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Surface effects on phase transitions in ferroelectrics and dipolar magnets
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A phenomenological theory is developed to describe the change of the local spontaneous po-

larization in the vicinity of a free surface of a ferroelectric thin film which is kept between me-

tallic electrodes. It is shown that depolarizing field effects reduce the deviation of this local po-

larization from its bulk value, as compared to surface effects on phase transitions in other sys-

tems. In particular, the critical exponents describing the behavior of the local polarization in the

vicinity of the Curie temperature T~ are the same as the bulk exponents and only critical ampli-

tudes are changed. This behavior contrasts to phase transitions in other systems (antiferroelec-

trics, ferro- and antiferromagnets, ordering alloys etc.) where different exponents are predicted.
In order to improve upon this Landau-type theory by taking into account the. effects of statistical

fluctuations near T&, recent results of renormalization-group theory are used to estimate loga-

rithmic correction factors which should modify the critical behavior of the local polarization. Fi-

nally the experimental implications of our results are briefly discussed, and also a discussion of
surface effects on the phase transition of dipolar magnets is given.

I. INTRODUCTION

It is well known that the polarization of small fer-
roelectric particles or thin films may behave dif-
ferently as compared to bulk materials. ' ' Many of
these observations where the bulk polarization of the
sample is observed can be accounted for by the fact
that for minimizing the electrostatic energy of the
sample a domain configuration is more favorable
than a monodomain particle (or film). 4 (This effect is
also familiar from ferromagnets. '6) This explanation
cannot explain strong size effects found with NMR
measurements' where the existence of a local polari-
zation is probed on the atomic scale. Another source
of size effects is due to depolarizing fields which are
still present in the case where free-surface charges
are available to partially compensate the polarization
discontinuity at the surface of the ferroelectric. "

A third source of surface effects with which we are
concerned here is a change in the local polarization
near the surface which is expected to occur over a
distance comparable to the correlation length ( of po-
larization fluctuations (Fig. 1). Far away from Tc g
is estimated for a ferroelectric to be of the order of a
few lattice spacings only, and hence this effect is ex-
pected to become more pronounced close to T~ only
since $ diverges there. '0 Related problems of order-
parameter variations near surfaces have been con-
sidered for second-order phase transitions in super-
conductors, " suprafluids, "ordering or unmixing
binary alloys, "and magnetic systems. ' " In the
latter case at least a semiquantitative experimental
verification of the theoretic~1 concepts is due to low-

energy electron diffraction (LEED),"magneto-
optical studies, ' ferromagnetic resonance and pho-
toelectron spin polarization analysis, " although some
phenomena remain to be explained. It is expected
that techniques to investigate similar surface effects
in ferroelectrics will be available in the near future.

The generalization of the theories mentioned
above" " to ferroelectrics is nontrivial for two rea-
sons: (i) The depolarizing field associated with the
inhomogeneous distribution of the polarization close
to the surface (Fig. I) has to be included in the treat-
ment. (ii) The temperature dependence of the criti-
cal singularities is more complicated than usually due
to the presence of logarithmic correction factors"
to mean-field behavior. Although these correction
factors have been obtained for a variety of static and

0

FIG. 1. Variation of the local polarization P(z) in the vi-
cinity of a plane free surface situated at z =0. The bulk po-
larization is.denoted by P while Pi denotes the polariza-
tion at the surface. A. is the so-called extrapolation length,
Ref. 11.
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dynamic quantities of ferroelectrics, so far only
one experiment on triglycine sulfate (TGS)30 has
been suggcsted26 to support these corrections. In
fact, there is a considerable uncertainty in the
theoretical predictions for the temperature interval
around Tc where these corrections are appreciable. "
Moreover it must be noted that the transitions of
many ferroelectrics are (at least weakly) first order
rather than second order. " It may thus seem prema-
ture to extend the calculation of these corrections
from bulk static and dynamic quantities in pure
and impure' ferroelcctrics to surface quantities. But
this problem is interesting because it also has an ap-
plication to dipolar magnetic systems (like LiTbF4,
CrBr3) where many of the predicted correction factors
have clearly been revealed experimentally. Our
theoretical treatment of effect (ii) readily applies to
these systems as well. With respect to depolarization
effects the situation is of course different; compen-
sating surface charges exist only in the case of thc
ferroelectric, while in the ferromagnet only domain
formation is possible to reduce the magnetostatic en-
ergy.

