
PHYSICAL REVIEW 8 VOLUME 20, NUMBER 3 1 AUGUST 1979

Critical dynamics of elastic phase transitions

R. Folk and H. Iro
Institut fur Physik, Universitat Linz, A-4045 Linz, Austria

F. Schwabl
Institut fiir Physik, UniversItat Linz, A-4045 Linz, Austria'

and Department of Physics, Universitv of California, La Jolla, Cali fornia 92093
(Received 1 February l 979)

The critical dynamics at elastic phase transitions of second order is studied by the
renormalization-group theory. The dynamical theory is based on a stochastic equation of' mo-
tion for damped phonons. For systems with one-dimensional soft sectors usual dynamical scal-

ing holds with the critical dynamical exponent z =2. For two-dimensional sectors logarithmic
corrections appear. Novel features are found for an isotropic-phonon model. The dynamical
susceptibility and the characteristic frequency depend singularly on an irrelevant parameter,
which, however, diverges at the fixed point. Consequently dynamical scaling breaks down; e.g. ,
the characteristic frequency is no longer a homogeneous function of the wave number k and the
inverse correlation length ( '. Instead it is a homogeneous function of these variables and an
irrelevant parameter. Consequently, the critical dynamics can be characterized by the relaxa-
tional exponent z =2+cd at T„while in the hydrodynamic region the sound frequency is

characterized by z =2 ——q and the damping by yet another exponent, This breakdown of scal-

ing is also reflected by the fact that different fixing conditions, i.e. , different choices of the fre-

quency, lead to different values of z. All of these apparently different transformations lead to
the same modified dynamical scaling relations.

I. INTRODUCTION

Elastic phase transitions of second order are ac-
companied by the softening of an acoustic phonon.
The anisotropy of crystals implies that the softening
is restricted to subsectors of wave-vector space,
which are one- or two-dimensional in three-
dimensional crystals. ' As a consequence the critical
dimensionality above which the critical behavior is
classical is lowered in comparison to isotropic systems
and the critical behavior is a function of the dimen-
sionality m of the soft-wave-vector subspace.

The acoustic phonon which gets soft at an elastic
phase transition is a hydrodynamic mode and its
velocity of sound is proportional to the square root of
a (combination of) elastic constant and thus

( y' y' ) (1—q/2) |
Taking into account the linear dependence on the

wave number one is led to conclude from the hydro-
dynamic limit that the dynamic critical exponent is

given by z =2 ——g. Given the structure (wave-

number dependence) of the dynamics and assuming
the validity of dynamical scaling, predictions about
the temperature dependence of the transport coeffi-
cients can be made. For these predictions to be valid
it is crucial that the critical frequency is a homogene-

ous function of the wave riumber k and the inverse
correlation length g

' but does not depend singularly
on some irrelevant variable.

Our renormaliiation-group analysis' for three-
dimensional crystals shows that standard dynamical
scaling is valid for er =1 and logarithmic corrections
appear for m =2. On the other hand for isotropic
systems, m = d =4 —e, we find a singular depen-
dence on an irrelevant variable, which invalidates
dynamical scaling in its simple form. At the critical
temperatuie T, the soft acoustic phono6s are over-
damped and the wave-number deperidence of their
frequency is characterized by the Halperin, Hohen-
berg, and Ma' exponent z - 2 + cq. The apparent
contradiction with the hydrodynamic result is
resolved by noting that the sound velocity c, depends
singularly on irrelevant quantities like the mass den-
sity, which reconciles these differing dynamical ex-
ponents.

Our dynamical theory is based on semiphenomeno-
logical stochastic equations of motion for the phonon
displacement field. As in the case of Langevin equa-
tions' it is convenient to introduce a path integral for-
mulation also for the second-order phonon equations
of motion. Starting from this path integral represen-
tation the elastic systems are treated by the
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renormalization-group theory. The dynamical recur-
sion relations are computed explicitly for the
isotropic-phonon model. A general discussion of the
fixed points and modification of dynamical scaling' is

given.
In Sec. II we present the equations of motion and

introduce the corresponding Onsager-Machlup func-
tional. After discussion of some general properties of
the correlation functions the perturbation theory is
introduced. In Sec. III we introduce the renormaliza-
tion transformation and consider the consequences
for the Gaussian region, which is relevant for sys-
tems with one-dimensional soft sectors. We also give
a general discussion of the non-Gaussian case. Sec-
tion IV is devoted to the isotropic-phonon model and
to logarithmic corrections in this model and elastic
transitions with two-dimensional soft sectors. In Sec.
V the results are summarized. In Appendix A the
equilibrium distribution function is derived and in
Appendix B the fluctuation dissipation theorem is
derived. In Appendix C we-consider the relation to
the relaxational model and in Appendix D the
second-order contribution to the recursion relation
for the damping constant is computed.

II. PHONON DYNAMICS

In this section we introduce the basic dynamic
equations of motion and represent them in terms of

an Onsager-Machlup functional. ' After the discussion
of some general properties of the correlation func-
tions the perturbation expansion for the probability
distribution will be introduced.

Equation of motion

Let us consider a d-dimensional system and denote
the phonon normal coordinates by Q-„and the
Landau-Ginzburg-Wilson free-energy functional (di-
vided by kT) by 3C[Q-k(t)]. We will base our
dynamic theory on the following equations of motion:

~ ~ 53CMQ-= — —MI'-Q-+ r-.k
gQ k k k (2.1)

Here M is an effective mass and I-„is the damping
coefficient. The random force r-„contains the effect
of other noncritical phonons. We assume that its
fluctuations are related to the damping coefficient by

(r-„(t)r-„,(t')) =2r-„Mg(k+k') 5(t —t'), (2.2)

with 8(k) =(2m)~8"(k). This relation guarantees
that the equilibrium distribution function for Q-„(t)
is determined by exp( —K —IC), where K is the kinetic
energy (see Appendix A). In addition we shall as-
sume in the following that the normalized probability
distribution for r-„(t) is Gaussian, i.e.,

a, lr]=g 'exp —
J~ dt Ji irk(t)~'/4r-M .

dk
(2~)' (2.3)

We will be interested in situations where the Ginzburg-Landau free energy is even in Q-„

d kt d k2 d k d k4

( )~ ' " " " (24r) (24r) (24r)~ (24r)~

x 5(k, +k2+k, +k4) v4(k, k, k3k4) Q-„Q-„Q-„Q-„ (2.4)

For optic phonons, which also can be described by
Eqs. (2.1)—(2.4), k2 and u4 are finite for vanishing
arguments.

