the form is analogous to that used for super-
fluids. In the dynamic limit the quasiparticles do not renormalize the effective charge. In the
presence of collisions the effective charge depends on the distribution of quasiparticles which in
turn depends on the relative importance of various scattering rates. In general, a simple two-

fluid model is not applicable.

" I. INTRODUCTION

The discovery of charge-density wave states
(CDW) in several classes of compounds sparked a
new interest in their properties. The earliest theories
of CDW were put forward in the 1950’s by Peierls!
and Frohlich? for one-dimensional metals. Frohlich?
recognized that it should be possible to carry a
current by drifting the electron fluid relative to the
lattice and indeed at the time, prior to BCS, was pro-
posing to explain superconductivity in this way. Sub-
sequent work has shown, however, that the motion
of the electron fluid, which must in turn drift the
CDW, will be inhibited by the presence of impuri-
ties,>® etc., which are located in the background lat-
tice and act to pin the CDW. No dc conductivity
linear in the applied field can come from CDW, but
nonlinear conductivity is possible.>” Very recently,
some striking nonlinear conductivity experiments
were made on NbSe; by Ong and Monceau?® and led
to the suggestion that a depinning of the CDW by an
electric field may have been achieved in this material.
The theory of such nonlinear conduction from CDW
is the subject of a companion paper.’

In this paper we will be concerned about the
description of a CDW in external fields in the pres-
ence of free quasiparticles. Several years ago Lee,
Rice, and Anderson® showed that the electrical con-
ductivity of a one-dimensional incommensurate
Peierls insulator could be described by motion of
charge-density wave (CDW) as a whole. The CDW
behaved as a charged lattice and carried the full elec-
tronic charge but had a large mass. In the presence
of free carriers we will show here that a simple two-
fluid model with a lattice carrying an effective charge
does not work. . If the collisions between quasiparti-
cles can be ignored then the discussion can be divid-
ed into the static and dynamic limits. In the static
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limit the quasiparticles relax to screen out spatial
variations and the result for the effective charge asso-
ciated with displacement of the CDW lattice is analo-
gous to that familiar from the theory of superfluids.
In the dynamic or high-frequency limit the response
of the two systems is less strongly coupled and the
effective charge is different. A similar difference is
found in the effective mass associated with motion of
the CDW. We present both a phenomenological dis-
cussion and a microscopic calculation of the response
in the collisionless regime. This difference between
static and dynamic limits has been overlooked in the
microscopic treatment which Schuster'® gave.

In practice we must include collisions and this leads
in general to a form for the effective charge which
depends on the distribution of quasiparticles which in
turn depends on both the detailed nature of the colli-
sion processes and on the type of external perturba-
tion. If a single relaxation time can be used in the
Boltzmann equation governing the quasiparticles then
the response to a uniform electric field coincides with
the dynamic limit in the collisionless regime, a result
obtained recently by Boriack and Overhauser.!! Near
to the critical temperature, however, umklapp scatter-
ing off the CDW is weak and a different description
is appropriate. The discussion we give in this paper
only pertains to setting up the coupled equations
governing the combined motion of the CDW and
quasiparticles. The solution of these coupled equa-
tions will, for example, determine the total force on a
pinned CDW in an external field or the drift velocity
of an unpinned CDW.’°

The paper is organized as follows. In Sec. Il the
phenomenological description is given and the
response under general conditions is discussed. In
Secs. 11l and 1V a microscopic calculation is presented
which is in essence a generalized random-phase ap-
proximation both for short- and long-range forces,
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and which displays the difference between dynamic
and static limits. In this latter part collisions are in-
troduced only with the single relaxation-time approxi-
mation.

II. PHENOMENOLOGICAL DESCRIPTION

The conductivity in the presence of a CDW con-
sists of two parts. One is a collective part due to mo-
tion of the CDW as a whole and the second is the

- contribution of single particles which arise from the
thermal excitation across the gap and possibly from a
remnant portion of Fermi surface. The issue which
concerns us is the division of the conductivity into
collective and single-particle contributions or in other
words the proper definition of the effective charge of
the CDW.