II. PHENOMENOLOGICAL THEORY OF SURFACE
EFFECTS IN FERRGELECTRIC THIN FILMS

We consider a thin ferroelectric plate between two
metallic electrodes in short-circuit conditions (Fig. 2).
We assume that the easy axis of the uniaxial fer-
roelectric has th|: z direction perpendicular to the
film, which we assume of infinite extent in x and y
directions for simplicity. Without the electrodes a
homogeneous spontaneous polarization P, = (0, 0,P, )
would give rise to a depolarizing field ED = —4m% P„
the depolarization factor N being W = 1 for our
geometry. To remove the electrostatic energy associ-
ated with this field a strip-domain pattern is esta-
blished, with domain width I ~ 1/P, . In the case
where a surface charge density o- is present a similar
calculation (only the boundary conditions change)

meta[(A}

ferro-
electric

yields I ~ 1/(P, + o.), i.e., a monodomain sample is
obtained for complete compensation (o =- —P,).

However, in the case we are interested in the spon-
taneous polarization is not uniform in z direction,
Since we assume the ferroelectric to be perfectly in-
sulating, there are no space charges available which
could compensate the depolarizing field locally every-
where. But a monodomain sample is still achieved
for global compensation, i.e. (Vis the volume of the
sample),

L —aA= 9'
L

L —b
6'8 =

A second charge —q located a distance 8 = (0, 0, 8)
from the first consequently yields

L —6+5
la

Hence the image charges associated with the dipole
p=q 5 are

A =q~ +q~ = —qg/L = —p/L,

qs = qs + qs = qg/L =p/L .

Introducing the unit vector n directed perpendicular
to the surface of the ferroelcctric into the metal this
result is hence rewritten qq s = —p n/L. The in-
duced surface charge density then ls op s = p ' n/ V
This result for a single dipole p is readily generalized
to a distribution of polarization P (r ), and hence Eq.
(1) results.

We next obtain the depolarizing field Ed associated
with the polarization distribution P, using Maxwell's
equations

curlE=O, divD—=div(E+4mP) =0

[without external applied field we have
E=E~=(0,0,Eq), of course]. Since in the mono-
domain case P (r) depends on z only, Eq. (2) simpli-
fies to

a= ——
l (P n)dV.
v

To derive Eq. (1) it is convenient to first consider the
auxiliary problem (Fig. 2) of a charge q located a dis-
tance a from the upper metallic plate (A) and a dis-
tance b = L —a from the lower one (8)." The im-

age charges induced on A, B are

rn'etal (B}

FIG. 2. Sketch of geometric arrangement of a thin fer-
roelectric plate between metallic electrodes. For explana-
tions cf. text.

8P= —4m, P = (0, 0,P),
()z gz

which is readily integrated to yield

E (L ) E(z) = 4rr[P(L )——P(z)]—. (4)
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The boundary condition between ferroelectric and
metal is

D ' n I metal D n
I ferroelectric 4rr rr .

Since D =0 in the metal, Eq. (5) yields

Eg(L ) +4rrP(L ) = —4rrtr,

(5)

and hence Eq. (4) can be expressed as

E~(z) = 47—r[P(z) + tr]

As noted above, in the uniform case P (z) —= P, the
depolarizing field is compensated for cr = —P„while
in the nonuniform case Ed(z) is nonzero.

%e now generalize the treatment of Refs. 14 and
15 to ferroelectrics, writing down a Landau expansion
of the free energy in terms of' P(z),

F= J dV [ 'AP (r—) + 'BP (r—) + —'C(VP) ——'Ed(r) P (r)] + JI —'Clt '[P (xyz =0+) + P (xyz =L )] dx dy .

(7)

The constants A, B, and C in the volume term of Eq. (7) are

A =2a'(T —Tc), a'=—
C+

C+ being the Curie constant of the ferroelectric, and

B =2a Tc/Po2 Po=P(T=0),

and

C =2a'Tcao, (10)

where ao is a length of the order of the lattice spacing. Note that the last contribution to the volume term in Eq.

(7) represents the self-energy of the depolarizing field (hence the factor —,). The proportionality factor of the

correction term proportional to the surface area S defines then the extrapolation length X (see also Fig. I).
Since in the monodomain sample P is a function of z only, the integrations over x and y in Eq. (7) are readily

performed to yield (we now include an external field E,„,)

8
'2

F/S = Jt dz P'(z) + —P—"(z) + — — Ed(z)P(z) ——E,„,P(z') +—')t ' Pi +Pi'
2 4 2 dz 2 2

Pi —= P(0+), PL =P(L ) . (11)

1

Note that there as no factor —, in front of the term involving the external field, in contrast to the term involving
L

the depolarizing field. We use now Eqs. (1) and (6) [in the form o. = — P(z) dz /L] to rewrite Eq. (11)
0

r 1 i2
F " A 2 8 4 C dP c
S o 2 4
—=

J dz P(z) + P(z—) +— —+27rP (z) —E,„,P(z) — .J P(z) dz + —X
' P2 +P' . (12)

2 dz
ext .