For acoustic phonons, which are our concern in
this paper, v2 and v4 vanish if one of the arguments
approaches zero. In general the dispersion law of an
acoustic phonon is anisotropic, which becomes partic-
ularly manifest near the elastic phase transition. As
has been shown earlier' softening occurs in three-
dimensional crystals only in one- or two-dimensional
subsectors. To be general we assume the soft sub-
sector to be m-dimensional and decompose the wave
vector k into an rn-dimensional "soft" component p

and a (d —m)-dimensional "stiff" component q; i.e. ,
k =(p, q). Then k2 has the form

v, (k) = (rp'+ q'+tp4), (2.S)

P iPZP&P4u4(kik2k3k4) =
( )( ), (2.6)

i.e., model I and II, respectively.

with r ~ T —T, . All other contributions to the har-
monic part are irrelevant for the critical behavior. '

For the same reason we may restrict ourselves as in
the statics' to
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Of course also the damping coefficient will be anisotropic

I k=Dp2+Dq2 . (2.7)

2. Onsager-Machlup functional and Lagrangean

A Langevin equation with Gaussian noise can be represented by an Onsager-Machlup functional. ' In order to
derive the Onsager-Machlup functional for the oscillator Eq. (2.1) we start from the proper definition of the path
probability distribution for the random force r(t)

1

r'(t)
exp —

z dt X)[r] —= lim Q4I M .-o, 4I Mm(r 0

1/2 t

n r2
dr exp —r g

o 4I M (2.8)

Here the total time interval 2Tis divided into n =2T/r subintervals of length r and r =r (—T+or). For clari
ty we suppress the indices k in all intermediate steps. The discretized version of the equation of motion (2.1)

M—,(Q —2Q -t+Q. 2)+ (Q —
Q t)+ ' =rIM 53C

(2.9)

can be used to eliminate r from Eq. (2.8). Thus we get the probability distribution

wg[Q] = w, lr(g)] i

for the order parameter Q (t)
t

wg[Q] =b 'exp —JI dt MQ+I MQ+-r -gg (2.10)

The last term in the exponent comes from the Jaco-
bian ifir/fig(, which in contrast to the relaxational
Langevin equation is a constant and thus will be in-
cluded into 3 in the following. Because of the
second-order time derivative in Eq. (2.10) the dif-
ferential

n

S[Q] =lim ff [(M/41' 3)'i'dQ ]r~o

contains a normalization factor v /. To lower the
nonlinearity and to get rid of the inverse damping

wg[Q] =ft ' „&[iQ]exp' [Q, Q], (2.11)

with
' l/2

5) [ig]=lim g ™d(ig )
oo-o

and the "Lagrangean"

coefficient in Eq. (2.10) we rewrite wg[Q] by means
of the auxiliary field Q(t),

t
~ ~ 53C4: [Q -„ (t), Q -„ (t)] = J „'I dt Q -„ (t) I -„MQ -„ (t) —Q -„ (t) MQ -„ (t) + + I -„MQ -„ (t)k k k

5Q -„ t
(2.»)

Since all correlation functions can be represented as path integrals weighted with the density wg[Q] this formula-
tion puts dynamics in a form analogous to statics.

From Eq. (2.12) it is easily seen that an additional external field h-„(t) in the equation of motion gives a con-
tribution h -„(t)Q-„(t) in Z. To generate all the correlation functions of interest we include also a field h-„(t) and
define the generating functional

f({h], [h]) =—b '
„'~ S [ig]X)[Q]exp g[Q Q]+ Jl dt[h -„(t)g-„(t)+h -„(t)Q-„(t)]

,

f 1"k
(2.13)

with a normalization factor &. The correlation functions of Q-„(t) can now be written as functional derivatives of f

(g (, ) g (, )) 5"f((h], (h])
gh -„(tl)...8h -„(t„) ti-a-o (2.14)
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and in addition the response functions

gn+mf ( {h ] {i ])t ).. . -„(t„) -„,(t, ')... -„,(t ')) =— (2.15)

can be defined. The following basic properties of
these functions

(Q-„(t ).. .Q-„(t.)) =0,
n

(r-„(t)Q-„(t')) =5(k, +k )5(t —t'),

(2.16a)

(2, 16b)

(Q-„(t)g-„(t')) =—F-„,'(Q-„,(t)~ (t')), (2.16c)

are obtained readily from Eq. (2.13). Another im-
portant relationship is the fluctuation dissipation
theorem

I

which is derived in Appendix B. The fluctuation dis-
sipation theorem provides a relationship between the
two point correlation function

c(k, co) =—(Q-„g k „,)/8(k+k') 5(co+ co')

and the response function

(2.18a)

Q-„„=„dt e'"'Q-„(t) .

g(k, co) = (Q-„„Q-„,„)/8(k+k')5(cu+03'), (2.18b)

where

(g-„(t)Q-„(t')) = —ft(t —t') Perturbation theory

x—(Q-„(t)Q-„(t')), (2.17) The Lagrangean (2.12) is decomposed into a har-
monic part

Z, [0,Q]=J~ —dk, „l
d" {g-„„r-„Mg-„„g-„„[M-'+ r-„M-+„(k)]g-„j

2m '" (2.19)

and the interaction

&t[g, g] =—4tt Jt q ...
q 5(kt+k2+k3+k4)22r

(24r ~ 23r (2n ~ 2n.
8(~t + 032 + 033 + 4) v4( kt k2 k3 k4) Q g ~ Q k „Qk ~ g g „

Because of Eq. (2.16a) the only nonvanishing free
propagators are

ga(k, co) = [—Mcu2 —i FkMo)+ v2(k)l ', (2.21a)

tional to p2. Hence, there are no contributions to
g(k, co) of the form MaP, i44MDq', and q2. More-
over the Hartree diagram contributes only to the rp
term.

cp(k, (n) =2r „Mlgo(k, -) I' (2.21b)

Since c(k, co) follows from the fluctuation dissipation
theorem (2.17) it suffices to consider the perturba-
tion expansion for g (k, cn) which can be re'presented
in terms of the self energy g (k, cu) by the Dyson
equation

g(k, r ) =[ga'(k, o)) —X(k, tn)] '. (2.22)

Second, since v4(kt k2k3k4) ls proportional to
tt;(i =1,2, 3, 4) the self energy X(k, tn) is propor-

There are two properties which can be read off im-
mediately in. every order of perturbation theory.
Firstly, Eq. (2.2la) and the structure of the perturba-
tion series imply that M enters g(k, co) only in the
following combinations:

g(k, o)) = G(k, (M)' 'o) (M)' 'D (M)' 'D) .

