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A criterion for the preferred direction of the wave vector 6 of a charge-density wave (CDW)
is obtained by means of a simple theory. Screening of the electric field caused by the CDW is
provided by a sinusoidal distortion of the positive-ion lattice. The optimum 6 direction is that
which minimizes the elastic energy of distortion. For potassium the 6 direction is found to be
tilted about 4° away from a [110] direction. The exact value of the tilt depends on the magni-

tude of 6

I. INTRODUCTION

The concept of a charge-density-wave (CDW) state
for electronic systems was introduced many years ago
by Overhauser,! but only recently has this kind of
non-normal electronic state been observed. (Spin-
density-wave states,? which are similar, were
discovered much sooner.) In suitable quasi-two-
dimensional® electronic systems direct observation of
the typical signature of a CDW state, i.e., the super-
lattice structure, has been achieved by means of x-
ray, electron, and neutron scattering experiments: the
existence of satellite spots surrounding the usual
Bragg reflections.*> Very recently evidence has also
been found in three-dimensional systems.® Further-
more, as has been extensively discussed,’ the alkali
metals, and particularly potassium, can for many rea-
sons be expected to suffer a CDW instability. A
complete clarification of this important and basic
problem is needed.

Ten years ago a neutron scattering experiment on a
potassium single-crystal sample was reported8 in
which no evidence for CDW satellites was found.
Only high-symmetry directions, and in particular the
[110] direction, were scanned. A [110] direction is
expected to be the preferred orientation for the CDW
wave vector Q.* The aim of this paper is to present a
simple theory of the preferred 5 orientation and to
provide a prediction for the particular case of potassi-
um. Unfortunately the previous search for CDW sa-
tellites did not include scans along what we now find
to be the preferred directions in reciprocal space,
which are tilted 4° from [110].°

II. SOURCES OF ANISOTROPY

We consider an ideal jellium model for the interact-
ing gas of conduction electrons in a metal and as-
sume the neutralizing positive background to be de-
formable without any stiffness. For this sytem it has
been shown''? that, in Hartree-Fock approximation,
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the normal state (plane-wave Slater determinant) is
unstable with respect to both CDW and spin-density-
wave (SDW) formation. Furthermore an argument
has been presented' showing how the correlation
corrections to this Hartree-Fock result tend to stabil-
ize the CDW with respect to both normal and SDW
states.

The electronic charge density in a CDW can be
written

p(F)=—enll —pcos(Q-T+®)] , 1)

where 7 is the density of the electron gas, and p, 6
and ¢ are the amplitude, wave vector, and phase of
the charge distortion.!® Such a structure for p(7)
lowers the exchange and correlation energy with
respect to the uniform state. However, it could lead
to a macroscopic energy penalty caused by the elec-
trostatic field ECDW, proportional to p, which arises
from the charge inhomogeneity. If p(T) were not
neutralized, then

Ecow(T) = @4mnep Q/Q¥ sinQ T . )

In this deformable jellium model the crucial point
regarding the existence of a CDW state is that this
energy penalty is absent because of energetically
inexpensive deformations of the positive background.
Accordingly, ECDW ~0. Furthermore the spherical
symmetry of the problem allows Q to have any orien-
tation. .

In more complicated situations the spatial anisotro-
py of exchange and correlation together with aniso-
tropic band structure (e.g., Fermi-surface nesting)
can give rise to a preferred direction of Q. If we al-
low for a nonzero stiffness of the positive back-
ground, the energy balance will be more complicated.
We must take into account the elastic energy cost as-
sociated with the screening of Ecpw, given by Eq. (2).

At this point we recall that in order to have a CDW
ground state, @ metal must be as soft as possible
(elastically), and that is equivalent to having small
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stiffness constants c¢;. Alkali metals satisfy this con-
dition extremely well.!'"'? Furthermore their practi-
cally spherical Fermi surface suggests that elastic
behavior may be the principal source of anisotropy in
the problem. We shall proceed on the assumption
that the 6 orientation is determined only by the elas-
tic anisotropy.'?