L 0 2
1 L

t r

The free energy is then minimized with respect to P, which yield's

SF d2P 4 eL
=0 =AP(z) +BP (z) —C +4rrP(z) —E,„,—— P(z) dz .

SP dz2 0
(13)

The surface terms in Eq. (12) yield the boundary conditions

PZ-' 0 +P X-' 0
z z

(14)

In the homogeneous case P(z) = P (bulk. ferroelectric) Eq. (13) reduces to the standard result

WP BP3
C C C (15)
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of course. Note that Eqs. (13) and (14) differ from
previous treatments of magnets where demagnetizing
fields were neglected"" by the appearance of the ad-
ditional term

pL
4m[P(z) —J P(z) dz /L] .

surface polarization P1, which yields

(P) —E,„,/A) cosh[(z —L/2) K]
P(z) =

cosh(L ~/2 + 8rr/L ~A ) sin(L v/2)

E,„, P) —E,„,/A
1 + (L KA /8 rr) cosh(L K/2)

(19)

We now consider the solution of Eqs. (13) and
(14) in the paraelectric regime where the cubic term
BP3(z) can be neglected, and seek a symmetric solu-
tion

Since

E,„, =PE,„,
[a'(T —Tc)]

dP dP '

Pl PLb z 0 z L
dz dz

(16)
we obtain from Eq. (19) for L ~ and in the case
where

The solution of Eqs. (13) and (14) is then found by
first introducing a constant R by

(4-)c~) f'~(.) ~,

solving then the inhomogeneous differential equation
and calculating R afterwards. The solution of Eq.
(13) which satisfies Eq. (16) is [~ —= (A +4m)/Cl

P(z) =2cze"LI'cosh[(z —L/2) ~] + '"' +—,(l7)
C]c

which yields
)

4~/C 4Cze"'" . I.
sin h + '"

. 18
1 —(4m /C)/K2 ~L CK'

The constant C2 can be eliminated in favor of the

K' = A /C = a'(T —Tc)/C —= gb
'

the standard result'

(P) —P„)cosh [(z —L /2) /gb]

cosh(L/2 b)
(20)

i.e., the polarization differs appreciably from P over
the distance of the bulk correlation length gb from
the surface. Including the depolarization effect it is

seen already from Eq. (19) that this effect is reduced:
the length K

' stays finite at Tc, unlike gb, hence the
length ( in Fig. 1 has to be identified as K

' rather
than the bulk correlation length. However, note that
now the polarization does not reach P„ in the center
of the film, but the slightly different value
(KL »1)

P L P oo + 1 oo P —P1

2 cosh(L K/2) [1+(87r/L ~A) tanh(L ~/2)] 1+ (L KA/Srr) cosh(L K/2) 1+ L KA/Svr
(21)

i.e., the leading correction to P is of order 1/L as
L ~. In the standard case without depolarizing
fields it is readily seen from Eq. (20) that

p L p P) —P 2(p„—P, )P —=P+
2 cosh(L/2$b) exp(L/2gb)

i.e., the leading correction to P is exponentially
small. This difference (Fig. 3) will have important
consequences for the behavior of the surface suscep-
tibility X, and surface polarization P„as will be dis-
cussed below.

We now obtain the surface layer polarization P1
from using Eqs. (14) and (19) as

/

/
/

/
I
I

/
/
I

k

Qg

P
P~-Pj

1+LE/(Brt) )) P(z)

/

Pj

Ly2

p, 2(P P& j

p-2" exp(t/2~b)

I

I

I

L L+~

(b)

~)).P tanh(~L/2)
1+ (~h. +Srr/L KA ) tanh(KL/2)

For L ~ this result simplifies to

(23)

p

I

Eb Ly2

kb
I

L L+X

KkP (4m/C $b+)'I kP
1 + ~)). 1 + )).(4m /C + g ) ' (24)

FIG. 3. Distribution of polarization across a film of thick-
ness L in the case where depolarizing fields are included (a)
or not included (b),



SURFACE EFFECTS ON PHASE TRANSITIONS IN. . .

Hence the surface layer susceptibility Xl —= Bp'/BE, „,
is [t —= (T T—c)/Tc],

(4rr/C + g )'"b.gb'/C
X( = b b

I+X(4m/C+gb )'t'

Since the exponent y~ is defined by X~ ~ f ', we now

have

(defined via Xt = X~t ') differs from the critical am-

phtude xb [defined via xb = xbt

X, = Bp-„/BE,„,=' '-(u'/Tc) 't-
i.e., Xb = Tc/u'], sin~~ X&

= Xb/0+ [X(4~/C)'"] ').
Next we consider the average polarization

f L
P =(1/L) J P(z) dz of the film, which becomes

7l 7b (26) P = "(p, -p„) —+P„; (27)
4vr/C + (~L/2) (~ /C) cosh(KL/2)

instead of the previous result" y~ = —,. Hence due to

these depolarization effects there is no longer a
difference between the critical exponents at the sur-
face and in the bulk. But the critical amplitude X~

P differs from P„by a correction of order 1/L, as ex-
pected. Since the film has two equivalent surfaces, it
makes sense to define the surface polarization P,(''

via

p,&'& -=—(p„-P)=
K' L(P ——Pi) „(p p)

2
" 4n/C + (ttL/2)(A/C) cosh(L "/2) L- A/C (A /C) (1 + ~A.)