(2.23)

III. CRITICAL BEHAVIOR

In this section we introduce the renormalization-
group (RNG) transformation and discuss the fixed-
point structure above and below the critical dimen-
sionality.

1. Renormaligation procedure

A particular advantage of the path integral
representation lies in the similarity of the dynamical
RNG to the static RNG.

The anisotropy of v2(k) suggests an RNG
transformation ~here the soft and the stiff corn-
ponents are scaled differently. Restricting the wave
vectors to a cylindrical Brillouin zone, p ~1 and
q ~1, the RNG procedure is defined accordingly':
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(i) At each step of the renormalization we integrate
out all Q-„„and Q-„' with momenta and frequencies

in the region

and use of Eq. (3.5) gives

~2 bm+x(d —m)+4 (3.7)

b '&p&l, b "&q&1, —~&zd&~. (31) By inspection of the recursion relation for the cou-
pling coefficient u one finds for the critical dimension

(ii) We scale the variables and fields according to
d, (m) =2+ —m,1 (3.8)

p'=bp, q'=b"q, ~'=b'co,

and

Q k. = kb'Q k. (3.2)

(iii) The definition of the RNG is completed by

choosing suitable length scales in the two subspaces
and a proper time scale. As in the static theory' we

fix the coefficients of the p and q terms, which

leads to

g~b2zb zb mb x(d-m)—b
4—+q- —

((b22b zb bmx(d m) b
—2x—

(3.3)

(3.4)

where q has been introduced to take into account the
p4lnb term. A third relation is obtained by applying
the transformation (3.1) and (3.2) to the fluctuation
dissipation theorem (2.17)

~/g = b'. (3.5)

1x =2 ——'g
2 (3.6)

It can be checked in second-order perturbation theory
that Eq. (3.5) guarantees that the RNG transforma-
tions of the first and the third term in Eq. (2.19) lead
to one and the same transformation for D.

Combining Eqs. (3.3) and (3.4) we recover the
static result

M' = b4-~-'M

M'D' = b 4 '(MD + u E(D, M) Inb],

M'D' = b 'MD .

(3.9)

(3.10)

(3.1 I)

in accordance with that of the static theory. ' Equa-
tion (3.8) implies that systems with one-dimensional
soft sectors (m = I) are Gaussian (u' =0) in three
dimensions while logarithmic corrections to the clas-
sical behavior appear for two-dimensional soft sectors
(m =2). In isotropic elastic systems the nontrivial
fixed point is stable for d =3. The static results ot
the e expansion are summarized for d & d, (m) in
Table I. In the use of scaling laws one has to
remember that the dimensionality d is to be replaced
by m+(2 ——2zt) (d —m), e.g. ,

1

2 —u = [m + (2 —
—,
'

21) (d —Pn) jP,
and that the exponents y and q are defined in terms
of the susceptibility of the strain, i.e. ,

lim (~pg, ~2) —r
p ~0

with r = (T/T, ) —I and

(lpg, l') -p '"
for T=T, .

Now we turn to the recursion relations of the
dynamic quantities which after use of Eqs. (3.5) and

(3.7) read

TABLE I. Nontrivial fixed-point value for u and static critical exponents in order

4 1/b d -m 4
e =—d {m) —d, C{0)= d p d' q + d p d g0 1/b2 [(p +p2)p2 + q2]2 1/b p [(,. +p2)p2 + 2j 2

The exponents P and 5 have been obtained from scaling laws,

C(0)
lnb

Model I
1

18

1

3

1I+—e
3

1

V = 1 1—(I ——2.)2 3
3 +26

Model Il
m(m +2)

2(m2+6m +20)
2(m + 8) —(m + 2) 2

2(m + 8) + (m +2) 2

(m +2)21+
m2+6m +20

1
V = 1

I
2(m+8)

m2+6m +20
3 +26
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The second-order contribution to Eq. (3.10) E(D,M) is represented diagrammaticaliy in Fig. land, for model I,
has to be extracted from

dkt d"t dkz do)z dk3 dru3Ig(4u) P ~ ~ 8(kt+kp+k3) 2mg(~t+ coz+ co3 —) p, p)p3
2m ~ 2m 2m ~ 2m 2m ~ 2n .

xc«(kt, cut) cp(kz, coz) g«(k3, co3) (3.12)

As emphasized after Eq. (2.23), the wave-vector
dependence of the vertex excludes contributions
from step (i) of the RNG to Eqs. (3.9) and (3.11).
Since zis positive, Eq. (3.11) implies that MD is ir-
relevant.

2. Gaussian region

Let us consider first the behavior above the critical
dimension, i.e., d & d, (m). Then the trivial fixed
point with u' and q zero is stable and we find

z-2, (3.13)

2p2+ p4+q2] 1

The correlation length $ behaves as

(3.14)

where T, is the actual transition temperature. In Eq.
(3.14) we have retained the irrelevant D term. D is

temperature independent and does not contain terms
proportional to gz as one might have expected from
Eq. (3.11) and as would be admissable according to
scaling. In this sense one could say that dynamical
scaling is contracted to the soft subsector.

In the hydrodynamic region, pg « I, the sound

with M' and D arbitrary.
This result is applicable to the experimentally

relevant case of three-dimensional crystals with one-
dimensional soft sectors, i.e. , m =1. For the Gaus-
sian fixed point'one also computes readily the
dynamic Q-„„response function

X(k, «)) = [—Mcuz —imM(Dpz+Dqz)

and the damping coefficient is temperature indepen-
dent. At the critical point both damping and real part
of the frequency are proportional to p~,

For m = 2 and d = 3 we are at the border dimen-
sion and logarithmic corrections appear, which will be
computed in Sec. IV.