IIlI. GEOMETRICAL FACTORS

Consider now the specific problem of the 6 orien-
tation in potassium. In this case 6 lies outside of the
Brillouin zone (BZ), and |Q | =1.33(2w/a),'* where
a is the lattice constant. It is easy to make an ap-
proximate choice for the wave vector Q' of the
acoustic-phonon mode needed to screen the electric
field, Eq. (2), of the CDW. Of course Q' must lie
within the BZ, so Q' =G, —Q, where G, is a
reciprocal-lattice vector. From the fcc geometry of
the reciprocal lattice it is easy to convince oneself*
that the most energetically favorable condition for the
acoustic-mode distortion is with Q along [110]. Then

[Q'|=1Gi10—Q|=0.08(27/a) .
If 6 were parallel to a cubic axis, then
|Q'| =1G0—Q| =0.67Q2m/a) .

These acoustic modes have much higher frequencies
than the former ones.

In Fig. 1 we show the geometrical relations for Q
and Q' when Q is near to [110]: the angles 8 and ¢'
describe the tilt of Q and Q' from [110]. Also shown
are the heterodyne gaps associated with Q ', which
play an important role!> !¢ in the physics of the
induced-torque anomalies observed in potassium.!’
The important point is the following: if for some rea-
son Q is slightly tilted away from [110] (and we will
show this is the case) the orientation of Q' deviates

Fermi Surface

[110] Reciprocal
Point
<

Heterodyne Gaps

FIG. 1. Geometrical relation of Q,Q’, and G;o. The
heterodyne gaps arise from the 6' periodicity and can lead
to open orbits in large magnetic fields. The main CDW en-
ergy gaps, which are perpendicular to 6 and tangent to the
Fermi surface, are not shown.

from [110] by a large angle, as is clear from Fig. 1.
The small value expected for | Q'| allows us to work
out the theory in the long-wavelength approximation.

IV. ENERGY ANALYSIS

The elastic energy associated with the three acous-
tic modes of wave vector Q' is, for a monovalent me-
tal of unit volume,

3
Ug=+nM 3 w?A? 3)
i=1
where M is the ionic mass, A; is the amplitude of
each (static) excitation, and w; is the frequency of
the mode (were it allowed to oscillate). Equation (3)
is the energy penalty which must be paid to screen
out ECDW. In order to determine how this is parti-
tioned between the three polarizations we have to
consider the interaction between the positive ions and
the electrostatic potential Vcpw caused by the CDW.
From Eq. (2),

Vepw(T) = (4mrnep/Q?) cosQ T . )

Suppose ep;(T) is the charge density of each ion.
Then the ionic charge density of the deformed lattice
is

3
p(r) =73 ep; ?’—f—ZA,»‘e‘;sinG“f . &)
T i=1
{L) are the lattice vectors, and (€} are the polariza-
tion vectors of the three acoustic modes of wave vec-
tor (_2". The only interaction between Egs. (4) and
(5) will involve the Fourier components of wave
vector +Q. This is readily calculated from Eq. (5) if
04, << 1,

3
P(tQ)=';’”ePI(Q)2Ai|-éi'Q' . (6)
=]
p:1(Q) is the Fourier transform of p,(T), i.e., it is the
ion (or pseudo-ion) form factor. Accordingly the in-
teraction energy (per unit volume) is

3
Ui =27mpn2e?Q2p,;(0) 3 4,€,-Q . )
i=1

Observe that the total energy, Egs. (3) and (7), can
be written

3
U=73 (awfA?+2B47€-Q) , ®)
=l

where a and B are constants. Each of the three am-
plitudes, A4;, is obtained by minimizing U. The

" minimum energy is

3 [=.8 )
Va2 5|22 ©
i=l i
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€(Q") and »;(Q") are functions of the direction of Q
because

