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The Peierls argument is used to prove that an ordered phase exists at sufficiently high activity
for a body-centered cubic lattice gas of hard spheres with first- and second-neighbor exclusions.

I. INTRODUCTION

Solid-fluid phase transitions in molecular systems
at high temperatures share some essential features
with order-disorder transitions which occur in model
systems of molecules having only hard-core interac-
tions. In particular, hard-core systems have no
solid-fluid critical points, and the transition pressure
is strictly proportional to the transition temperature. '

The lattice gas, a model system in which the
molecules are restricted to lattice sites, has been ex-
tensively studied as a model for phase transitions,
Hard-core lattice gases in which only first-neighbor
sites are excluded from simultaneous occupancy are
not particularly realistic models for melting, for any
order-disorder transition which occurs does not ap-
pear to be first order. 2 Extending the exclusions to
more distant neighbors (corresponding to a smaller
lattice grid) seems in several cases to effectively
change the transition to first order. '

A number of lattice gases with first-neighbor hard-
core interactions have been proved to exhibit order-
disorder phase transitions. ' ' Lattice gases of hard
disks on the triangular lattice with exclusions extend-
ing to more distant neighbors have also been shown
to undergo phase transitions. ' Numerical methods
have been used to locate the transition in this model
for exclusions which extend through several neigh-
bors. In addition, a lattice gas of hard disks on the
square lattice with exclusions extending through third
neighbors has been proved to undergo a phase transi-
tion. " This transition has also been located numeri-
cally. '

In the present work we shall consider a body-
centered cubic (bcc) lattice gas of hard spheres in

which both first and second neighbors are excluded.
Using the Peierls approach we shall prove that an or-
dered phase exists for this model at sufficiently large
activity z. This lattice gas should provide a fairly
good model for the melting of a simple substance at
high temperatures and pressures, for the ordered
phase is a cubic close-packed structure, and numeri-
cal results indicate the transition is probably of the
first-order type.

II. DEFINITION OF A CONTOUR
IN A CONFIGURATION

Since the notion of a contour plays a central role in
the Peierls argument, we shall first define what we
shall mean by a contour in a configuration.

The bcc lattice is composed of two simple cubic
sublattices, each of which is composed of two face-
centered cubic (fcc) sublattices. The lattice is also
composed of tetrahedra having one vertex from each
of the fcc sublattices. One such tetrahedron is illus-
trated in Fig. 1. Two of.the edges of each
tetrahedron are of second-neighbor length and con-
nect two vertices from the same simple cubic sublat-
tice. Each of the other four edges connects a vertex
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FIG. 1. A tetrahedron with vertices 1, 2, 3, and 4 is illus-
trated together with other sites of a bcc lattice which are re-
ferred to in the text. Each such tetrahedron contains one
vertex from each of the four fcc sublattices of the bcc lat-
tice.
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from each of the two simple cubic sublattices and is
of first-neighbor length. (These tetrahedra have also
been used in connection with a Peierls argument for
the existence of an ordered phase in a model for wa-

ter. ") I

In the present model, any one of the fcc sublattices
can be completely occupied at closest packing, there-

by forming an ordered structure P, a =1, 2, 3, or 4.
A tetrahedron in a configuration will be said to be-

long to P if and only if the vertex of the tetrahedron
which belongs to fcc sublattice e is occupied. Other-

wise, the tetrahedron is vacant and will be said to
constitute a contour segment.

Two contour segments will be said to be connected
if they share a face or a common edge of first-
neighbor length. Two contour segments which share
an edge of second-neighbor length [as do tetrahedra

(1,2,3,4) and (1,4,5,6) in Fig. 1] belong to the same
contour, for they also each share a face with a third
contour segment [tetrahedron (1,2,4,5) in Fig. 1]. A

simply connected set of contour segments constitutes
a contour. A contour will be said to be closed if it
does not intersect the outer boundary of the lattice.
A contour will be said to be an outer contour if it is

not enclosed by another contour.
It may be helpful at this point to construct a men-

tal picture of the structure of a closed contour. Since
each tetrahedron has a vertex from each of the four
fcc sublattices, then two occupied tetrahedra which

share a face must belong to the same fcc structure
P . Hence a simply connected surface of an ordered
structure P is composed of tetrahedral faces each of
which is shared internally by a tetrahedron of P and
externally by a contour segment. These contour seg-
ments form a connected enclosure of P . A contour
is composed of a union of enclosures and other seg-
ments which do not belong to an enclosure, all of
which are mutually connected.

III. PEIERLS ARGUMENT

If N is the number of sites which have an ordered
structure P in a configuration on a lattice A having

~
A

~
sites, then as discussed by Dobrushin, ' there is

an order-disorder transition in the thermodynamic
limit ()A( ~) if (N )/)A( ) 1/p, independent of

~
A ~, where p is the number of ordered structures

which can be superimposed by the operation of an
element of the space group of the lattice, and where
the thermal average is taken only over configurations
in which the outer boundary is composed of the or-
dered structure P .