3. Won-Gaussian fixed point
d & d, (m)

For d &d, (m), q is finite and Eqs. (3.9) and
(3.10) show that fixing Mor MD will in general not
lead to the same exponent z. We would like to con-
sider now d & d, (m) in complete generality, includ-

ing the case of isotropic systems which are non-
Gaussian in three dimensions.

The fixed points of Eqs. (3.9) and (3.10) are deter-
mined best by considering fire'. the p™~~~
X =

~
(M)' zD, which transforms independently of z.

Its transformation reads

X'= b ~iz[X+ uzE(X) Inb],

where because of Eq. (2.23),

E (X) = Z(D, M)/2(M) t"

(3.16)

(3.17)

has been introduced.
Equation (3.16) gives a finite fixed point X only

if the function E(X) allows a solution of

E (X')
X' 2u'~

(3.18)

If such a finite fixed point exists one finds from both
Eqs. (3.9) and (3.10)

velocity of the acoustic waves in the soft direction is

(3.15)

'=2 1 (3.19)

~~mm~~~~~~4

FIG. 1. Second-order contribution to the recursion
relation for MD, where —:cp(k, ~);—---:gp(k, ~).

and M' and D' are finite and are related by
(M')'AD =2X'. Standard dynamical scaling4 holds
for such a fixed point.

However, for the isotropic model to be discussed in
Sec. IV no solution of Eq. (3.18) exists, since
E(X)/X & 3/16n~ and hence the only fixed point of
Eq. (3.16) is X =~. [X=Ois nota fixedpoint
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with c given in Eqs. (C3a) and (C3b) for model I.
Inserting Eq. (3.20) into Eq. (3.16) we find for the
exponent of X at the fixed point X' = ~

y» ——(c + —,
'

) 71 . (3.21)

If X' = ~ the recursion relations (3.9) and (3.10) ad-
mit more than one solution;

(i) If we require that M be finite we find

1
z 2 (3.22a)

which is the value one should anticipate from hydro-
dynamics. The scaling exponent of M in this case is
of course

(3.22b)

and D'M
(ii) On the other hand if we require D M to be

finite we find a different exponent

since Iim» aE(X)/X = ~]. It is possible to deter-
mine E(X) for large X by general arguments without
explicit computation of Eq. (3.12). According to Ap-
pendix C the phonon model degenerates into the re-
laxational model A of Halperin, Hohenberg, and Ma2

in the limit M 0 (MD finite) and hence Eq. (3.9)
has to coincide with the transformation of the inverse
damping coefficient of the latter model in this limit,
1.e. ,

E(D,M) i. E(X) ( I)
MD ~fixed

(3.20)

ational fixed point. However despite the differing
values of the individual exponents both representa-
tions describe the same physics, and lead to the same
(modified) dynamical scaling law, as will be shown in
Sec. IV. This might be anticipated from the fact that
the mode is overdamped at criticality for both (i) and
(ii) .

Incidently we note that by fixing other combina-
tions of D and M still other values of z and vM could
be generated. As will become clear later, this is an ar-
tifact of a fixed point where one of the z-independent
dynamical parameters (in our case X) is infinite or
zero at the fixed point, The different values of z,
resulting from different fixing conditions, reflect the
fact that dynamical scaling in its usual form does not
hold in such a situation.

While X = 0o is the only fixed point of the isotro-
pic model, it is conceivable that for other values of m

the infinite fixed point and finite fixed point(s) exist
simultaneously, with A' = ~ being stable for

1c )——.2'

IV. ISOTROPIC MODEL,
LOGARITHMIC CORRECTIONS

The isotropic-phonon model is an example where
the RNG transformation can be computed explicitly
to second order, The modifications of dynamical
scaling implied by the infinite fixed point are studied
in Sec. IV 2. Finally we will investigate possible loga-
rithmic corrections at the border dimensionality of
the isotropic model and of the m =2 system.

z =2 —q+u 11m
E(X) =2 +cgx-~ (3.23a)

and M approaches M =0 characterized by the scal-
ing exponent

y4d = —(2c + I ) rt . (3.23b)

It would be tempting to refer to the results of these
differing fixing conditions as an oscillator and a relax-

Isotropic acoustic phonons

In order to have a concrete example where the
RNG transformation Eqs. (3.10) and (3.11) can be
computed explicitly we study now the isotropic-
phonon model, which is characterized by the Hamil-
tonian

~k dk1 dk4d d

(rk2+k )Q-Q -+u 1 5(k, +k2+k3+k4)ktk2k3k4Q-„Q-„Q-„Q-„
(2 )' (24r) d (2m)" 1 2 3 4

(4.1)

and the corresponding Lagrangean

[Q- MDk Q — —Q- ( Mrs +iMDk2cu+rk—2+k4) Q — jJ (2~)d 2 ~ k au —k —cu k ro

4u — . . . 5(kt+k2+k3+k4)5(rdt+rd2+cu3+rd4)2' ktk2 3 4Q-„„Q-„Q-„Qk„
(27r) d 2rr (2n) d 24r

(4.2)

Concerning the physical relevance of the model we mention that there exist isotropic elastic systems in nature,
for instance, polymers in the amorphous state. However, unfortunately we are not aware of any example
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cE(X)/X

20
in accordance with Eq. (3.20)

lim E(X) =(c+1),X,
g ~c)o 8~4

(4.4)

10

where now c =6 ln
3

—1. Obviously X = ~ is the

only fixed point of the isotropic model since E(X)/X
is larger than 3/16n4

2. Dynamical scaling

FIG. 2. Plot of the function E{X)/X, which for conveni-
ence is multiplied by a factor c =64m4/9. For,the relaxa-

4
tional model the function would be the straight line 161n 3.

3 «2 1
tl

8~4 S4
(4.3)

for m =d =4 —e.
The computation of the second-order contribution

to the damping, Eq. (3.12), is deferred to Appendix
D. The result is shown in Fig. 2, with E(X) being
defined in Eq. (3.17). In the limit of large X we find

which would undergo an elastic phase transition.
Nevertheless we should like to point out that
Eq. (4.1) is merely a model and serves only as
an oversimplified representation of reality. In partic-. '

ular it contains only one soft acoustic phonon
whereas, for instance, in three dimensions one has
two degenerate transverse acoustic phonons.