(28)

and hence the surface susceptibility'

X,"' =—BP,"'/BE,„, becomes

„(g) CK 1
X,

C(4 rr/C+g z)'t2

(tt'T, )'[1+X(4~/C + gb-z)'t']

(~3

Hence the exponent y,"' defined by X,"' = X,"'t ' is
= 2 in this case, in contrast to the usual situation

without depolarizing fields" where K = (b
' and hence

X ~~ '",
While in the case of the local susceptibility X~ at

the surface we have found that the effect of the
depolarizing field makes X] closer to the bulk suscep-
tibility Xb, the contrary seems to occur for X,". It
must be noted, however, that the main contribution
to X,t'~ as defined above [Eq. (28)] is not due to the
variation of P(z) close to the surfaces of the film but
rather due to the depression of polarization in the
bulk of the film [Fig. 3(a)]. Hence it makes sense to
consider the alternative definitions of surface polari-
zation and surface susceptibility

P,!2&-=-,' I. [P(-,
' L) P]-

I.(P„p,)—- 1 + A /4m

cosh(L K/2) [1 + (8 n/L xA ) tanh(L K/2) ] I + (L K/2) (3 /4m) coth(L ~/2)

and hence the surface polarization of a ferroelectric "half-space" becomes

lim P,'" —= J dz [P„—P(z)]

P' —P) P
1 +XK

(30)

In the case without depolarizing field K = (A/C)' =(b ' and hence there would be no difference between P, '

and P,'". In our case, however, the limit I "and the integration over z in Eqs. (27) and (31) are not inter-
changeable. From Eq. (31) we get the surface susceptibility X,t2~ —= Bp,t2l/BE, „„

(I+) K) a'T (4n/C+(, -')'t' ]+X(4vr/C+g, ')'"
-

~ (2),
Hence the exponent y,( defined by X,(2' = X, t "' becomes y,('' = 1 = yq, as one would expect.

Next we consider the case T & Tc. Since there exists for E,„,=0 in the bulk a spontaneous polarization P

P„=(—3/8)'t'= (o'T~/8)'t't't',
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as given by Eq. (15), we may replace the term
pL

(4rr/L) P(z) dz in Eq. (13) simply by 4wP„ in

the limit L ~. Hence the equation to be solved
becomes

~ P(z)+ —P (z)—B 3 d2P 4m

C dz' C
(33)

As usual'5 we multiply this equation by dP/dz and in-
tegrate over z from z 0 to z = —,L [in the center of
the film we may put P(z =

z L) = P for L ~] to
'

find

Hence ~A ~
&& 4w can be fulfilled if the short-range

energy J(0) strongly exceeds the dipolar ener'gy
(which is proportional to q'/a3). Although Eq. (36)
is known to be accurate only within a numerical fac-
tor of order unity, this does not invalidate our order-
of-magnitude argument.

We now solve Eq. (35) for P& in this limit where
the depolarization effects are small, by first omitting
the term (8rr/C) (P' P&P—„)which yields the stan-
dard result" P~' ' = XP /ga with ga = [C/( —2A)]' '.
We now obtain corrections to PP' linear in 4m/A by
putting

2
'2 L/2—(P„-P,)+ (P„-P,)-—]c 2 2 8 4 g

1' dP
2

" 4C "
2 dz

P, P(0)+4 5P (38)

(P„' —P„P,) . (34)

and keep only terms up to order linear in SP in Eq.
(35). The result, which is valid for w/A « 1, is

In the bulk we have (dP/dz), L/z =0 while on the
surface we may again use Eq. (14) to find

K'(P„' —P(') + (P4 P~4) + k —'Pj'

(P2 —P P ) =0 (35)

P)- P„ 1 ———6'
We now consider the inverse case where

)Sm/Crr'( » 1. From Eq. (35) it is clear that
as ~Sn/C~

~
~. Hence we now put

P, -P„+SP

(39)

(40)

which differs from previous results with no depolariz-
ing fields by the additional term —(Sw/C)
x(P' P&P ). Th—is term is a small correction only
as long as the ratio

