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We have studied interfacial three-phonon processes as a mechanism to explain the enhanced
transmission of acoustic energy across the interface between (high phonon velocity) "classical"
and (low phonon velocity) "quantum" systems. Because of phase-space considerations, decay of
a phonon from the "classical" material to two phonons in the "quantum" material is possible for
reasonable values of the interfacial cubic anharmonicity (1-10 eV/RZ). The transmission rate,

for an interaction depending on the cube of the surface strain, varies as w®, for an incident pho-
non frequency w, so that the process rapidly "turns on" and then must saturate, in agreement
with experiment. The mechanism causes most of the transmission to occur outside the critical

cone, in agreement with experiment. The mechanism is also consistent with the observed fre-
quency conversion of the incident phonon. When the characteristic wavelength of the transmit-
ted phonons is considered (~16 Z\). one can account for experiments showing that a 3-layer (12
;\)'4}16 film behaves like bulk liquid He. The mechanism appears to be consistent with a wide
variety of experimental results, including recent pulse work on solid surfaces cleaved in situ. It
is suggested that experiments be performed to verity the predicted w® onset rate, perphaps by

studving the transmitted energy outside the critical cone.

I. INTRODUCTION

It is an embarrassing fact that, for temperatures
T > 0.1°K, current theories of the Kapitza conduc-
tance h; are often smaller than the experimental
values by an order of magnitude or more.! There are
a number of reasons why this might be the case: (i)
Even if the dominant mechanisms for interfacial en-
ergy transport are known, it is not clear that the usu-
al approach to calculating Ay is correct.? (ii) The
dominant mechanism, usually taken to be direct
transmission of phonons across the interface, may
have a larger transmission coefficient than that given
by the long-wavelength limit.> (iii) There may be sig-
nificant contributions due to defects and impurities.
(iv) Even in the case of a perfectly "clean" system,
there may be additional mechanisms which dominate
the interfacial energy transport. It is the purpose of
the present paper to investigate this last possibility.
Specifically, we will consider three-phonon processes
mediated by anharmonicity at the interface.

Our motivation for investigating this question has
been provided by recent experimental work, which
we break up into five classes. First, we note the
work of J. T. Folinsbee and A. C. Anderson* on
measurements of h, between "classical" and "quan-
tum" systems (by "quantum" we mean liquid or solid
SHe, *He, H, or D,) establishing that it is for such
classes of interfaces that the theory is inadequate.
Second, we note the work of Maris and coworkers>'®
(which supports the results of Ref. 4), using a heat-
pulse technique to measure phonon reflection coeffi-
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cients of near-normal incident phonons at the inter-
face between "classical" and "quantum" systems. For
T — Tand L — L processes (T and L refer to
transverse and longitudinal phonons) they observed
much lower reflection coefficients than predicted by
the acoustical theory, and for mode-conversion
processes (T — L and L — T) they found much larger
reflection coefficients than predicted by the acoustical
theory. The results of Guo and Maris also show that
about three atomic layers of helium on a solid surface
are sufficient to make the helium behave like bulk
liquid. This indicates that the relevant physical
processes must be occurring at the interface, regard-
less of whether a thin film or bulk liquid is adjacent.

The third class of experiment, by Kinder and
Dietsche,”® involved the study of 130- to 870-GHz
phonon reflection off an interface between solid sur-
faces and helium, in which an anomalously small re-
flectivity was observed, as well as both up-
conversion’ and down-conversion® of the pulse fre-
quency. In addition, they too observed that the ef-
fect becomes nearly saturated at a thickness of about
three atomic layers of helium.

The fourth class of experiment, by E. S. Sabisky
and C. H. Anderson,’ involved an indirect measure-
ment of the frequency dependence of a quantity e,
monotonically related to the phonon reflectivity at an
SrF,—liquid-*He interface. They found that e de-
creases monotonically from a value near unity at 20
GHz, to below 0.5 around 120 GHz, and is indepen-
dent of frequency between 120 and 315 GHz. These
results were essentially independent of temperature
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between 1.4 and 2 °K. In other words, a saturation
effect seems to occur. Note that their results do not
appear to depend on pulse intensity, which they
varied by about a factor of 10.