Throughout this paper we will ignore fluctuations
and use a mean-field theory description. For con-
venience in evaluating integrals over the band struc-
ture we will specialize to one-dimensional energy
bands but we do not consider the effects of fluctua-
tions which would be essential to describe a truly
one-dimensional metal. If the energy bands in the
normal state are given by ey then the single-particle
spectrum in the presence of the CDW is {¢+ E¢
where

Q.1

with A and (—5 as the CDW energy gap and wave vec-
tor. In the Peierls case (i.e., one-dimensional energy
bands) Q =2kr and {=0, where we measure ener-
gies from the Fermi energy.

Consider first if the CDW is unable to move.
Then we have a new energy band structure and we
can simply calculate the plasma frequency associated
with the thermally excited carriers w,, just as one
does for any semiconductor. \

AE-) of(ED
= d4pe? S |—X | LK 22
win weg _.] Y (2.2)
L Af(ED
=—4re2yp S -k L K 2.3
e F% E% 8Ep @3)

where fis Fermi function and V¢ is the Fermi
velocity. If we replace the electron-phonon interac-
tion simply by an attractive electron-electron potential
of appropriate strength, then the Hamiltonian would
commute with the total electron momentum. The to-
tal oscillator strength, which is determined by

w} =4me’p/m where p is the electron density and

m (= kp Vi) is the mass, can then be partitioned into
the part due to the thermally excited carriers w,f,,, and

the remainder
wie=wl—w}, 24

is to be associated with the condensate. The
fractional-charge density p. is associated with the
condensate. An effective charge p, can then be de-
fined by w2, =4me’p.p/m.

There are also retardation effects associated with
the electron-phonon interaction, in addition to the ef-
fective electron-electron attraction, and these lead to
a large mass enhancement (m;/m) for the collective
contribution. The spectral weight taken out by this
mass enhancement due to retardation appears in the
single-particle transitions across the Peierls gap.® The
low-frequency (w < < A) dielectric function e(w) can
then be written

2 2
€(w) =1 +ap——2r — 2 M 2.5)
[0] w® mp
where «;, is the interband polarizability.

A second approach to determine the effective
charge of the CDW is to use the relationship between
the charge density and the gradient of the phase ¢ of
the CDW. This can be calculated from static con-
siderations alone. Consider a very long-wavelength
oscillation of the phase in a Peierls insulator. Then
the chemical potential will be constant but locally the
period will change from 2kr to 2k +V¢é. Such a
change in period leads to a change in the local densi-
ty. The energy spectrum (for k > 0) is changed to

E'(k)=+E(k—q)+Veq , 2.6)
where g = '7V¢>. The change in density is

8p=2 3 f(=E(k—q)+Vrq) —f(=E)

k>0,0

+f(E(k=q) +Vrq) — f(ED] ,
2.7

where the factor of 2 comes from summing over
k <0 and k > 0. Rewriting Eq. (2.7) as
8p=29 +2 3 [F(E(k —q) + Viq)
m ko
—f(E(k—q)—Vrq)} , (2.8)

transforming to a new variable k' =k —gq, and
neglecting end effects we expand to obtain

2 af(Ey)
op==9 +4v = 2.9
P ks 4 E, BEk ( )
This can be written
S _Vé - (2.10)

’_)' Zkf‘c,

where p, is interpreted as the fractional-charge densi-
ty that is associated with a static distortion of the
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condensate and

5——————6& . (2.11)

ﬁc =1+

We note that except at 7 =0, p. and p. defined
from Eq. (2.4) are different. This is seen most easily
as T— T, or A—0, when p. — A but: 5. — A%, This
leads immediately to the question of the proper de-
finition of effective charge relating the collective con-
tribution to the current J, to the time derivative of
the phase*

