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The static spin susceptibility of antiferromagnetic chromium containing nonmagnetic impuri-

ties is calculated using a two-barid model. Variation in the size of the electron jack and hole oc-

tahedron upon alloying is taken into account within the rigid-band approximation. The impurity

phonon-scattering contributions to the susceptibility have been evaluated, The theory is com-

pared with experimental results on binary chromium alloys containing dilute amounts of
ruthenium and rhenium. Agreement is found to be quite good.

I. INTRODUCTION

In the spin-density-wave (SDW) state, chromium
and its alloy exhibit interesting and, in many cases,
poorly understood behavior. Because of the large
amount of magnetic-susceptibility data now available
on diverse binary chromium systems, ' susceptibility
calculations offer a very useful tool for enhancing our
understanding of itinerant antiferromagnetism. Un-
fortunately, due to the complexity of the problem,
approximations are unavoidable. Between these and-
the possible effects of other contributions. to the sus-
ceptibility, one is unsure how much quantitative
agreement is to be expected from a particular model.

Fedders and Martin examined the magnetic sus-
ceptibility of a two-band antiferromagnet just below
the Neel temperature using a simple model in which
the electron jack and hole octahedron were replaced
by spheres of equal size. The dispersion relations for
the electron band (band a) and hole band (band b)

were taken to be linear. They found that just below
the Neel temperature, the susceptibility decreased
linearly with decreasing temperature, T. Crisan and
Moyer et al, ' extended Fedders and Martin's work to
lower temperatures and found a T' dependence over
a much greater range of T. Experimentally, this
prediction appears to be born out for Cr-Ru alloys'
but is less than accurate for Cr-Re alloys. ' Moyer,
Arajs, and Hedman~ generalized the model of
Fedders and Martin to allow for more band-structure
detail. Specifically, they included the curvature of
the electron density of states at the Fermi surface.
Treating the gap in the excitation spectrum as a
parameter, they attempted to fit the susceptibility of
pure chromium over the entire antiferromagnetic re-
gime, with little success.

Our initial attempt at extending these results in-
volved allowing for variation in the size of the elec-
tron and hole pockets, as well as including the varia-

tion of the Fermi energy with temperature due to the
finiteness of the density of states of the remaining
nonmagnetic bands (the reservoir). The approxima-
tion of spherical bands was retained. This is essen-
tially the model first introduced by Rice. Our results
were less than gratifying. Unlike the data on Cr-Ru
and Cr-Re alloys, the theoretical susceptibility was
very sensitive to alloy concentration. Also, the
predicted gap at T =0 was only half that which has
been observed in optical-absorption studies. 9

In what follows, we report our latest findings for
the susceptibility of chromium alloys containing non-
magnetic impurities. The basic model is similar to
that outlined in the preceding paragraph. Here, how-
ever, we allow for intraband scattering of the magnet-
ic electrons by the impurity ions. This scattering in-
troduces a finite lifetime for the electron-hole pairs.
After the formalism has been developed in terms of a
lifetime, intraband transitions due to electron-phonon
scattering are readily added via a lifetime for such
processes. Barker et a/. ' have pointed out that this
scattering is significant. The total scattering lifetime
v is then given as

1 1+j it ' Tph

where vt is the impurity-scattering lifetime and Tph is
the phonon-scattering lifetime. 7,h is calculated from
the electron-phonon interaction using the Born ap-
proximation.

The theoretical development in the following sec-
tion is based on the technique of the temperature
Green's function. This follows closely previous work
done on the excitonic state by Zittartz" and Maki
and Sakurai. ' For the susceptibility of itinerant anti-
ferromagnets, the treatment is complicated by the
presence of another variable H which measures the
relative size of the electron and hole pockets in the
chromium host.
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11. GREEN'8 FUNCTION AND GAP EQUATION

Our starting point is the following model Hamil-
tonian'.

e= X[E.(K)a'„.a „.+E,(K)b „'.b „]
kO'

In addition, we introduce the matrices' p; and
~;(i =0, 1, 2, 3). rr«and p«are the two- and four-
dimensional identity matrices, respectively; the cr; are

,the usual Pauli spin matrices. The remaining p; are
most easily defined through their multiplication rules
with the cr;

+ —,
' I' $ p (q) p (—q)

ger

+ X u„(q)p (q) .
PRO'

a t and b ~ are creation operators for electrons with

wave vector K and spin a- in band a and band b,
respectively. Vis the transform of the (screened)
electron-electron interaction potential which is taken
as a constant. u„(q) is the transform of the impurity
potential from an impurity at lattice site p. . The
dispersion relations for the two bands are taken as (in
units for which f= 1)