The statics of the Hamiltonian (4.1) is equivalent
to the spatially isotropic-spin model as follows by

changing to the variables kQ k. Thus the critical

dimensionality is d, =4 and

%e will now investigate the physical consequences
of the infinite fixed point A' = ~ and clarify the sig-
nificance of the differing exponents obtained by the
RNG transformations (i) and (ii). We have antici-
pated already that these different transformations and
exponents describe one and the same critical point.
In this section it will become clear how the exponent
z =2 + cr) obtained from (ii) can possibly describe an
elastic phase transition. Without doubt, the sound
velocity has to obey the hydrodynamic relation

elastic constant' '
C =

density
(—(1—g/2)

which would lead to z =2 —
2 q. This contradiction

with standard dynamical scaling is in fact a charac-
teristic feature of this model. Since dynamical quan-
tities depend on X, which diverges at the fixed point,
usual dynamical scaling does not hold. Although X is
an irrelevant parameter, in the sense that it ap-

proaches X = ~ at the fixed point, it is necessary to
keep track of X in the derivation of scaling laws, be-
cause it is infinite at the fixed point. For the fixing
condition (ii) the same is true, since M cc X z.

Recalling Eq. (2.23), the RNG transformation of
the response function reads

G(k (M) ru $ X) b nG[kb (M)-tizcob'+ $/bXbx] (4.5)

First of all it is obvious that yx = (c +—) q and the

combination of exponents

1 1z+ yM=2 ——q (4.6)

are independent of the transformation, not only for

the transformations (i) and (ii), but in general as can
be seen directly from Eq. (3.16) and Eq. (3.9).
Hence, one and the same scaling law is obtained for
all of these different transformations. However, be-
cause of the dependence on X the correlation func-
tion is a homogeneous function of four variables and
thus can be written in the form

G(k, (M)'~z~, (,X) =k~+~G[I, (M) ~ ruk +"~,kg, Xk ) (4.5')

In dynamical problems like the time-dependerit Ginzburg-Landau model or the isotropic antiferromagnet' the
dynamical susceptibility is a homogeneous function of the wave number, the frequency, and the correlation
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length and consequently the resonance frequency
co, (k, g) scales as

co, (k, g) = b 'ru, (kb, (/b) .

behave as

(7 7 ) v()-g/2)

Q (7 7 ) P(c+1)YJ (4.11)
In contrast, we find from Eq. (4.5) for the poles of
the response function

~,(k, g, X) = b(-'-~i')~ (kb, g/b, Xb"), (4.7a)

which allows us to represent co, in the following
equivalent forms:

ru, (k, (,X) =k "2 ao, (1, (k, Xk «),

k (X) 4-- »~ (kg I X(t«)

(4.7b)

(4.7c)

Since the real part and imaginary part of the frequen-
cy will depend on X, dynamical scaling in its usual
form does not hold. In order to determine the wave
number and temperature dependence of the critical
frequency we need to find the dependence on X of
the dynamical susceptibility G. To achieve this in

every order of perturbation theory it is convenient to
compute the right-hand side of Eq. (4.5) for a suffi-

cient large b, such that Xb ~ )& 1. Since the oscilla-
tor model approaches the relaxational model accord-
ing to Appendix A in this limit, it can be shown in

every order of perturbation theory that the self-

energy part linear in eo is proportional to Xb ~. Of
course b cannot be chosen arbitrarely large, but has
to satisfy the inequalities bk ~1 and b$ ~1 in ord-
er for scaling law (4.5) to be valid. Thus the linear
dependence on the initial damping coefficient

~ ~X = —(M)' 2D is restricted to the domain k « X

g
' « X «. Recalling that the self-energy contains

no co2 contribution and that G equals the static sus-
ceptibility X(k, g) for co=0 we get

G(k, (M)' 2(u, g, X) = [—MaP+X '(k, ()
—i ru Mk Xf(k, g) + 0 (m )]

(4.8)

Equation (4.10) holds only if the damping is much
smaller than the real part of the frequency, i.e., for

-(I+y~)
k « g

« . In the intermediate region
«kf «kg « I, the mode found from Eq. (4.8)

is overdamped (see Fig. 3).
At the critical temperature, the dynamics is charac-

terized by the exponent of the relaxational model A, 2

z = 2 + e g. On the other hand the correct hydro-
dynamic sound velocity results for kg « I,
corresponding to z =2 —

2 q. Still another exponent
characterizes the damping coefficient in the hy-
drodynamic region. The breakdown of dynamical
scaling can be traced to the dependence on the
parameter X, which is irrelevant but diverges at the
fixed point. The modification of dynamical scaling
was not yet realized in Refs. 8 and 11, ~here the
damping coefficient was inferred from z = 2 ——q
under the assumption of dynamical scaling.

Logarithmic corrections

The general theory of logarithmic corrections to
static phenomena has been developed by %egner.
Such corrections have to show up also in the dynamic-
response function to be consistent with the limit
co 0. Of course one has to check whether there are
additional logarithmic corrections from purely dynam-
ical quantities (we use the notation of Refs. 9 and
10). The dynamical recursion relations can be rewrit-

Ii
k

Here f (k, g) obeys the scaling law

f(kb, g/b) =b f(k, g)

as is apparent from Eq. (4.5). Because f(0, 1) and

f(1, ~) are finite, the damping term is proportional
2 .~~+g/2 .

to k2& ~ in the hydrodynamic region and to-/
k ~ in the critical region.

Thus we find at the critical temperature (kg )) I),

OJc Ik

In the hydrodynamic region, k (« I, we find

coq = + ck
2

II)'k1 . 2

where the velocity and the damping coefficient

(4.9)

(4.10) FIG. 3, Schematic representation of the critical and hy-
drodynarnic region. To show the reduction of the hydro-
dynamic region, we have chosen a very large value of q.
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ten in the form

dM

dl
= (4 —r(( —2z() M(

dD( u( E(D(,M()
z( (+

dl M(

(4.12a)

(4.12b)

For the four-dimensional isotropic elastic model we
have 7(( = (3/8rr4) u(z with u( = u pip/(I + Ip) and

lp = 1/36 Cup. With

z( = 2 ——'rl( = 2 —(3/16m') u(2
2 (

we may set M(=1 and without loss of generality we
find from Eq. (4.12b)

t D( dt ~o lol

o E(t, 1) —(3/16& )t I+ID
(4.13)

Since the integrand is always positive and behaves as
1/t for large t according to Eq. (4.4) we conclude
from Eq. (4.13)

lim D( = D'(Do) ( ~ D' )Do
(~oo

(4.14)

(

X(k, «() = —M«(2+r logr
4lp

1/3

p2

+p4+ q' —iM(o(D'p'+ Dq') . (4.15)

Here p is the component parallel to the soft plane and
.q perpendicular to it. The exponent of the logarithm
is —

—, for model I, while it is ——for model II.'