The fifth class of experiment, and one which we
will discuss in detail because of its relevance to our
calculations, was performed by Sherlock and Wyatt
and their coworkers at Nottingham.!®!! Acoustics
predicts that a critical cone will be found in the ma-
terial which has the slower phonon group velocities.
This means that a phonon incident from any angle in
the "fast" material will be transmitted only within the-
critical cone of the "slow" material.” Conversely, only
those phonons in the "slow" material which are in-
cident from within the cone will be transmitted into
the "fast" material; all others will be totally internally
reflected. The Nottingham group, however, found
that in the transmission of heat pulses from a solid
material ("fast") to liquid helium ("slow"), greater
than 85% of the total transmitted energy is transmit-
ted into the helium outside the critical cone. Furth-
ermore, for phonons incident from the helium, the
experiments showed that phonons incident outside
the cone are indeed being transmitted across the in-
terface, although the transmitted intensity for "slow"
to "fast" outside the cone is much smaller than the
corresponding intensity for "fast" or "slow". There is,
therefore, in addition to the "cone breaking", a fun-
damental anisotropy involved in energy transport
across these interfaces; phonons behave differently
depending upon their direction of incidence with
respect to the interface. Unfortunately, the incident
beam was not collimated, and the temperature depen-
dence of the angular distribution of the transmitted
energy (even in relative terms) was not given. As a
consequence, a theoretical analysis of their work is
rendered difficult. Nevertheless, the qualitative
features of their experiments are so striking that we
have attempted such an analysis. The results are not
completely satisfying, but are sufficiently good that
we believe that further work of this nature, both ex-
perimental and theoretical, is well worth pursuing.
Indeed, pulse experiments of all types probably pro-
vide our best hope of understanding the Kapitza
conductance problem.

It should be noted, before discussing any detailed
calculations, that interfacial three-phonon processes
are capable of explaining each of the above experi-
ments, at least in a qualitative sense. Three-phonon
processes are compatible with frequency conversion,
and cone breaking (with its associated anisotropy).
They are also compatible with three-layer “He films
behaving like .bulk *He, once the characteristic pho-
non wavelengths are considered. They can cause
unusually large amounts of mode conversion. Furth-
ermore, as will be seen in the course of the calcula-
tions, the effect will be important only for interfaces
between "classical" and "quantum" materials. - This is

not because of an intrinsically quantum-mechanical
effect, but rather because the low sound velocity of a
quantum system renders the direct transmission pro-
cess inefficient and, more importantly, causes the
phase space for certain interfacial three-phonon
processes to become enormously large. It should also
be noted that attempts to explain measured A, values
solely in terms of an enhanced transmission coeffi-
cient are incapable of explaining a number of the
pulse experiments.”% 19712 Finally, we remark that
the frequency dependence of the interfacial three-
phonon process transmission is so great (w® relative
to the direct acoustic transmission) that, once the
process becomes important, it rapidly swamps the or-
dinary process. If this domination is too great, then
our perturbation-theory calculation can predict more
transmitted energy than incident energy. In this case
a more sophisticated, self-consistent, calculation must
be done and this should lead to the saturation effec
observed in Ref. 9. :

For the benefit of the reader, we present a short
analysis of the frequency dependence of the interfa-
cial three-phonon transmission. Using Fermi’s gol-
den rule we must sum the square of the matrix ele-
ment over allowable final states, subject to energy
conservation. If we consider one phonon of frequen-
cy o in one material splitting into two the unrestrict-
ed final-state phase space varies as »®. However,
conservation of the two components of transverse
momentum reduces this to »*, and energy conserva-
tion further reduces this to . Since the square of
the matrix element goes as w?, the fractional energy
transmission goes as w®. However, only the details of
the phase-space analysis provide the prefactor of w®,
and this prefactor is shown to be large in the case of
a "classical"-"quantum" interface.