Je=eppe & /2kr . 2.12)

To be consistent with Eq. (2.4) we should have
pe=pe. On the other hand it is tempting to use an
equation of continuity together with Eq. (2.10) which
will lead to p; = p.. The origin of this problem is
simply the nonanalytic response of the Fermi liquid
of thermally excited quasiparticles in the collisionless
regime. Equation (2.12) must be interpreted as
the dynamic limit and p, = p, is the correct answer.
In practice we must include the effects of colli-
sions. This introduces the further complication that
the proportionality constant p, between T,,, the
current contributed by the excited particles, and K,
their total crystal momentum, depends on the shape
of their distribution, which in general depends on
both the detailed nature of the collision processes and
on the type of external perturbation. It remains true,
however, that if a translationally invariant back-
ground is assumed, then p, +p, =1. The result p,
found above may be easily derived if the distribution
is assumed determined solely by the driving field

_OE _3Jf
3/« 0k iw akK

Then J, = p, K with p, =1—p.. The expression for
the plasma frequency then follows from simple argu-
ments. The same result for p, applies even when
collisions are important, providing the simple ansatz
for the shape of the distribution 8f, = (3f/0k)K is
again used. This is the standard single relaxation-
time approximation for the Boltzmann equation.

This may not be correct in general, especially for per-
turbations other than an electric field, a situation
which may arise when the CDW and the quasiparticle
are drifting at different velocities. The point is that
the thermally excited particles do not in general form
a second independent fluid that can rigorously be
treated in terms of a few macroscopic variables (a hy-
drodynamic treatment), but should strictly be treated
individually (i.e., by a Boltzmann equation) for each
situation.

In Ref. 9 we have written down a phenomenologi-
cal description of the coupled drift of the CDW and
quasiparticles in the presence of an electric field
based on the simple ansatz. This should be viewed at
best as a variational solution to the Boltzmann equa-

tion. We should point out that there is at least one
particular situation where the excitations may be
properly treated as a second fluid and a different dis-
tribution is more appropriate. Suppose that above T,
forward scattering is dominant (for example, scatter-
ing by long-wavelength thermal phonons at low tem-
peratures). Then just below T, collisions that con-
serve the crystal momentum of the excited particles
will be much more rapid than those that do not —
umklapp scattering off the charge-density wave obvi-
ously disappears above T,, and so must become slow
(rate « A?) near T.. Under these conditions the exci-
tations relax rapidly under crystal-momentum—con-
serving collisions to an equilibrium with an average
velocity V (that may be different from the charge-
density wave velocity) with the distribution

R Ve
Bfew g5 KV . (2.13)

This is the usual expression for a two-fluid model
and follows from setting the crystal-momentum—con-
serving part of the collision integral to zero and not
from any assumptions of Galilean invariance. With
the distribution Eq. (2.13) Jand K are related by yet
another effective charge. This treatment of the re-
gion near T, is very reminiscent of the discussion by
Pethick and Smith'? of the corresponding region in a
superconductor where again it is profitable to intro-
duce an additional slowly relaxing (quasihydrodynam-
ic) variable — in their case the "superfluid charge."
The particular collision process that becomes slow is,
however, quite different in the two cases.

Allender, Bray, and Bardeen'® arrived at a form for
the effective charge at T ~— T, which is equivalent to
p. in that limit. They worked in the laboratory frame
with a time-dependent potential and evaluated the
free energy by summing over the eigenvalue spec-
trum M'(D) [=E(K—m D) +D-K] in the presence
of a CDW drifting with a velocity D and then ex-
panded the free energy to order D? to obtain p,.
Collisions were not explicitly included. The problem
is that, as pointed out by Boriack and Overhauser,'*
the energy defined by the mean value of i9/9d¢is not
Nbut E(K—mD)+mD-9E/8K. Using this value
one can recover the answer p, in agreement with our
result in the collisionless regime. This is also in
agreement with Boriack and Overhauser'' if one in-
terprets their parameter vy appropriately and takes a
one-dimensional band structure.

