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High-frequency conductivity of a two-dimensional
electron gas interacting with optical phonons
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e calculate the high-frequency conductivity for a two-dimensional electron gas interacting

with optical lattice vibrations. The collision frequency and the optical mass normalization are

obtained. The frequency dependence of the (inverse) collision time is presented.

I. INTRODUCTION

When a device of metal-insulator-semiconductor
structure is biased, a large accumulation of electrons
or inversion layer is produced on the surface of the
semiconductor. When the energy bands are bent, as
in the case of strong inversion, a potential well ap-
pears on the insulator-semiconductor interface which
localizes the motion of the electrons normally to the
surface. On the other hand, the electrons are free to
move in the plane of the surface. Under strong
enough bias, the localization of the electrons in the
direction normal to the surface, which is character-
ized by the spread of their wave function, is much
smaller than their average distance within the plane.
We are thus permitted to use a two-dimensional
model, for the electron gas in which the electrons are
free to move only in the plane of the semiconductor
surface. '

In treating the response of the electron gas in our
system to a dc electric field (transport theory) or an
ac electric field (optical properties), collision
processes of electrons with ions, impurities, or acous-
tic phonons have been mainly considered. 2 These
can explain results obtained in semiconductors such
as Ge and Si. However when compound semicon-
ductors are used, such as InSb, GaAr, etc. , which are
partially ionic, the interaction of the electrons with
longitudinal-optic phonons becomes important and
cannot be neglected. A similar situation exists for
bulk electrons in compound semiconductors. The ef-
fect is particularly notable at low temperature for opt-
ical absorption when the photon frequency co exceeds
the longitudinal-optic-phonon frequency 0 t. Here a
new channel of absorption, i.e. , a final state with an
excited phonon, is operative and influences strongly
the optical-absorption coefficient. In Sec. II we
present the theory for the high-frequency conductivi-
ty of a two-dimensional electron gas with polar optical
phonons.

In treating the electron-phonon interaction one
should note that the electrons moving on the surface

II. CALCULATIONS OF THE CONDUCTIVITY

Our electron-phonon system is described by the
Hamiltonian

H =Hp+H)

~here

and
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Here ~p is the kinetic energy of an electron having
momentum p, cuq is the wave-number-dependent
longitudinal-optic frequency and a~, act (b~, bqt) are
the destruction and creation operators, respectively,
of the electrons (phonons). The coupling term
22~ =22re2/q is the Fourier transform of the Coulomb
interaction for planar electrons and

7Te [e (e —I + e
—1)3/2(e —I + —I) I/2] —I/2

q

represents the electron —longitudinal-optic-phonon in-

of the semiconductor will interact most strongly with
surface rather than bulk phonons. Surface phonons
produce a large electrostatic potential in the
insulator-semiconductor interface. The potential de-
creases exponentially to zero away from the interface.
The eigenfrequencies of the surface phonons and
their interaction with the electrons depend on bulk
properties as well as on the dielectric properties of
the insulating barrier.
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teraction.
To evaluate the conductivity we start from the

Kubo formula which reads

foo PP
o(»») = dr e'"' dX (j (r —iX) j (0)), (4)

where

and

. e no=i
m GJ

(9)

(r, = J dr e'"'([j (r), j (0)]) (10)

(0) =Tr(e&«+I' -"'0) (6)

where H is the total Hamiltonian of the system and
0 is defined by

e-» =Tr (e&&~n n&)-
Here p, and N are the chemical potential and the
number operator, respectively, and P is the inverse
of the temperature in energy units.

In order to render Eq. (4) in a more convenient
form, we integrate by parts and obtain

(7 = (Jp + 0 [ (8)

where co is the frequency of the applied field, j(0) is

the Fourier transform of the current operator for
wave number equal to zero, and

j (r) = e'"' j (0)e '"'

The statistical average of an operator 0 is given by

In Eq. (10) the square brackets denote the commuta-
tor.

Calculations of the current-current correlations and
the conductivity in the three-dimensional case have
been worked out in much detail and are well docu-
mented. ' The calculations for the two-dimensional sit-
uation is remarkably similar and we shall present
only the final results. We evaluate the conductivity
treating electron-phonon collision within the Born ap-
proximation (high-frequency conductivity), however
treating the self-consistent field of the fluctuating
electron gas exactly in the random-phase approxima-
tion (RPA). Our expression includes the full dynam-
ic screening of the electrons. We however will con-
sider here a weak electron-phonon interaction and ig-

nore completely the renormalization of the phonon
spectrum and line broadening by the electron density
fluctuations. Our result for the conductivity reads

2 2 rI +oo

m=i + dqq2Ic I2
mes 2' m'(2»r)2 " 4»r "- dx coth Px 1

X+A
t

[Q, (x + co) —
Q» (x)] [D» (x + co) D» (x)]—1

X

[Q» (x + co) —
Q» "(x)] [D, (x + co) —D»

' (x) ]
»»' x

1

2»r '" f»+»n fe »i2-
6p+p/2 6p-q/2

Here the dielectric function is given by

e»(x) =1 —v»Q, (x)

where Q, the density fluctuation is defined by

(12)

(13)

l

conductivity. We write for 0-,

ne2
0 =I

(m +8m) (co+i v)

where Sm, the mass renormalization, and v, the colli-
sion frequency, are small quantities. We therefore
identify them as

v = (8»r2&o mn ) ' Re J d q q I C» I

1

4

D»(x) represents the phonon propagator and is given

by
&& P &I dx coth F, (16)