~
Cx'/Srr~ && 1. Using our result

for ~' this is seen to be equivalent to
(A/4m+ z ( »1 or (A ) »4n Very .close to Tc
this inequality can never be fulfilled, of course, and
then the depolarization corrections always are impor-
tant. But this condition becomes valid not so close to
Tc when Tc is very high (in units of the dipolar en-
ergy), which is possible if in addition to the dipolar
interaction energy, strong short-range interactions are
present. This is seen more clearly by invoking the
molecular-field expression for the critical temperature
(q is the local dipole moment at lattice site i)

[1 —3 (z; —zi) '/( r; —r~) z]
ksTc- J 0 —q'

~(~i&

and keep only terms up to order (SP)' in Eq. (35).
The result is

P( =P 1 —1+ (1 —2A/n)'/
(C/4 )'I' (41)

10 i

10-2

i

Figure 4 shows the crossover between the two kinds

0 AT
A - ks(T —Tc) =

q2 @2/a 3
J(0)
q'/a' (37)

J(k)- X Jtiexp[iq(r;-r~)]
i(wg)

is the Fourier transform of the short-range interac-
tion. The (dimensionless) constant A in Eq. (7) is
expressed in mean-field theory as [a is the lattice
spacing, and the sum in Eq. (36) is written as I'/a'
where I is a dimensionless constant of order unity
depending on the lattice structure]

I

10 3

0.01 0.1 1.0 100

FIG. 4. Log-log plot of the relative polarization at the
surface Pr/P vs ga (4rr/C)V -(2rr/a'Tc) i (-r) /z fpr
several choices of the ratio between extrapolation length X

and decay length x~' -(C/4~)' . Full curves represent the

exact solution of Eq. (3S) while triangles and circles
represent the simple approximations Eqs. (39) and (41),
respectively.
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of limiting behaviors given in Eqs. (39) and (41). As
T Tc Eq. (41) always becomes valid for smali
[It/(C/4m)'tz], and we hence find that

P) =P 1

I + (C/4'/A)'. (42)

which implies [P~ =—P&(—t) ', P = P„(—t) ~] that
1

P&=Pt =
z

but

P, =P [I +(C/4vr/Z)' '] (43)

Hence we find that both above and below Tc the
depolarization effects diminish the surface effects
which otherwise would occur. The exponents of local
quantities at the surface are the same as in the bulk,
and only amplitude factors become changed. On the
other hand, it can be shown from Eqs. (23) and (27)
that the shift of the critical temperature TP' of the
film is given by

~c —~c a' 8m
O. )

L~
Tc &L I/C+ I/4A. (rrC)'t'

(44)

and hence the shift exponent g which is defined as
[Te(L) —Tc]//Tc ce L r in our case is f = I instead of
) =2 as in the case without depolarizing fields. " This
stronger depression of TP~ of the film is related to
the stronger depression of the polarization in the
bulk of the film (Fig. 3).

Finally we consider the case of a general direction
of the polarization of the uniaxial ferroelectric. In a
monodomain both Ed(r) and P (r) can still depend
on the z coordinate only, and from Eq. (2) it then
follows that we still have Eq = (0, 0,E&). Since in Eqs.
(3)—(6) we have to replace the absolute value P(z)
of the polarization by its component in z direction
P(z) cos8, where 8 is the angle between P(z) and n,
in Eq. (11) we have to replace the term
—

z E~(z)P(z) by —
2 (cos8)Eq(z)P(z). As a conse-

quence the constant 4rr/C which appears in the
length tt ' and explicitly in Eqs. (17)—(42) has to be
replaced by (4m/C) cos'8. In the case where the po-
larization direction is precisely parallel to the film
(8=-, m) the depolarizing field vanishes and the

results of the previous treatments" are recovered.

III. LOGARITHMIC CORRECTION FACTORS

Very close to the critical point of a ferroelectric or
dipolar magnetic system fluctuations become impor-
tant and predictions for the critical behavior obtained
on the basis of a Landau theory have to be modi-
fied. 'O' Renormalization-group theory states that
the "marginal dimensionality" d for dipoiar systems
is d =3 rather than d =4, as it is for systems with
short-range interaction, and it predicts' " that the
leading critical singularities in both cases are the
same. More specifically, it is concluded that the
power-law singularities obtained for various quantities
near the critical point from Landau theory have to be
multiplied by correction factors of the form llnlt l

l~,

where the exponent p depends on the property con-
sidered, e.g. ,

mt, ~ (—t) ' zl ln( —t) l't',

(, ~
l
t

l
'"llnl t l

l'" .
(45)

It is the aim of the present section to predict these
factors )In(t l

l' which are expected to occur for the
surface properties introduced above. Since
renormalization-group calculations in restricted
geometry are actually quite involved, ' "we estimate
these factors by a less rigorous method. For bulk
quantities Sit is well known that there is a relation
between the exponent p„at the marginal dimen-
sionality and the first coefficient x~ of the leading
critical exponent x of the e expansion (e = d —d),

px =2&1 ~ (48)

We then suggest that Eq. (48) is valid for surface
quantities as weil, and use then the e-expansion
results of Lubensky and Rubin' for x~ in the case of
P~ together with scaling relations for surface quanti-
ties'5 to obtain the logarithmic factors of interest.