III. PHASE MODE WITH
SHORT-RANGE FORCES ONLY

We begin our discussion of microscopic theory by
considering the dispersion of the phase mode. For
the present we will restrict our attention to a system
with only short-range forces. We will study the influ-
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ence of the free carriers on the dispersion of the
phase mode. To make the model a little more realis-
tic we will include also a pinning potential which we
take as a weak external potential whose period is
commensurate with that of the CDW.

The Hamiltonian in the standard Frohlich form is

czo + Soglbdbotolb o
T

H0=2€I'C'kt
o

+2 ECHW Crolbg+b 1) +cc

»

(N)I/Z

G.n

where ¢ and b are electron and phonon creation
operators, w, is the phonon energy, and g is
electron-phonon coupling constant. The presence of
an external potential with wave vector Q adds a term

Himp =_.2 Vo e4oC K+ Vo ctattige - (3.2)

In mean-field theory, a single-phonon mode is taken
to be macroscopically occupied in the presence of the
CDW. Denoting this occupation number by

w=(bg+bl5) /(N , (3.3)

leads to an effective potential seen by the 'electrons
of igw + V. After diagonalizing the Hamiltonian
and minimizing the free energy with respect to the

D+ (T, w,) —D+(T, w,) =D,

kv

where 7, is one of the Pauli matrices

0 —i
270
and D' = w? +w6.
The frequency of the pinned phase mode w, is
given by the zeros of the denominator in Eq. (3.10)

after it is analytically continued to the real axis. In
the long-wavelength limit (¢4 —0) we obtain

@3.11)

2E¢re

7 3.12
mryr

=—w; +wQ+2g wg 2

choice of w, one obtains the pair of gap equations
:gVQ +glw*

wow* = 2 E—

k

Ko

U= EQ —fe+ED]
(3.4

V
—y 8lotEw Q+g Y = ED — f et ED]

Ko (3.5
where the energy gap A=V, +igw. Multiplying Eq.
(3.4) by wand Eq. (3.5) by w*and subtracting leads -
to

Vow=—Vow* , (3.6)

or if we let w=|w|exp(i¢) and Vo =|Vp|exp(ix),
then Eq. (3.6) is satisfied if ¢ =X + > The (+)
sign leads to a maximum in the free energy and the
(-) to a minimum. The presence of the external po-
tential pins the phase of the lattice distortion.

The pinning shows up directly if we look at the
phason collective mode. Denoting the phonon propa-
gators by

D (T.1) ——~——(T[b,,,o+—-(t)b,,o+ﬁ~(0)]) G.7)

with m,n = £ and the electronic propagators
Gma (K1) =i (Tlepy (D ety g @), (3.8)

then the thermal Green’s function can be written in

matrix form using the Matsubara notation
w,=Qn+1)=T,

€X+qNn —A

Tw, —
G-‘('k‘,w")=l _A* ] .(3.9)

iw, — €x_gp
The phase mode shows up as a low-frequency mode
by considering the Dyson equation for the combina-
tion®

1+g*weDoT E Trl(im) G (K, v ) (i) G(K +q,w,,+v,,, )]] (3.10)

with
v=1=f(~Lg+EQ —fUx+ED .

Since we are only interested in the low-frequency
limit < <|A| we can expand the last term in Eq.
(3:12) to give

kw}[l +g2wQ Er-k'/4E-|‘}] =w6—g2m0 Er?/E? .
?0 ?U
(3.13)

Now the right-hand side of Eq. (3.13) can be rewrit-
ten with the help of the gap Eq. (3.4), leading to the
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result

Vo

2 -1

Wg =wo8

SreEF |1 +g%wg 3 rif4ER
Xo Iy

ko

Using the gap Eq. (3.4) and linearizing in Vo we ob-
tain

-1
wi= ||| Ye |9 |3 r/aEY (3.15)
8 my A g2 ko
with
-1
2L _1+|g%we Sn/aE}]| . (3.16)
m KXo