/

E (K) = (K' —K«), (3)
2Nl

1 r

cr; 0 0 cr,
Po~ =

0 . Pi~i=
I l

0
P2~1'= I~ I

'I

al
0 P3~I' = 0

We define a temperature Green's function by

G ( K, K ', T) =—(T[f( K, T) i]I ( K, 0) ])

where T is the time-ordering operator and

(10)

Eb(K+Q) = (K«K. )1 2 2

2Nl
(4)

where m' is the effective mass for electrons in both
bands and Q is the ordering wave vector of the SOW.
The quantity

p (q) =Xa t~ a „+b t~ b„

is the partial charge-density operator. '3

We introduce two auxiliary band functions

e(K) = ,
' [E,(K) Eb(—K+Q)]—

H =H —
Ijt,N, (12)

where p, is the chemical potential and N is the elec-
tron number operator.

G ( K, K;T) has the Fourier series expansion

G(K, K;T) = —. X G(K, K;IQ)„)e ", (13)
n--oo

are the Heisenberg operators for the imaginary time
pT. Also,

- and

«)(K) = —,
' [E,(K) +Eb(K+Q)] —EF .

P«)„= (2n +1)TT . (14)

EF is the Fermi energy. ~( K) is actually independent
of K in our model and measures the size difference
between the electron and hole spheres.

For mathematical conciseness, it is useful to intro-
duce a four-component Nambu notation

I' l' & 1' +0l
dnd

The correlations appropriate to the SDW state are'

(15)

(17)

(a t (T) a -„&(0)) = 8 a8-„-„,(a t
t
(T) a -„t(0)),

(b t, ( )bT-„, (0a)) = 8 p8„—„(b-„l(T)b-„l(0)),

(a-„(T)b t, (0)) = (b „, ( )a t (0))"

= i a t2&l8-„-„+& (a -„t(T)b t& l(0) )

0~i
y(K) = (8)

These correlations describe a spin polarization in the

y direction and reduce the number of independent,
nonzero elements of G ( K, K;i QJ„) to 4. In matrix
form they are

G t i ( K, K; / Cd z) G t t ( K, K;I Q) I)
(18)
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This matrix is equivalent to the Green's function cal-
culated by Zittartz for the singlet excitonic insulator.
In the Hartree-Pock approximation we have [cf. Eq.
(24) of Ref. 11[

(5„+0„)'i2 requires that one take the root with po-
sitive real part.

If similar caution is observed when evaluating Eq.
(22) for the gap, Zittartz's result is readily general-
ized to the more complicated equation

l On+6
G( K'io1 ) =——

D I On
(19) No +R ~

1 +.PNO No R ~
1 +.pH

T
'

2
'

2m
'

2 2m

where

D =e2+5 + 0
fI„=O1„+io1(K)=—O1„+iH,

(20)
2' R
p

cd„h „/5
~'+H' (b,„+f) )'i'

(23)

and b,„and Q„are solutions of the two coupled
equations

0„
An = Qn+ (n„+~„)'i'

(21)

where the subscript N, 0 means the subscripted quan-
tity is evaluated at the Neel temperature in the ab-
sence of scattering. 11I is the digamma function and
Re denotes "real part of." In the limit T T&,

0, and Eq. (23) becomes

NO ~ 1 PN N . PN

TN 21r 21rr

r is the lifetime (in the Born approximation) of the
electrons at the Fermi surface due to intrabagd
scattering by the impurities. The order parameter d

in Eqs. (21) is a solution of

.PNO NO—Rey —+i
2 2

1

Combining Eqs. (23) and (24), we obtain

(24)

Gtt ( K', l olz)
V

p -„„
n

1

N +R ~
1 +.PN N + PN

nT ' '2 2 ~
—Re1[1 —+ i

pH.
2 2n !

Although Eq. (19) is identical in form to that given
in Ref. 11, there is one significant difference. For
electron and hole spheres of different size (finite H),
b, „will be complex. The integrals leading to Eqs.
(21) can be performed using the residue calculus, but
care must be taken in locating the proper poles. The
result is that the convention on the square root

2m
" ~. &./&

P .~, o1.'+ H' (5„+fi „') 'i'

For numerical calculation, it is preferable to work
with an equivalent form which makes the sum more
rapidly convergent,

r

I N+RQ1+PNN+PN
T 2' 2% 7N

1

PH P 2~ (d„+ I/r I„/5
-Re1[1

2
+i + , —Re—,", . 26

p „~ (~„+I/r)'+H'

Here, we have subscripted v in the first digamma
function in anticipation of the electron-phonon in-

teraction which will make the lifetime temperature
dependent.