The remainder of the paper has the following form.
In Sec. II we consider the general structure that a
phenomenological matrix element for interfacial
three-phonon processes can be expected to have. We
conclude that the attempts of previous workers to ob-
tain this matrix element, using semimicroscopic ap-
proaches, are probably in error, and we trace what we
believe to be the source of this error. In Sec. III we
consider the available phase space for various three-
phonon processes and certain angular distributions
are presented. We find that considerable amounts of
phase space are available for such processes, which
provide transmission of energy outside critical cones.
Furthermore, we find that the processes do indeed
exhibit anisotropy with respect to direction of in-
cidence, which is observed experimentally. In Sec.
IV we consider the effect that a nonconstant matrix
element can have on these processes. We show that
the general matrix element can be a iinear combina-
tion of many different terms. We then arbitrarily
choose a particular form, and find that the matrix
element can considerably modify the shape of the an-
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gular distribution of emitted phonons. We also calcu-
late the interaction energy per unit area at the inter-
face which would be required for three-phonon
processes to contribute an interfacial heat current
equal to the heat current due to ordinary, single-
phonon processes. For interfaces between classical
and quantum materials the required surface energies
compare favorably with the cohesive energy per unit
area calculated for real materials, whereas for inter-
faces between classical materials we find the required
surface energies to be unphysically large. In Sec. V
we summarize our results and show how interfacial
three-phonon processes are consistent with the
aforementioned pulse work, as well as the recent
pulse work of Weber er al.!2 Further discussion of
the matrix element and of the interaction strength
are also presented there.

II. PHENOMENOLOGICAL MATRIX ELEMENT

Although a large amount of theoretical work has
been done on bulk multiphonon processes, there are
very few studies of interfacial multiphonon processes.
Two papers, however, are of particular significance.
In his original paper on heat exchange between solids
and helium, Khalatnikov!? considered interfacial
three-phonon processes using a matrix element
derived from semiclassical considerations. He arrived
at the conclusion that these processes contribute a
negligible interfacial heat current compared with the
direct transmission processes involved in the acoustic
mismatch theory. In 1973, Sheard et al.'* attempted
a completely quantum-mechanical calculation of the
Kapitza resistance for the solid—liquid-*He interface.
Processes involving phonons and rotons in the liquid
helium were treated in a unified manner by using a
realistic model for bulk helium. The coupling of the
phonons in the solid to the excitations in the helium
was derived in the form of a transfer Hamiltonian
but the interaction Hamiltonian was derived from the
interatomic potential between a helium atom and the
solid. 1n the long-wavelength limit this theory repro-
duces the classical acoustic mismatch theory results
for direct transmission processes. The coupling Ham-
iltonian also includes roton emission and higher-
order processes involving two or more excitations in
the helium. In their discussion of second-order
processes, Sheard et al., find that the ratio of the
heat current due to three-phonon processes to the
heat current due to direct transmission processes is
0.033 at 2°K and becomes negligible at lower tem-
peratures. Both Sheard et al. and Khalatnikov con-
sidered three-phonon processes employing a three-
phonon matrix element M which varies as

M < (pq/k)'V? Q.1

where kK (P and @) are phonon wave vectors in the
solid (liquid). For the process defined by k +p—,

Eq. (2.1) predicts that as the energy (and wave vec-
tor) of the phonon in the solid (described by wave
vector k) becomes very small, the matrix element for
this transition becomes infinite. We believe that this
result is incorrect and we can trace the k~'/2 depen-
dence to an oversimplified treatment of the lattice
displacement of the solid. The matrix element we
calculate, on the other hand, is proportional to
(kgp)'”? (for the process k —§ +P) and is obtained
as the continuum limit of the cubic interfacial in-
teraction for discrete systems.