In order to justify Eq. (48) we start from the
renormalization-group expression for the singular
part of the free energy F, (r, u) (where r and u are the
coupling constants for terms quadratic and quartic in
the n-component order-parameter field, respectively)'

X ltl", x=x, +x,e+0(e'), d (d, (46)

& ~ ltl"'l»ltl I'", d = d"

This relation which we will justify below is

t ' (4 —n)/(n +8)

F, (r, u) =—— n t2 Bu (e" —1)1+
16(4 —n) u

(49)

and I =lnb where b is the factor of spatial rescaling. It is chosen such that F, (r(l ),u(l )) stays noncritical.
One may choose e' =t ', where X, =2 —[(n+2)/(n+8)]e is the eigenvalue associated with a temperature per-

et -e/2 +0 (e2)turbation at the nontrivial fixed point. This yields e" =t ' + ' and hence
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F, (r, u) -—
' (4-n)/(n+S)

16(4 —n)

2
rl r 1+ Bu( ~/2 1) —1

16(4—n) u «

I

2 sg 2t +~4-n)/n+S) +
Q 16(4 —n) u

(50)

where

R = (1 —Bu/«) r'/2+ Bu /«

From the scaling law"

7 ) =2 b /3—b -P)— (56)

and we have identified the specific-heat critical ex-
ponent n in first-order ~ expansion as
a =

2
«(4 —n)/(n +8). Equation (50) shows that F,

depends on the parameters r and u only in the scaled
form F, a: t' f(R). Moreover, the exponent of R
in Eq. (50) is nothing but

2
that of the linear term in

the e expansion of a. It is now easy to see that the
term R" "' "+ ' which for e finite tends to a finite
constant as t 0 yields a logarithmic correction fac-
tor as ~ 0. %e then use

and the «-expansion results for ab, pb, and p) one
has the ~ expansion for y&

y) =—+ «+0(«)1 2+n 2

2 2(n +8) (57)

and we hence conclude that at the marginal dimen-
sionality

~ Ill- I 1 lnrI I( +n)/(n+&)

(=I/I' Ilnltl I'/ for n =1) . (5&)

r'/' =exp[(«/2) 1nr1 =1+(«/2) lnr

to rewrite R

R =1 —
2

Bu lnt+ —,«in/ +0(«') (51)

Similarly, we use the scaling law"

y. -yb+~b

to find the ~ expansion

(59)

and hence it foHows that for ~ 0 the most singular
part of the free energy behaves as

y, =—+ «+O(«)3 3(n +2)
4 n+8 (eo)

p lrl' R)/3
2Q

P= —' —-'«+0(«') (n =1)
2 6

and Eq. (51) that

P„~ Ir I)"
I lnlr I

I'"

(53)

and thus again verify Eq. (48). From the result of
Lubensky and Rubin'

F (2I lnlr I
I(4 )/( I+&-I)

(=r'Iinltl ('' for n =1) . (52)

and hence the specific heat C, ~ ()'F,/()t' behaves as

C, ccIlnltI I'/ for d=d and uniaxial systems, as is
well known. Since the specific-heat exponent cx =0
in mean-field theory this result illustrates already the
general relation Eq. (48). For the susceptibility Xb

Eq. (48) was demonstrated by Essam et al 37 Since.
to order «we have Xb ~ gb Eq. (48) aiso holds for the
bulk correlation length. Finally we note the result for
the order parameter P '

and hence estimate at the marginal dimensionality

x, ~ Ill "Ilnl/II"""'"'"+"
(=

I
r

I

' 'I ln I t I I
' ' for n = 1) . (61)

Equations (55), (58), and (61) should hold for
short-range systems with d =4 (which is accessible in
Monte Carlo computer simulations, see, e.g. , Ref.
38) and for dipolar systems for d =3 in the case
where the easy axis is parallel to the surface. To see
how the treatment of Sec. II valid for general direc-
tions is modified by these logarithmic corrections, it
is most convenient to use generalized Ginzburg-
Landau theory. '9 Adjusting this method to our case
the free-energy expression Eq. (7) is still used but.
the temperature dependence of the coefficients
A, 8, C, and X has to be modified in order to repro-
duce the correct critical behavior of the dipolar sys-
tem. Since

Ir I
'I 1 I/I I'"+"""+"

and Xb ~A, we must choose

A =2a "(T Tc) I
ln(T 7'c)

I

'

P) ——1 — «+ 0 («2),3
2 n+8) (54) in our case. Since [Eq, (45)]

we hence conclude that at the marginal dimensionality

P( ~ ltl'I lnltl I' "+"(= I/I'Ilnlrl I' ' for n =1) .
(55)

and [Eq. (15)] P = —(A/8)' 2 we must have2&

8 -O'I inl t I I
'. Finally we conclude from Eq. (45)
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P, =(X/g, )P„. (62)

In the case with non-mean-field exponents this rela-
tion can hold within the framework of a generalized
Landau theory only if A. also has a power-law singu-
larity at Tc,

and the relation gb = (C/3)'t' that C is not modified
by any logarithmic factor.