Examining the result first for a one-dimensional
Peierls insulator at zero temperature, the integrals
can be carried out at once to give

wi =4|AVo N7/ (1 +4AY/N0}) (3.17)

where A is the dimensionless electron-phonon cou-
pling constant A =2g¢?N(0)/wgp and N (0) =2/7 Vr is
the density of states at the Fermi level. The term in
the parentheses is the well-known effective mass

my /m of the CDW first derived by Frohlich? due to
slow response time of the phonons. The numerator
in Eq. (3.17) can be derived simply by writing down
the kinetic energy density of a moving CDW and the
potential energy density in the pinning potential

2
E(¢)=%nmL[~d—(%Ql] —2|Volpicose , (3.18)

where p; [=2N(0)A/\] is the amplitude of the
CDW. Solving for frequency of the pinning mode
gives

w2=2N0)|VoAIX"/5nm Q77 , (3.19)

which can be readily brought into agreement with Eq.
(3.17). The frequency of the pinned phase mode is

* determined simply by balancing the kinetic energy of
CDW motion against the pinning potential.

The derivation of Eq. (3.15) is quite general and
can be used in cases where there are free carriers ei-
ther from a remnant Fermi surface or quasiparticle
excitations in a Peierls insulator at finite temperature.
In this case we must consider the Greens function
product in Eq. (3.10) which has both interband terms
involving transitions across the Peierls gap and intra-
band terms. In the limit ¢ —0 and w finite which we
have considered only the interband terms contribute
as in Eq. (3.12). The intraband terms however
depend critically on the order in which the limits
g —0 and w —0 are taken as is well known for pro-
ducts of fermion propagators. At finite g, then we
must consider the intraband terms.

(3.14)

First we consider the evaluation of Eq. (3.10) for
general (g, ) but with Vrg << A and w < < A.
Then Eq. (3.12) becomes (setting ¢ =0 for simplicity)

0=—-wH(T) +w) +2¢%0y
y 2egrg  WEgy, — Epd, 0/ 8k
Tolog(@) —4E2:  0f(qQ) — (Epyq— ED?
(3.20)

>

where the matrix element pl, — V2q*AY/4E¢ as

g —0. The behavior of the intraband part (the last
term) depends on the average value of the G- V/w,
with ¥, =9E/dk. Because the dispersion of the
phase mode is characterized by a large mass
~(mmy)"? it will rapidly pass into the regime where
G-V >> w,(q). Itis the static response that controls
the dispersion relation in.this regime. The general
behavior of the dispersion relation is quite complicat-
ed. If we pass to the limit w,(q) >> w,(0), or
equivalently ignore the external field, one obtains

w}(q)=—':1n-—V,2q2 ) (3.21)
1

where the mass ratio m/m; can be expressed most
conveniently as a Matsubara sum

m 1
— =1+l220p TS ——— . (322)
m w0 §(w3+gg+A2)2

At T=0 K in a one-dimensional Peierls insulator the
two masses m; and m, are the same. However at
finite temperature they differ significantly. As

T — T, and A —0 one finds from Eq. (3.16) that
my/m —1~ T,A/Awd —0 while m;/m ~ T?/ w}
continues to be large. This difference in the effective
masses reflects the behavior in the dynamic and the
static limits. We will return to this point in Sec. IV
when we discuss the effective charge.