Q'=Gio—-Q . (10)
From Eq. (9) it is obvious that the optimum direction
of Q is found by maximizing

3 (ON-0O 2
s(@=%[2@a ] _

= 11
i=1 w,-(Q ') ( )

enx? +caa(y? +2%) (c12+caa)xy

(c12+caa) xy it e +x%)

(c12+c‘44)xz (c|2+c44)yz

where Q' = (x,5,z). We have evaluated S(Q) nu-
merically for all directions of (_5 near [110]. Contours
of §(8,9)/5(0,0) are shown in a polar plot in Fig. 2.
The polar angle 8 is the tilt angle of 6 away from
[110]. The azimuthal angle ¢ (rotation about the
[110] polar axis) is 0 when Q lies in the (001) plane.
The contours were computed from Egs. (11) and (12)
for |Q|=1.33 x Qn/a).

It is clear from Fig. 2 that the maximum value of
S(6,9) is not at §=9¢ =0. Instead, it is at §=4.1°,
®=65.4°. This implies that the angle between Q'
and [110] is 47.3°. It is surprising, perhaps, that the
point 8 =¢ =0 is a local minimum, even though | Q' |
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FIG. 2. Contours of S(6,¢), Eq. (11), for potassium with
| Q| =1.332w/a). The contour values are normalized so
that S(0,0) =1. The maximum S, at §=4.1°, ¥ =65.4°, is
1.91. The numbers next to the axes measure © in degrees.
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V. RESULTS

As already mentioned in Sec. 111, the smallness of
| Q'| allows us to determine €; and w; in the long-
wavelength, acoustic limit. This means that we need
to know only the three elastic (stiffness) modulii:
ci1, €12, and cq4. They are!?: 4.16, 3.41, and
2.86 X 10'° dyn/cm? at 4 °K. nMw? and €, are the
eigenvalues and eigenvectors of the dynamical matrix

, (12)

r

here is as small as possible. The reason is that only
the high-frequency longitudinal mode contributes to
S for this direction. The physical reason why 6 (and
Q") are tilted away from [110] is that the low-
frequency shear modes then contribute significantly
to S, even though their polarization vectors are not
closely parallel to 6 For example, the pronounced
"hill" along the =90 ° line in Fig. 2 arises from the
lowest-frequency shear mode. At the absolute max-
imum S involves all three polarization modes and
represents the best compromise between polarization
and lattice stiffness.

The location of the maximum S depends on | Q |,
which is not yet known precisely. If
|Q|=1.36(2%/a), the maximum shifts to §=2.6°
and $=64.3°. 1If |Q|=1.30(2%/a), the maximum
shifts to §=5.6°, ¥ =66.9°. However, as the magni-
tude of Q changes, the direction of (-)" remains practi-
cally constant. It is always near 6'=47°,
¢'(=9)=65°. In Cartesian notation the directions of
Q' are the 48 (cubic) equivalents of (1.05, 1.00,
0.40). In high magnetic fields these would be the
possible directions for open orbits, caused by the
heterodyne gaps, shown in Fig. 1.

Although the tilt of the CDW wave vector Q from
[110] is small, ~4°, it is far enough away that a dif-
fraction scan along a [110] direction would preclude
observation of any satellites (if present). Indeed the
additional Q direction degeneracy (24 instead of 6)
implies that satellite intensity will be weaker than
otherwise expected, since G-domain structure’ will
distribute the CDW satellite intensity among the 48
possible locations surrounding each ordinary recipro-
cal-lattice vector. Furthermore in a single Q-domain
crystal, one might have to examine all 24 equivalent
Q axes in order to find a CDW satellite.

Finally, we have carried out equivalent calculations
for Na and Rb, based on T =78 °K elasticity data,'s!?
and with |Q|=1.35Q2%/a). For Na, §=3.3°,
¥=63° for Rb, §=3.2°, $=64°.
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