V. SUMMARY AND DISCUSSION

In Secs. I—IV we have investigated the dynamics of
elastic phase transitions based on a stochastic equa-

Hence there is no logarithmic correction from D,
which would require a power-law dependence of D on
(I + lp). Fixing the damPing coefficient MD leads of
course to the same result. The absence of additional
logarithmic corrections has also been proven for the
uniaxial dipolar magnet with relaxational dynamics
and not conserved energy. '

More interesting is the case of t~o-dimensional soft
sectors, where logarithmic corrections are found in
three dimensions. Although we have not computed
E(D,M) for this case we can nevertheless show that
there are no logarithmic corrections beyond the static
ones. From Eqs. (4.12b) or (4.13) we see that D( is
a function of (1/(I + Ip) +(8), where P is a finite con-
stant of integration. Hence the logarithmic correction
due to the first term in the parenthesis is negligible in
leading order.

Therefore the dynamic susceptibility is given by

tion of motion for the soft acoustic phonon. Other
phonons entered only as a stochastic force in this
equation of motion. In view of the spatial anisotropy
of phonon frequencies we had to decompose the d-

dimensional k space into a "soft" subspace for which
the sound velocity vanishes at T, and a "stiff" sub-
space. Assuming the former to be m dimensional,
we obtained for the critical dimension d, =2+ —,m,

which coincides with the static critical dimension as in
the majority of dynamical models.

In three-dimensional crystals m can be 1 or 2. For
situations where softening occurs only in selected
directions, i.e., m =1, the behavior is classical; in
particular the sound velocity vanishes with the square
root of (T —T,) along these directions and the damp-
ing is temperature independent. At T, the dispersion
is proportional to the square of the wave vector.

For two-dimensional soft sectors (m = 2) the classi-
cal critical behavior is modified by logarithmic correc-
tions, as given in Eq. (4.15).

In Table II we have collected substances undergo-
ing elastic phase transitions. The references are by
no means complete but should allow the reader to
trace the rest of the relevant literature about these
systems. Except for KCN, NaCN, and s-triazine,
which are examples for m = 2, these systems show
softening only in certain directions and hence belong
to m =1. In the application of our theory to these
systems the following limitations have to be kept in
mind, which have already been discussed to some ex-
tent in Refs. 1 and 11.

First we have disregarded all third-order terms.
The third-order elastic constants allowed by sym-
metry have been tabulated by Brugger' for the dif-
ferent Laue groups. From Table III in Ref. 12 one
easily reads off that in cubic systems for c44 0 there
is only one third-order term of the form E]36236]2,
whereas for c~~ —c» 0 in cubic systems and for
c66 0 in hexagonal systems several third-order
terms are allowed. In the other cases symmetry does
not permit such terms. For instance in the
orthorhombic system there are no terms of the form
(o(3)' and hence there are no third-order terms at
transitions where c55 0. If third-order terms are
present the transition will be of the first order. Our
theory is app1icable in situations where these third-
order terms are not present at all for symmetry rea-
sons or where they are so small that the first-order
character will appear only close to T, and hence the
transition can be considered as nearly second order.

Second, we have disregarded interactions of the
soft acoustic phonon with other phonons. For exam-
ple there will be interactions of the form
e;; x (shear)', which lead to a coupling of the soft
transverse phonon to longitudinal phonons. The
form of this interaction is similar in structure to the
rnagnetostrictive interaction in compressible mag-
nets. " The elimination of the noncritical longitudinal
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phonons leads to additional (negative) fourth-order
interactions between the soft modes. One may antici-
pate that in analogy to the magnetostrictive case the
transition becomes of first order for free boundaries
and a positive exponent of the specific heat. For a
clamped crystal the transition remains second order
in magnets, however, clamping would interfere with
the shear deformation, which is characteristic of our
elastic systems. Again as in magnetic transitions and
structural phase transitions accompanied by soft optic
phonons, we have to assume that the first-order
character is small enough such that the transitions
can be considered to be almost of second order.

Third we have not considered the conservation of
energy or alternatively the coupling to heat diffusion.
It is well known that the sound velocities are deter-
mined not by the isothermal but by the adiabatic
elastic constants if heat conduction is taken into ac-
count. For transverse acoustic waves in high-
symmetry directions of orthorhombic, tetragonal, cu-
bic, and hexagonal crystals isothermal and adiabatic
elastic constants are identical. Modifications might
occur for T = T, in the isotropic model for d ( d, .

Aside from KCN, NaCN, and s-triazine there is a

conspicuous absence of elastic phase transitions with

m =2. In systems with m =2 the local fluctuations
and hence the Debye-Wailer factor' would diverge
logarithmically at a second-order transition. Thus
one expects that the actual transition in such systems
will be of first order, leaving aside other causes.
Also KCN and NaCN undergo a first-order transi-
tion. It would be interesting to investigate if hydro-
static pressure would reduce the first-order character.

As discussed in some detail in the context of the
static theory, there is in general more than one soft
sector in three-dimensional. crystals. There we con-
cluded that the interactions between modes in dif-
ferent sectors are irrelevant near the fixed point,
which justified the investigation of single sectors.
These arguments can be generalized to the dynamics.

The basic fields in our theory are the components
of the displacement vector. Compared to the use of
the strain tensor, the essential advantage is that the
compatibility conditions" are automatically contained

- in our theory.
We turn now to the discussion of isotropic elastic

phase transitions. We are not aware of any isotropic
elastic system undergoing an elastic transition, how-

TABLE II ~ Examples of elastic phase transitions.

Crystal
Transition

Temperature in K below
Symmetry

above
soft elastic
constant Refs.