The above description applies in the collisionless
regime. Collisions affect primarily the intraband term
and if one makes the simplest approximation using a
single relaxation time then the collisionless form is
modified by making the replacement
w? — wl—iw,t™! where 7 is the relaxation time. In
this simple limit all distinction between umklapp and
nonumklapp collisions is lost. As we discussed in
Sec. 11 the relative weight of these two processes is
important in determining the distribution functions
and hence the effective charge. The microscopic
treatment given above is based on a random-phase
approximation and this treatment would require sub-
stantial modification to go beyond the single
relaxation-time approximation.
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IV. ELECTROMAGNETIC PROPERTIES

The response to an external electric field is
described by the dielectric function which is ex-
pressed as the sum of the proper polarizabilities. In
addition to the contributions from interband transi-
tions and from the free carriers there is the possibility
of motion of the CDW as a whole in the electric field
as we discussed in Sec. II. In a microscopic calcula-
tion this appears as a coupling to the phase mode and
the magnitude of this coupling will determine the ef-
fective charge of the CDW,

The polarizability of the phase mode can be written

M(T, w)]?

4.1
W +7(q, )

(T, 0)=—

(b)

FIG. 1. (a) Diagrammatic representation of the conduc-
tivity due to the collective mode. (b) The matrix element M.

The matrix element M is given by the diagram (b) in Fig. 1 as

M('Q',iV)=(4nwo)”2—g5T S TrllG(K+Tiwa +i0) (i1) G (K, iw,)] . 4.2)

-
k,o,n

After making the analytic continuation to the real axis and taking the (Vrg, w) < < A limit, we find two terms again

4 1/2
M(q, w) _ (mawg)eg

(where we have set {£=0 for simplicity).

The matrix element M describes the coupling of
the ionic displacements with the long-wavelength
electronic density. It vanishes identically for certain
systems. For example, in the case of the SDW in Cr
metal, the states coupled belong to two different sub-
bands and the sum of k is over a closed piece of Fer-
mi surface.!” As a result, the sum vanishes identical-
ly. The order parameter involves in this case a spa-
tially modulated occupation of d orbitals as well as
spin states. By contrast in KCP
[K,Pt(CN)4Brg ;- 2H,0l, states in the same band are
coupled across the Fermi surface and a true CDW
results, i.e., the occupation of one orbital is modulat-
ed in space. In this case the sum over K is restricted
to a half space, K-Q <0, and (3¢£/0K) -G has a
fixed value = Vrq. In the case of
tetrathiafulvalenium-tetracyano-p-quinodimethanide
(TTF-TCNQ), there are separate electron and hole
bands and they make cancelling contributions to M
because of their opposite charge. In this case there is
a simple physical picture why the CDW does not cou-
ple to a uniform electric field. The electron and hole
CDW wish to move opposite in the electric field and
so the interchain coupling opposes the motion and
they are simply polarized. The electric field does not
couple to the phase mode which moves the electron
and hole CDW together.

Lastly we consider the layered compounds.'®
Again the states that are coupled by the CDW belong
to the same band and M #0. The CDW in these

(BEdk T’EZ 5

‘ 1 1
A Y Ve q|—+tanh(sBED + —
r,z., " ER 2R W — (JE/9K-q)? OF

[tanh (5 8E)]| , 4.3)

r

materials should couple to an electric field, though in
the 2 H polytypes, the topology of the Fermi surface
is such that considerable cancellation occurs in the
sum and M will be reduced. In the 17 polytypes of
TaS$; and TaSe,, the Fermi surface consists of a set of
ellipsoidal electron bands and the CDW couples
states across the ellipsoids which should give a large
value to the matrix element, M.

Turning to the evaluation of M, the second term in
Eq. (4.3) depends on the way in which the long-
wavelength limit is taken. If w is held finite while
g —0 the second term in Eq. (4.3) vanishes. Using
the results of Sec. III, after some algebra we obtain

4e? VAA?
0,w) =
Tt @ my/m(w}— w?) kz", E}

[1-2f(E)]
(4.4)

This term arises from the change in the occupied
wave functions when the ions are displaced. It was
derived recently by Boriack and Overhauser.!' If we
use the identity A%/ E3 = E;' — ¢2/E2 and the gap
equation one can show that Eq. (4.4) is identical to
the last term on the right-hand side of Eq. (2.5) in
the absence of the pinning potential. The microscop-
ic calculation agrees with the phenomenological form
and the effective charge agrees with the dynamic
value obtained in Sec. III.