Until now, we have implicitly assumed that H is
temperature dependent; henceforth, we take H to be
constant. This is equivalent to assuming the reser-
voir has an infinite density of states. To take account
of a finite reservoir, one would need to add an addi-
tional equation representing the conservation of the
number of electrons.

With H constant Eq. (26), together with Eqs. (21),
allows one to calculate the gap as a function of tem-
perature below T~.

The total Green's function also can be obtained us-

ing Eq. (19) and the correlations Eqs. (15)—(17). In
terms of the spin matrices introduced earlier,

G(K;io1„)=—(1 fI„+Op3 —b, „p2o2) .1 (27)

III. RENORMALIZED SPIN VERTEX AND
SUSCEPTIBILITY

The components of the magnetic susceptibility ten-
sor are'2

2

(x)o=— '
X ,

' Tr[po~;G(K;i—~„)poo;G(K;i~„)],
p 4

(2g)
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where Tr denotes the trace operation, p,~ is the Bohr
magneton, and o-; is the spin vertex renormalized by
impurity scattering. The renormaliied spin vertices
are solutions of'

3 I

poo' = poo + nJ,lu(7c —Pc') I'G(77', i'„)
21l

(29)

IV. PHONON-SCATTERING PROCESSES

The phonon-scattering contribution to the suscepti-
bility is included by regarding the lifetime in the
preceding development as a combination of an im-
purity and phonon-scattering lifetime according to Eq.
(1). As observed previously, these are lifetimes for
electrons at the Fermi surface. %e treat the phonon
lifetime in the Born approximation where it is given as

where n is the concentration of impurities. Inserting
Eq. (27) for G(7c', i co„) and performing the integra-
tion in the same manner as for the Green's function,
one obtains three independent algebraic equations for
the 0(,

Po~r = Po~r ~

po~2 = ~o, 2Poa'2+ ~2, op2

po~3 = go~3

~here Ap, 2 and A2, p are given by

(30)

iu„A

2r(1+u')(b, +0 )'i'

with

0„u„=
lL„

Xtt, = X33 = p,aN(0) =—Xp, (33)

where N(0) is the density of states at the Fermi sur-
face. Thus in this model the spin susceptibility per-
pendicular to the SD% polarization is unaffected and
remains the usual Pauli contribution. However,
parallel to the SD% polarization we have

1 2
1 ———

2r(S,„+f1 )'~' 1+u.'

Using Eqs. (30)—(32), the diagonal components of
the susceptibility tensor can be calculated by straight-
forward integration of Eq. (28). We obtain

(36)

g~("jD
OPD =

~here OD is the Debye temperature.
Applying these approximations to Eq. (36) and

averaging over initial phonon states, we obtain, after
a considerable amount of labor,

(37)

Here
~ n;) and

~ nf) are the initial and final phonon
states, respectively, whereas E; and Ef are the initial
and final energies of the entire system, electron and
phonons. 0;„is the electron-phonon interaction
Hamiltonian in the harmonic approximation. Unlike
the impurity lifetime, the phonon lifetime is tempera-
ture dependent. To include temperature effects, a
thermal average must be performed over all initial
phonon states.

To reduce Eq. (36) to manageable form, several
approximations must be made:

(i) Only intraband processes are considered.
(ii) We ignore scattering involving optical phonons

and consider only scattering by longitudinally-
polarized acoustic phonons. Also, umklapp processes
are ignored.

(iii) The previous approximation is partly justified
by the use of deformation potential theory to evalu-
ate matrix elements of the interaction. '6

(iv) A linear dispersion relation is assumed to be
valid for the phonon spectrum. Further, the spec-
trum is assumed to have a cutoff frequency, coD,

given by

X22 = Xp' 1 Re X (1 +u„')(5„+0„)' '
P

x 1+

For a polycrystalline sample, the measured suscepti-
bility is

1
Xp=3 TrX.

'Tp is a complicated constant which represents the
scattering lifetime at T =0 due to virtual-phonon
processes.

It is a fortunate consequence of this model that
once the zero-temperature scattering lifetime and the
Debye temperature are specified, the lifetime as a
function of temperature is determined completely. A
reasonably accurate estimate of the scattering lifetime
~p can be obtained from effective-mass studies of
pure chromium. The lifetime has a temperature of
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T,h —320 K (i.e., h/ro= Ks T~h). Also, the Debye
temperature of chromium is known quite accurately".
OD =630 K. We assume that alloying with dili~te

amounts of impurity does not alter these values signi-
ficantly.