For a discrete system one may write the cubic in-
terfacial interaction for a three-phonon process as

C(,BY(Au)ku(Au)pB(Au)qy »

where C,g, is the strength of the interaction and
(Au),, is the difference in the a-direction displace-
ments from equilibrium (due to the k phonon) of the
interfacial atoms. For small displacements in the z
direction, this interaction leads to a matrix element of
the form

Moo || |31 |34 s (2.2)
9z J,| 0z J,| 8z J,
where a is the lattice spacing. Using the expression

for the displacement operator G(T) (given in a later
section), Eq. (2.2) leads to

M o« (kqp)'* . 2.3)

The matrix element given by Eq. (2.1) does not al-
low the solid to adjust to the liquids; i.e., the matrix
element of Eq. (2.1) is based on displacements of the
solid rather than differences in the displacements.
On the other hand, the phenomenological interaction
given by Eq. (2.2) explicitly depends on differences
in displacements. Furthermore, being phenomeno-
logical, it permits all three-phonon processes (includ-
ing one phonon in the liquid and two phonons in the
solid, processes which do not appear in the theories
of Refs. 13 and 14). As we will show in Sec. III,
some processes not considered in Refs. 13 and 14 can
be quite important. In addition, the phenomenologi-
cal interaction does not depend on whether the ma-
terials are solid or liquid. (Recall the experimental
evidence*™® indicating that the "excess" Kapitza con-
ductance values which are measured with helium on
one side of the interface do not depend on whether
the helium is solid or liquid.) Finally, note that the
coefficient of the matrix element is to be determined
from experiment. We thus avoid the difficult prob-
lem of calculating the surface anharmonicity for sys-
tems whose surface harmonic terms are not well un-
derstood. In practice, it is the decision to leave this
coefficient determined by experiment that enables us
to study interfacial three-phonon processes. Previous
theories specified the form and the coefficient of the
matrix element.!>14
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It is important to note that the argument for a
matrix element of the form (2.2), as opposed to the
forms given in Refs. 13 and 14, can be strengthened
considerably in light of experiments which show that,
on most solids, the first overlayer of *He is itself
solid. In addition, this permits an estimate of the
coupling strength C. These points will be discussed
further in Sec. V, where we will show that the
theoretical and experimental estimates of C compare
favorably.

Note that it is not clear that Eq. (2.2) .is correct in
all contexts (particularly at high frequencies and large
wave vectors), so it is safest at this time to take the
attitude that the. mechanism may perhaps be mediat-
ed by some unknown cubic anharmonic interaction at
the interface. This attitude is especially prudent if we
recall that A, values are very sensitive to surface
preparation and, therefore, to what is actually on the
surface.!''215 To separate matrix element from
phase-space effects we have broken our calculations
into two parts. In Sec. III we consider phase-space
calculations only, appropriate if the matrix element is
constant. In Sec. IV we include the effect of a matrix
element consistent with Eq. (2.2). We believe that
the existing experiments are, in the absence of de-
tailed analysis, qualitatively consistent with the
momentum dependence given by Eq. (2.3).
Nevertheless, interfacial three-phonon processes pro-

vide so attractive a mechanism for explaining the Ka-

pitza conductance problem that, if detailed experi-
mental analysis casts doubt on our use of a matrix
element whose momentum-dependence is given by
Eq. (2.3), we would rather abandon that
momentum dependence than the interfacial three-
phonon process itself.

III. THREE-PHONON PROCESS PHASE-SPACE
CALCULATIONS

A. Channel /

Consider the process E—‘G‘ +P (Channel ), in
which a phonon in material a(z < 0) decays into two
phonons in material 8(z >0). To be specific we take
material « to be a solid and material 8 to be a liquid,
although in principle the phonons in each material
may be either L (longitudinal) or T (transverse). For
a clean surface, the matrix element M conserves
momentum parallel to the interface. We temporarily
assume that M is independent of the directions and
energies of the phonons.