In the present model, if the boundary is occupied
by one of the p =4 fcc structures P, then all sites
not belonging to P are enclosed by a closed contour
which is also an outer contour. Then, for any such

configuration,

OO m(L)

L ~24

where N(L) is the maximum number of sites which

can be enclosed by a contour of L segments, m (L) is

the maximum number of types of closed contours of
L segments, and

if contour j is present
in the configuration

,0 otherwise.

Since the border is occupied by structure P, and
since the interior could be filled with structure P,
where each interior sphere of P occupies a vertex
from each of 24 tetrahedra, then the interior must
contain some multiple of 24 tetrahedra. Hence a
closed outer contour and its interior must contain a
multiple of 24 tetrahedra. Since the interior of a con-
tour can be filled with the ordered structures which

border its interior surfaces, and since these structures
would each occupy a multiple of 24 tetrahedra, then
it follows that any closed outer contour must be com-
posed of some multiple of 24 contour segments.
(The same argument holds for inner contours since
their exterior is bordered by one ordered structure. )
L in Eq. (1) is therefore restricted to multiples of 24.

We now proceed to obtain an upper bound to
m (L). Not all contours can be generated by adding

to a growing contour segments which share faces with

the contour, for a pair of segments which share an

edge of first-neighbor length are not necessarily also
connected through a set of faces. This can occur
only if exactly two faces of each of the two connected
segments are shared by occupied tetrahedra. [For ex-
ample, in Fig. 1, segments (1,2,3,4) and (1,2, 8,9) are
not necessarily connected through a set of faces if
and only if sites 7 and 5 are both occupied. More-
over, as is apparent from Fig. 1, this is the only
manner in which a segment can share more than one
face with occupied tetrahedra, all other cases being

. forbidden due to the exclusion of second-neighbor
occupancy. l

To obtain an upper bound to m (L) we first
number successively the tetrahedra of A. To gen-
erate all the possible contours of L segments, we pick
an arbitrary tetrahedron t, the contour segments
which share a face with t, and any segment which is

connected to t by a first-neighbor edge but which is
not necessarily connected to t through a set of faces.
These are the only types of connected segments
which must be considered in order to generate a11

contours.
There are five ways in which three or four contour

segments can each share a face with t. As shown
above, there are four ways in which only two seg-
ments each share a face with t. In the latter case, a

third segment shares a first-neighbor edge with t and
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is not necessarily connected through a set of faces to
t. Hence there are nine ways to begin the contour
generation in this manner.

We then continue the contour by adding all new
segments which are connected as above to the seg-
ment t' of the growing contour which has the small-
est number associated with it. Each step of this pro-
cess can be done in one way if t' is connected to the
contour by only one edge. If t' is connected to the
contour by a face, there are four ways in which three
or four segments can each share a face with t', and
there are two ways in which two segments can each
share a face with t'. In the latter case, a third seg-
ment shares a first-neighbor edge with t' but is not
necessarily connected through a set of faces to t'.
Thus each step of the continuation can be done in at
most six ways. The process is terminated when the
contour contains L segments.

Since each segment is connected to at least three
other segments, the last three segments t' from
which the contour is continued add no new segments
to the contour. Hence there are less than 9(6)~ '
contours which contain t. Since there are less than
6iAi tetrahedra in A, then

m (L) & 9(6)L
i
A i/L,

the division by L resulting since the choice of the
first segment is arbitrary.

We shall now obtain an upper bound to N(L)
Since each contour segment has one vertex from
each of the four fcc sublattices, then no more than
one face of a contour segment can be shared with a
single ordered structure P . Hence no more than
one face of each segment of a closed outer contour
can be shared with outer structure P . Therefore a
closed contour of L segments can have no more sites
interior to the contour than can a three-dimensional
sphere with volume V and surface SL, where S is the
surface area of a face of a contour segment which has
a volume Vo. Since a site interior to a contour is a
vertex of 24 tetrahedra enclosed by the contour, each
tetrahedron having four vertices, then

W(L) ~
6 (V/Vp). A simple computation then gives

C

(g (g,)) Cnk (
C

C

Cek -L/24
NC'

(4)

C C'ek, '

Combining Eqs. (1)-(4), we obtain

1 —' " &(24 '') & n'"(6"z ')", (5)

which converges if z & 6'". Let zo be the positive
real solution of the equation

24-3/2 g +1/2(624Z-1) n
4

n 1

(6)

Then (A/ )/i Ai ) 4
if z ~ zp, proving the existence

of an ordered phase for sufficiently large activity, z.
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We now proceed to obtain an upper bound to
(XLt/ ), where the average is only over configura-
tions in which the outer boundary is occupied by P .
Let A, be the set of all configurations which contain a
contour 2, which is an outer contour of length L.
With each configuration C~A, we associate a confi-
guration C"aX'(this association is 1-1 correspon-
dence) generated in the following manner. Let T, be
a unit translation which converts structure P, to
structure P . Translate by T, all P„r ~ 0,, regions
(together with their interiors) which border &. Then
replace all contour segments of with tetrahedra of
type P . The result is to form a configuration C'

1
such that Nc —Nc =

~4 L, where Nc is the number of
spheres in configuration C. The division by 24
results since each sphere is shared by 24 tetrahedra.

Hence
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