In order to obtain the logarithmic correction for A.

it is most convenient to consider the case where the
spontaneous polarization is parallel to the film, and
hence we have the relation"

by

(Tc —Tc)/Tc=, (—X) '.
a Tc

(68)

(C/4m) 't'

cos8
(69)

This is no longer true in the case where the depolar-
izing fields are included if P is not parallel to the sur-
face. From Eqs. (25) and (35) it is seen that Tc = Tc
for negative extrapolation lengths A. not exceeding a
critical value A., which is given by

—Z

and Eqs. (62) and (63) then imply a scaling law

(63)
For

~
X~ (

~
X,

~
the surface ordering starts at Tc given

by

(Tc Tc)/Tc—

XX Vb +Pb Pl (64)

From Eq. (54) and the e-expansion results for vb and

pb we find the exponent x~ within first-order e ex-
pansion as

[(—X)-' —(—X )-')-
& Tc

(70)

xg= e+ 0( )e
n+2 2

4 n+8 (65)

Invoking once more Eq. (48) we predict that at the
marginal dimensionality

X = X'/ Inlt I
/' (n =1) . (66)

Thus the extrapolation length diverges at the critical
point. Since for a direction of the polarization not
parallel to the film the length K ' stays finite, Eq.
(24) implies that P~ P as T Tc and hence
Xi =Xb. Equation (43) also implies Pt =P . A dif-
ferent result, ho~ever, is obtained for the surface
susceptibilities X,t" and X,"~ since Eqs. (29) and (32)
imply

X,"~ t 'fin(t( f' ', X,
' ~ t

'finest(

J' . (67)

TC —TC oc (tb. —5, )(t), —b, ,), (71)

which implies that now P =1. This different
behavior is illustrated in Fig. 5. Finally, Fig. 6 com-

If one relates A. to microscopic exchange parameters
of a nearest-neighbor Ising model one finds that
X ' ~ 5 —h„where 6 describes the enhancement of
interaction within the surface layer (assuming that all

other interaction constants are not modified by the
5

existence of a free surface), and 6, =
4

for a simple

cubic lattice. " Defining, then, the crossover ex-
ponent $ at the multicritical point (Tc, b„) in terms
of Tc —Tc ~ (6 —5,)' &, Eq. (68) would imply

In our case we find that a larger enhance-
2

'

ment 5, is necessary for surface ordering and

Concluding this section we emphasize that all results
are based on the suggestion that Eq. (48) also holds
for the critical behavior of surface quantities. Since
Bray and Moore' have argued that the critical ex-
ponents of surface quantities can be expressed in
terms of bulk critical exponents only, this suggestion
is quite plausible because Eq. (42) does hold for all

bulk properties.

Tc )(

Nut
I

depolarization
effects

IV. ORDERED SURFACE LAYERS
IN DIPOLAR SYSTEMS

In the mean-field t'reatment where depolarizing
fields are omitted, it is well known" that for negative
extrapolation lengths X (which may occur for suffi-
ciently enhanced interaction strength at or close to
the surface layer) the surface starts to order at a tem-
perature Tc higher than the bulk Tc, which is given

~c ~c

FIG. 5. Schematic variation of the critical temperature Tc
of the surface layer as function of the enhancement 4 of the
interactions at the surface as compared to the bulk.
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lx

l

I

I

I

I

I

I

0 K

(b)

0

FIG. 6. Schematic variation of' polarization in the vicinity

of the surface for negative extrapolation length A. in the case
a ' ( jXj (a) and in the case K & jltj (b), the latter case
being possible only I'or jXj ( jX, j

and Tr ( T ( Tr'- Note.
that ~ ' is not the bulk correlation length.

roelectric between metallic plates in short-circuit con-
dition where a complete compensation of the depolar-
izing field by free-surface changes may occur. In
magnets or ferroelectrics with other boundary condi-
tions the depolarizing field is compensated by a strip
domain structure. - However, our treatment applies to
this situation as well, as long as the domain size is by
far larger than the thickness of the Bloch walls

between the domains, a condition which usually is
well satisfied. The results obtained here refer then to
the variation of the order parameter within a domain
a distance apart from the domain wall such that this
distance distinctly exceeds the correlation length.
Our results include:

(i) For temperatures not too close to Tc, i.e. ,
where the bulk correlation length (s satisfies the con-
dition gs « (C/4rr)'~'cosH, where H is the angle
between the easy axis of the polarization and the
direction normal to the surface, depolarization effects
on the critical behavior are negligible. In this regime
the critical behavior at the surface is correctly
described by previous mean-field treatments, apart
from temperatures very close to T~, where logarith-
mic correction factors appear. These correction fac-
tors have been estimated using results of
renormalization-group theory, and are listed in Eqs.
(55), (58), and (61). Within a generalized Landau
theory these results would require to use an extrapo-
lation length diverging logarithmically as the critical
temperature is approached. Clearly, these logarithmic
corrections can become appreciable only when the di-
mensionless parameter A [Eqs. (7) and (37)) is
small, which requires ks(T —Tc) « q /a', where q
is the dipole moment per ion and a is the lattice spac-
ing. Since at the same time the above condition on
the correlation length has to be satisfied, which can
be rewritten

pares the variation of the polarization across the film
in the regime 4, & 4 & 6, (i.e. , A. & lt, & 0) to the
behavior in the regime I & 6, ' (i.e. , X, & )t & 0). In
both cases the polarization at the surface is enhanced
in comparison to that in the bulk. But in the first
case the length K

' is smaller than j h. j even at Tr and
hence no spontaneous surface ordering is possible be-
cause it would have to carry a polarization induced
over the whole bulk. Spontaneous surface ordering
requires that K

' exceeds jltj.

V. CONCLUSIONS

In this paper we have considered the critical
behavior near the surface of a ferroelectric (or dipo-
lar ferromagnet like LiTbF4, CrBr, etc.). In our
treatment we have assumed a monodomain sample,
which for a direction of polarization not parallel to
the surface of the thin film is possible only for a fer-

A =a'ks(T —Tc)/q' » 4n cos'H,

one can see these logarithmic effects only when the
direction of polarization is (at least nearly) parallel to
the film.

(ii) In the regime where (s & (C/47r) t~'cosH the
order parameter decays from its value at the surface
to the bulk value no longer over a distance gb but al-

ready on a shorter distance

a ' = I/(gs '+ 4rr cos'H/C) ' '

(Figs. 3 and 6). This fact has the consequence that
the surface layer polarization PI and associated sus-
ceptibility X~ have the same critical exponents as the
corresponding bulk quantities, only amplitude factors
are different [Eqs. (25) and (43), and Fig. 4]. If one
can come close enough to T~ that logarithmic correc-
tions have to be taken into account we even predict
that P~ = P and X~ = Xb asymptotically. Thus the
depolarization effects strongly reduce the difference
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in critical behavior between surface and bulk. On the
other hand, they produce a more pronounced depres-
sion of the polarization below P in a thin film (Fig.
3); therefore now two different surface polarizations
P, ' and P, and susceptibilities X, ' and X, have to
be defined [Eqs. (28)—(32)1 which have different
critical behavior. We also find that now the shift of
Tc varies like 1/L for film thicknesses L ~ instead
of I/L' as previously seen [Eq. (44)l.

(iii) In the case where the interactions at the sur-
face are enhanced it turns out that'a larger enhance-
ment 5, '

is necessary to produce two-dimensional
ordering at a temperature Tc higher than the bulk Tc
(Fig. 5). However, this enhancement of Tc varies
linearly with the interaction enhancement 5 rather
than quadratic in 5 —4„as is found without depolar-
ization effects.

(iv) With regard to the experimental verification
of our results it must be remarked that we have con-
sidered the symmetric situation ~here the boundary
condition on both surfaces of the film are precisely
equivalent. Hence a rather complete compensation
of depolarizing fields is possible, in contrast to the
cases of asymmetric boundary conditions considered
by Wurfel and Batra, where a noncompensated depo-
larizing field may exist across the bulk of the film,
and hence the free surfaces have a much more dras-
tic effect on the film. Hence, in order to experimen-
tally check the predictions of our theory, it is most

important to provide the same boundary conditions at
the surface of the film. Since we feel that none of
the size and surface effects reported so far in the
literature for ferroelectrics allow a meaningful com-
parison with our treatment, additional experiments
are strongly suggested. Most promising would also
be the study of surface properties near T~ in dipolar
magnets like LiTbF4, since there logarithmic correc-
tions for bulk critical properties have been established
much more clearly than for ferroelectrics.

(v) As a last comment we note that the present
work adds nothing new to the critical properties at
surfaces of antiferroelectrics or other systems under-

going structural phase transitions. For these systems
the dipolar interaction should not make any relevant
distinction as compared to systems with truly short-
range interaction, and hence (for uniaxial systems)
the surface critical behavior should be the same as
that of the Ising model studied extensively previously.
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