D»(x) =
X QJq

(14) 5m= —(8»r aPn) ' Im 'I dq q2I C I2
r -2 21

To render our result for the conductivity in a more
transparent form we shall identify the effect of the
electron-phonon collision with the Drude form of the

l
P+oo

&& P J dxcoth F, (17)
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where

F = [Qq (x + (o) —g, (x) ] [Dq (x + cu) —Dq (x) ]
Eq x + Ql eq x

[gq(x+ o)) —g, '(x)] [Dq(x + «)) —D, '(x)] . (18)

In order to calculate the collision frequency v we shall use two simplified assumptions which are well justified.
First we omit all phonon lifetime effects, thus ignoring the narrow spread of the phonon spectrum for any wave
number q. Second, since the momentum transfer q is of the order of the Fermi momentum which in turn is
much smaller than lattice momentum, we ignore entirely the dispersion of the phonons and replace co~ by OI, the
longitudinal vibration frequency. After some algebra one obtains

v = (grrcumn) '
Jl dq q3

Uq

coth +coth (cu —III) Im + coth +coth (&o+ III) Im
PO, re I PA,

2 2 e(a) —0,) 2 2 e(o) + II,)
i

(19)

For most practical situations, the temperature is smaller than the Fermi energy. We therefore are justified in tak-

ing the dielectric function at zero temperature. The statistical factor can also be taken at the zero-temperature
limit for k~ T & AAI. %e thus-obtain for the collision frequency at T =0,

v=(4rrcomn) J dq q Im ()(~ —& s)
vq eq (cd II ()

(20)

Here, as expected, a threshold for absorption occurs at co= OI. The collision frequency rises for m & B~ and, as
we shall see later, behaves as ~ ' at high frequencies. The effect of finite temperature when kBT ( tOI would
be mainly to round off the sharp threshold at co = Q~. Numerical integration of Eq. (20) will be presented later.

The mass renormalization hm can be cast into a simpler form after some algebra and reads

px
gm =(gn'aPn) '

Jl dq q3 '
J dxcoth

p 2q t

x Im, Re[D~(x +co) +D, (x —cu) —2D, (x)]1

+ I m D, (x) Re
1 1+ 2

e, (x+cu) e, (x —a) e, (x)
(21)

I

Numerica'1 calculations of hm as a function of fre-
quency are more difficult than for v. Here the vari-
ous terms in the integrand have alternating signs,
thus large cancellations do occur. Let us determine
the qualitative behavior of Bm as a function cu. Here
for co ~, e, (x + a&) may be replaced by unity and
D~(x+co) asymptotically approaches zero as co '. We
thus conclude that for o& ~ the integral in Eq. (21)
approaches a constant and hence hm —~ '. On the
other hand for co 0 (below the longitudinal phonon
frequency) the integrand in Eq. (21) behaves as oi',
and thus Sm becomes a constant when cv approaches
zero. A detailed behavior of 5m as a function of co

will not be presented here. .

We go back now to our Eq. (20) and evaluate the
collision frequency v. Here we consider the situation

where the Fermi energy is larger than k~T and there-
fore are justified in using for a, (&v —Q~) the zero-
temperature dielectric function. Our result reads

F(z, II —01)= —, (Xc)—J dz z
' 8(O —II )

e(z, II —0,)
(22)

where cui is the longitudinal-optic-phonon frequency,
Ai is the surface phonon frequency,
)I. = [2e'm/h'(7m)'~'] is the plasma parameter of the
two-dimensional electron gas and

—1 —1E'o 6P

et, (e„'+e, ')'~'(e '+e,,
')'~'

is the dielectric form factor for the interaction of the
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electrons with surface phonons. Here II =re/4eF and
z =q/2kF are, respectively, the frequency and wave
numbers normalized with respect to the Fermi energy
and momentum. Also OI is the surface phonon fre-
quency similarly normalized. The integrand in Eq. (22)
is given by

0.3

0.2

F(z,x) = D I —z ——X

Z

1/2
X—D+ 1 —z+—
Z

' 2' 1/2

O. i

0,
D+= 'i

1,

if )z+ —"(~I,
Z

if lz+-xI «I,
Z

and
r 'I

e(z,x) = I +—6 (z,x) + i F(z,x—). 1

Z
'

2Z

(23)

(24)
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FIG. 1. Normalized collision frequency v =2v/A. Cool as a

function of x = (~ —Ai)/4'~ for InSb at zero temperature,
for A. =0.4 and X=1.

where

C
G(z,x) = I—

2z
X

z —— —1
Z

1/2

C+
2z

' 2 1/2
Xz+ — —1
Z

6p 6b

+Nb
0.95'

which is almost equal to coI. Our result for v as a
function of the normalized frequency is presented in

Fig. 1. The collision frequency v is zero for frequen-

O, if(z+ —
[

C+ =' Z

if iz+ —
i
&I

[z + (x/z) [ z

Equation (22) can now be integrated using InSb
parameters: col =24.4 meV, ~p =17.9, E =15.7, and
as an example for the oxide layer, eq =10 is taken as
a reasonable value. The Fermi energy in our calcula-
tion is taken to be 100 meV. In this case we obtain
for the surface phonon

cies below the surface phonon frequency. When the
light frequency exceeds the surface phonon frequen-
cy, v increases fast up to a constant value and
remains so until ~=4~F. Thereafter v approaches
asymptotically to a constant times ~ /, for large co.

This asymptotic form of v is obtained when screening
effects are omitted, i.e., when in Eq. (22) we replace
e(z, II —0,) by unity.

In conclusion, we have calculated the collision fre-
quency for a two-dimensional electron gas interacting
with optical lattice vibrations. Our result for the col-
lision frequency as a function of the photon energy is

plotted in Fig. 1. We find that metal-oxide-
semiconductor devices, made up of polar semicon-
ductors, will exhibit a jump in the collision frequency
when the photon frequency exceeds the optical-pho-
non frequency.
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