LiNH4C4H406 H20
KH3 (Se03)2
KD3 (Se03)2

PrA103
InT1 Alloys 25% Tl
InTl Alloys 27% Tl

NdPs014
LaPs014

Te02
NaOH

KH2P04
KD2P04
TmV04
DyV04
Nb3Sn

y-Mn alloy

TbV04
Hg2C12

NiF2

K2Cr04
Rb2Cr04
Cs2Cr04
PrA103
DySb

TrriCd

V3Si

97,5

211
296

118,5
196
127
419
391

P, 9 kbar
513
122
220
2, 1

14,8
49
175
34
185

P, 18,3 kbar
893
923
953
151
9,5
3.16
21

monoclinic

mo noel&n&c

monoclinic

tetragonal

tetragonal
monoclinic
monoclinic
tetragonal

orthorhombic
ortho rhombic

orthorhombic
orthorhom hie

orthorhombic.
tetragonal

tetragonal
orthorhombic
orthorhombic

tetragonal

monoclinic

tetragonal

tetragonal

orthorhombic
orthorhombic
orthorhombic

monoclinic
cubic
cubic

orthorhombic
orthorhombic.
orthorhombic

monoclinic

tetragonal

tetragonal

tetragonal

tetragonal
cubic
cubic

tetragonal
tetrago nal

orthorhombic
orthorhombic
orthorhombic
orthorhombic
orthorhombic

cubic
cubic
cubic

css
c44

c44

cl1 c12

c11—c12

css
css

css

c66

c66

c11—c12

cti

c
d

.d

e

e, f
g
h

k

l, m

n
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TABLE II. {Con't.).

Crystal
Transition

Temperature in K below
Symmetry

above
soft elastic
constant Refs.

UO2

PrCu2

NiCr204
KCN

NaCN
s-triazine

30,8
&10
300
168
288
198

tetragonal
orthorhombic
orthorhombic

monoclinic

orthorhom hie

cubic
cubic
cubic

hexagonal

cd
c66

c)) ct2
c&4

aa
ab
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ever, it is conceivable that the decrease of shear rigi-
dity could trigger the melting transition in a system.
The critical exponents of isotropic elastic phase tran-
sitions are nonclassical in three dimensions. The
most interesting and unexpected property of the iso-
tropic elastic model investigated in Sec. IV, however,
is the breakdown of dynamical scaling for d ( d, .
The dynamical susceptibility and hence the charac-
.teristic frequency depend on an irrelevant parameter
[D(M)'~2] which diverges at the fixed point. The
characteristic frequency is a homogeneous function
not only of the wave number and the correlation
length but also of this parameter, Consequently dif-
ferent exponents z characterize the dynamics in dif-
ferent regions in the k —g

' plane. This breakdown
of scaling manifests itself also by the fact, that dif-

ferent fixing conditions (different choices of the fre-
quency scale) lead to different dynamical exponents
z, However, all physical quantities are independent
of the transformation.

This breakdown of scaling is reminiscent of other
cases in statics and dynamics. For isotropic-spin sys-
tems at d ) d,'5 for instance the exponent P is modi-
fied, because the magnetization is proportional to the
inverse square root of the coupling coefficient. A
similar situation is found for the superfluid model'
and the rotational symmetric n-component phonon
model' in certain domains of d and n, the number of
components, as found by De Dominicis and Peliti'6
and investigated further by Dohm and Ferrell. "In
the field-theoretic language a divergent (or vanish-
ing) fixed point of a z-independent combination of
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dynamical parameters is accompanied by different
wave-function renormalizations of the order parame-
ter and the generator of the symmetry operation (en-
tropy in helium, angular momentum in the n-

component phonon model). In the elastic model Q
and P = Q would obtain different wave-function re-
norrnalizations. The above-mentioned authors prefer
to discuss the situation in the models studied by
them in terms of different exponents z for the field
and for the generator, starting from scaling relations,
where the dynamical parameters including the vanish-
ing and divergent ones are set at their fixed-point
values. %e feel that including explicitly the diverging
or vanishing parameters along the whole trajectory in
the scaling laws Eqs. (4.5) and (4.7a) —(4.7c) is im-
portant and allows a description of the whole k —g

'

plane.
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APPENDIX A: EQUILIBRIUM DISTRIBUTION
FUNCTION

X &[/-k —Q-„(t)j (Al)

In order to find the equilibrium distribution func-
tion we explicitly solve the Fokker-Planck equation
derived from the Langevin Eq. (2.1). To this end we
define the probability distribution

g ((4), ( ); ) = g s[,—P-, ( )}
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where the momentum is defined by

P-„=MQ-„

Introducing dg -=Qkdg-»and drr =—gkdrr-»we can

represent arbitrary equal-time correlation functions in

the form

(Q-(t) Q- (t)P- (t) P-, (t)) = ~d4d~(g((t) (~)'t))t- '''4- ~-
k) km km+i k„ m m+1

(A3)

Equation (A3) contains as a weight function the expectation value of g which will be derived from its equation of
motion. Using Eq. (2.1) and (A2) we find for the time derivative of g((g), (rr);t)

8 g(((), (rr);t)rrk—g(((), (~);t) -—$ + g(((). (~);t)—
Bt

'
k 5$» M Smk

1

l

Taking the expectation value we obtain the Fokker-Planck equation

SX
k k k

—r-n-+r (t) (A4)

Il—(g(((}, (m);t)) = —X rr-„/M — —r-„~-„(g((g), (rr);t)) — (g(((), [vr};t)r-„(t)) . (AS)
ai

' ' -„" sg-„s~-„sg-„"s~-„ Smk

Using the relations

and

(g((4), (m);t)r-„(t)) =2r-„M( g({4), (~);t))
—k

sp „(t) '0, -
Sr-„,(t')

I
—,'s(k —k '), t =t'

(A6)

(A7)

we get

(g((g), (m};t)r-„(t)) = —r-„M (g((g}, (rr};t))
-k

(AS)

If the free energy does not contain any time-dependent external field for the equilibrium distribution function
the left-hand side of Eq. (A5) vanishes. Then we eliminate the last term of Eq. (A5) by means of Eq. (A6) and
find

8 5X 8

~&=» S~k
—r-„rr-„+M (g([g}, {rr);t)) =0S S2

Sm k
" Sm'k Sm'-k

t

(A9)
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The last equation has as a solution