The remaining terms in the polarizability from in-
terband transitions across the one electron gap, «;p,
and from free carriers, ay, are contained in Fig. 1(a).
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We get
4me’

oqb(?i,iv) +af(ﬁ,iv) =

k,m",tr

qf T 3 TrllG(K+T, w, +1)1G (K, w,)] 4.9)

and after making the analytic continuation to the real axis one finds

(Ve-@)2a2 2E

2
(T, 0) +ae(q 0) =—2TE 3

= O4ER W4

TE% U —fe+ED — f(~lz+ED]

4e?
””222

where V,;=d¢/d K (for one-dimensional bands
Ve= V¢ as we remarked earlier).

It is straightforward to evaluate these expressions
and obtain answers in agreement with Eq. (2.5).

In the opposite limit when o —0 first and ¢
remains finite the second term in Eq. (4.3) is
nonzero and can cancel part of the first term. In par-
ticular as T — T¢, then the first and second term are
both finite but cancel exactly so that the total varies
as A. This can be seen simply by rewriting M (g, 0)
as a Matsubara sum

M(q,0) = (4mwp) 2 EE T
q

" kno [(w, — Ck)z —glz —A2]2

4.7

Clearly M(g,0) vanishes linearly in A as A —0 and
T — T,. The static form of the propagator in the
denominator of Eq. (4.1) also is characterized by the
static form of the effective mass m;/m. The criterion
which distinguishes the static and dynamic limits in
the collisionless regime is /| VG| <<1or >> 1.
In the limit @ < < |V¢q| but w > > V,-q(m/m)'2,
the static limit of M must be used leading to a dif-
ferent expression for a (with Vp=0)

=_471'9221sz S (Ve )i wy — {92 — £23— A2
mo'/m o " (4.8)

In this limit it is the static mass which enters. The
spectral weight of the phase mode varies as A? in the
limit A —0. If we use the spectral weight to identify
an effective charge then after a little algebra, one can
show that the effective charge in Eq. (4.8) is the stat-
ic value p. given by Eq. (2.11). We have shown how
the two different effective charges of the CDW arise
in the microscopic theory and the relaxation of the
free carriers is responsible for the different values in
the static and dynamic limits.

Again we can simply incorporate collisions within
the single relaxation-time assumption by adding a
term iw/7 to the denominator of all intraband
terms.!” This modifies the criterion which separates

|
&
x|

the static and dynamic limit. In particular to achieve
the static or space-charge limit it is not sufficient to
have w << |V, | but also wr™"' << (V,-§)2
Under these conditions, the results quoted above for
the static limit continue to hold.

V. CONCLUSIONS

CDW in many systems act as a charged lattice.
However, they cannot simply be viewed as a rigid lat-
tice of charges because of the presence of free car-
riers. The free carriers act to screen out any space
charge developed by a nonuniform field and in the
process renormalize the effective charge that we asso-
ciate with the CDW. It is important to distinguish
the static and dynamic limits carefully — a point
overlooked by Schuster.'® In the static limit the ex-
pression for the effective charge resembles that ex-
pected by analogy with the theory of superfluids and
the spatial variations are screened out by the quasi-
particles. But in the dynamic limit the inertial
response of the CDW and the quasiparticles are un-
coupled. This continues to hold if the collision
processes can be characterized by a single relaxation
rate as was found also by Boriack and Overhauser. In
this case it is the dynamic effective charge p, which
determines both the force on the CDW and the
current carried by the CDW in an electric field. If
the scattering processes are more complicated with,
for example, different rates for normal processes and
umklapp processes off the CDW, then a two-fluid
description will not be valid. The Boltzmann equa-
tion governing the quasiparticle distribution must be
solved and the response functions evaluated. If the
umklapp processes are very weak then crystal
momentum is conserved again and a different two-
fluid description can be given.
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