V. COMPARISON WITH EXPERIMENT

We first applied the theory developed above to
pure chromium. With the Debye temperature and
phonon lifetime To fixed at the previously specified
values, the only variable parameters are H and Xo. Xo

was chosen so that the theoretical and experimental
results would agree at some specified temperature To.
H was then varied until the best fit was obtained.
Table I lists the parameters used to construct the
theoretical curve in Fig. 1. The table also gives the
theoretically predicted gap b,o at T =0. This gap is
substantially larger than the experimental value~

(0.11 eV vs 0.075 eV). Some of the discrepancy
probably results from assuming a commensurate
structure for chromium. However, even for the al-

loys, for which a commensurate calculation is ap-
propriate, the theoretical 40 given in Table I are 10 to
20 percent higher than those found experimentally by
Barker and Ditzenberger.

As can be seen from Fig. 1, the agreement
between theory and experiment for the susceptibility
of pure chromium is quite good above -120 K.
Below this temperature, the experimental susceptibili-
ty drops off quickly to a minimum around 85 K.
This minimum is one of the most intriguing aspects
of the chromium susceptibility and is not explicable
in terms of our model. Recently, Anghel and Cri-
san" have made an attempt to explain this minimum
by considering the possible coexistence of the SDW
and itinerant electron ferromagnetism due to forma-
tion of a charge-density wave. Their model displays a
minimum similar to that observed experimentally.
However, their model also exhibits a divergence in
the susceptibility at the ferromagnetic Curie tempera-
ture which is not observed experimentally. Whatever
the origin of the minimum, the experimental points
in Fig. 1 suggest that it is related to the spin-flip tran-

(0

X

~ gyes
I I

200
T(K)

FIG. 1. X& vs T for pure chromium.

I

sition which takes place at 123 K. Below this tem-
perature, the SDW switches from transverse to longi-
tudinal polarization.

Alloying changes H and introduces an additional
parameter, the impurity scattering lifetime, with its
temperature equivalent, r . However, in a rigid-
band approximation in which H varies directly with
concentration, we have

H= 1 ——H~, (39)
np

t

where H is the value for pure chromium and n~ is
the impurity concentration for perfect nesting. From
our u'npublished investigations of the Neel tempera-
ture of binary chromium alloys, we estimate n~ =3.8
at. % for Cr-Ru alloys. If we assume that each Re
atom donates half as many additional electrons to the
bands as a Ru atom, we find n~ 7 ~ 6 at. % for the
Cr-Re alloys.

With Eq. (39), the alloy problem reduces to the
determination of the two parameters Xo and T~. Xo

was again chosen to give agreement between theory
and experiment at some specified temperature, To.
For the largest impurity concentration of each type,
T~ was varied until the best fit was obtained. Since,

I

TABLE I. Parameters used to construct the theoretical curve in Fig. 1, and the predicted gap 40
at T=O.

~ph Ap

Cr
Cr-Ru 2.1

Cr-Ru 3.0
Cr-Re 5.05
Cr-Re 6.52

320
320
320
320
320

630
630
630
630
630

0
140
200
150
220

140
320
320
320
320

0.021
0.009
0.004
0.007
0.003

0.11
0.16
0.18
0.19
0.19
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FIG. 2. X& vs T for chromium containing 2.1 and 3.0.
at. % ruthenium.

FIG, 3. X& vs T for chromium containing 5.05 and 6.52

at. % rhenium.

for low-impurity concentrations, the lifetime should
be proportional to the concentration, a linear interpo-
lation was used to obtain T for the more dilute alloys.

Figures 2 and 3 show the results for Cr-Ru 2.1 and
3.0 at. % and Cr-Re 5.05 and 6.52 at. %, respectively.
The theoretical curves were obtained with the param-
eters given in Table I. The experimental data which
was used has been previously reported. " (Unfor-
tunately, no detailed studies have been carried out
over the entire temperature region from 0 K to T~.)
For both alloy systems, the agreement is better for
the lower concentration. This is expected since the
theory is developed only to first order in the impurity
concentration. Also, comparison of Figs. 2 and 3
shows that the agreement is slightly better for the
Cr-Re alloys. This may indicate a breakdown in the
Born approximation for the Cr-Ru alloys in which the

impurity ions possess a larger unshielded positive
charge.

Overall, it appears that the model introduced here
satisfactorily explains the behavior of the susceptibili-
ty of antiferromagnetic chromium when alloyed with
dilute amounts of nonmagnetic impurities. It is
worth emphasizing that the success of this model
over the previous ones is primarily due to the inclu-
sion of electron-phonon scattering.
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