(g(((], [rr];t)) =Z 'exp X
" —3C

)7r-k f'

, k

(A10)

Then we decompose the forces in the equation of
motion (2.1) into a reversible and an irreversible part

(B2)

the exponent of which is the sum of the kinetic ener-

gy and the equilibrium free-energy functional. This
completes the proof that the Langevin equation (2.1)
is compatible with the static distribution function.

with

K'""=-Mr-g-, K~ =- SX
k k k' k ag (B3)

APPENDIX B: FLUCTUATION DISSIPATION THEOREM

From Eq. (2.16c) and the requirement of causality,
which implies that (Q-„(t)r-„,(t')) differs from zero

only for t & t', we obtain

(Q-„(t) Q-„~ (t')) = &(t —t') (Q-„(t)g-„(t')) . (Bl)

The probability distribution (2.11) gives rise to the
time-reversal operation

gk«) Qk(-t) Qk«) -Qk(-t) -Q-„(-t) .

Kk"" (t) —Kk'" ( t), K-„"—(t) —K„'""—( t) .—(B4)

Using Eqs. (2.16c) and (B2) in the relation (Bl) we
find

(Q-„(t)Q-„,(t')) = e(t —t') (g-„(t) [Mg-k (t') K-„","(t')——K-„"', (t')])2MI'-
k

Applying the invariance properties

(Q-„(t)Q- (t')) = (Q-„(t)g-„(t')), (g-„(t)K-„"'," (t')) = (K-„""(t) Q-„(t'))

and using again the equation of motion we find

(B5)

(Q k (t) Q k
(t') ) = 8(t —t') [([K-„'",(t) + I k, (t) ] Q k

(t') ) —(Q k (t) K-„'"', (t') ) [
k'

By causality this reduces to

(B6)

(Qk«)gk «')&=tl(t ') &Kk'(t)gk«') —gk«)Kk""«')& .
2M I=k

(B7)

Inserting the definition of K-„'"'(t) we finally get the

fluctuation dissipation theorem

(Q-„(t)Q-„(t')) = 8(t —t')—
and

( r-„(t) r=„,(t')) = 21'8( k+ k ') 5(t —t') (C2)

~ —(Q-„(t)Q-„,(t')) . (Bg)a

APPENDIX C: CONNECTION TO
RELAXATIONAL MODELS

For this model the critical exponent z is given by
z =2+crt[d ( d, (m)]. Especially, performing this
limit for the absolute value model' (model I) the con-
stant c is given by

c =0.92 for m =2, d =3 —e (Ref.10) (C3a)

Since Eq. (3.11) shows that the damping constant
D in Eq. (2.2) is irrelevant, we restrict ourselves in

the following to the model defined by Eqs. (2.1),
(2.4), (2.5), and (2.8) with I'-„=Dpz. In the limit

M 0 with DM = I/I' kept fixed and r-„(t) =I"r-„(t)
we recover, after the substitution S-„=pg-„, the re-

laxational model

c =-6ln3 —1=0.73 for m =d=4 —a (Ref.2) . (C3b)

APPENDIX D: CALCULATION OF E(D,M)
FOR m =d

We[S-„]
S-(t) =-I' " +r-(t)k gS (t) k (C 1) We start with the second-order contribution to the

harmonic part in 20 Eq. (2.19) (Fig. 1).
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d kl dail d k3 dru3 2 2 218(4u) k
4

' '
b

8( ki + k2+ k3) 22rg(011+ 032+ 033 03) kl k2 k3 c0(kl ~ idl) c0( k2» id2) g0( k3» 013)4 22r)" 2n 22r b 22r

(Dl)

where g0(k, 01) and c0(k, id) are given by the isotropic version of Eqs. (2.2la) and (2.21b) with r =0. The in-

tegration has to be carried out over the region defined in Eq. (3.1). To extract from Eq. (Cl) the i id lnb terms,
the condition on k3 is relaxed and the k3 integration is extended over the whole Brillouin zone. Performing the
01 integrations in Eq. (Dl) we arrive at

36u k (1 —X2) 2 [[ /X—+(I —X2)' 2] 2 [(—I, —1, —1) —(—1, —1, 1)] +[/X+(I —,X2)' '] 2

x [(1,1, -1) —(I, I, I)] + [(1,-1, -1) —(1, -1, 1) + (-1, I, -1) —(-1, I, I)]]

where the definitions X =
2

D(M)' 2 and

(D2)

4 4

(tl» E2» a3) =
~ 4 4 2 2

(id(M)' + iX[kl +k2 + (kl +k2) ] + (1 —X )' [alki + e2k2 +@3(kl + k2) ]]
(22r 22r kl k2

(D3)

have been introduced. The integration over the angle between k] and k2 can be done easily. Retaining the linear
term of the Taylor expansion in id and putting Y = X/(1 —X )' we get

'

K3K4

8(1 —X') (/Y + a3)'

dk& e] dk2 2i Y(k,' + k2 ) + (el + e3) kl + (e2 + e3) k2'

«/b k, ~1/b k2 ([2iY(kl +k2) +(el+a3)k,' +(e2+e3)k2 ] —4klk2 (/Y +E3) )'

with Kd
' =2d '2r" 2I (—,d). Keeping now only the inb terms we finally obtain

2
(M)1/2

2
(2i Y + el + 03) (2i Y + E2+ f3)

al, a2, a3 =~lnb2K4'
2

iY+~3 'ln . D5
1 —X (iY+el)(/Y+e2) +(/Y +el)(/Y+e3) +(/Y+e2)(/Y+e3)

Inserting this result into Eq. (D2) we find

for X (1

The function E(X)/X is plotted in Fig. 2.

E(D, M) =2(M)' E(X)
with the function E(X) given by

E X 642r 16X 1
4 4X

1
8X2+1 2(1 —4X2)

9 3 I X2 9X2 (I X2)3/2

(1-X)' 2 (1-X)'/'
x arctan + 2,/2

arctan
X2 3/2

E(X) 64m 16X 1
4 (X2 I) 3/2l X+(X —I)'

y 4X —1

9 3 X (X2 I) 1/2 (X2 I) 3/2

3X + (X2 —1) '/2 4X
1

9X
3X —(X' —1) '/' X' —1 1 + 8X'

(D6)

(D7a)

(D7b)
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