To calculate the rate of energy transmission ob-
served by a detector subtending a solid angle d Q,,
we calculate the transition rate w for this process us-
ing Fermi’s golden rule. Taking @ in the direction of
the detector, summing over all allowed p and |G|,
and weighting by the energy €, and by |M |2, we find

1(6,, 464) =2l_zl_‘2h_£‘Mlzeqa‘ézl,)a'"rp‘"ﬁ(ék —€,—¢€,) ,
o 3.

where 1(8,, ¢,;0,) is the energy intensity observed at
6, and ¢, in material B, due to k. The angles are il-
lustrated in Fig. 1. The factor of 2 appears outside
the summation because the q@ and p phonons may be
interchanged.

Summing over Py (thus eliminating the Kronecker
8), summing over p, (thus eliminating the Dirac 3),
employing the Debye approximation for all phonons,
and converting the sum over @ to an integral, we find

. A’ M|
160, 9580 = 555 S

el(ex—¢,) de,
{[(ex — €)) /e 1~ §}12
3.2

>

where A is the area of the interface and ¢, is the
phonon group velocity in the liquid. (The depen-
dence on A2 is only apparent, being due to our over-
simplified matrix element.) Introducing x = ¢,/€;,
Eq. (3.2) becomes

A2|M|2E/‘:

1(8,, ¢436) prOT

Z,(8,, bq:61) 3.3)
where the dimensionless function Z,(6,, ¢,;6) is
given by

) Xu xj(l"X)dx :
Z](oq:¢4’0k)=j;l (le2+f2x +f3)1/2 '

f1=cos?,, (3.5)

3.4)

W\

N>

FIG. 1. Interfacial three-phonon process. The interface is
the z =0 plane.
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TABLE 1. Values of the coefficient of Z, in Eq. (3.7) for various three-phonon channels. The
subscripts « and 8 refer to solid NaF and liquid helium at 20 atm pressure. L and T represent
longitudinal and transverse phonons, respectively. z is the ratio of the coefficient of Z, for each
channel to the coefficient for Channel /. The phonon group velocities are ¢,; =6.22 X 10° em/sec,
Cer=3.22x10° cm/sec, and «cpz =3.47x10* cm/sec. The factor d is defined by
a=(A2M?e})/4m3 K>, Note that cgr processes have been neglected, since liquid helium does not

support propagating transverse waves.

Channel Three-phonon process Coefficient z
of Z,

1 Ly—Lg+Lgor Tu—Ly+Ly alchy 1.00
1 Ly—Lz+T, @f2cgrelr 6.26 x 10~
i To—To+L, a/2c,repy 539 x 1072
v L,—T,+L, @/2cqarchy 539 x 1072
v Ly—~L,+Lg @/2cq eyt 2.79 x 1072
vi o Ta— L +Ly al2¢ L 2.79 x 1072
vil Ly—T,+T, alely 1.35x107%
viii Lg—Lg+L, al2cgred, 8.68 x 1073
156 Ly—L,+T, dl2cqpcir 349 x 1073
X Lg—L,+L, aled, 9.69 x 107°

cone. In fact, for 8, =0°and ¢, =180°, 81% of the
total energy transmission from this process occurs for
8, > 6°. Thus, Channel /is certainly capable of

and - transmitting large amounts of energy outside the crit-
ical cone. There are four other channels for this
solid-liquid system in which the incident phonon is in
the "fast" material but for these channels (Channel
11— VI of Table I) the intensities are smaller than

, (3.6)

fr==2 [-%i— sinéy sind, cosg, +1

2
fi=1— [”—L sinl)k] . G.7)
Cs

(cs is the phonon group velocity in the liquid.) The
cos¢, dependence enters because

3.
—3 € . : 2ece, :
pif= —h'c: sinf,| + Rese, sinf, sinf, cos¢,
. 2
+ —ﬁ?"; s’ml)q] . 3.3 2]

The integral in Eq. (3.4) is evaluated in the Appen-
dix. In calculating numbers, one must carefully con-
sider the upper and lower limits, x, and x;, to ensure 1
that the argument of the square root is always posi-
tive. Physically, this corresponds to requiring that p, )
be real. ’
Taking ¢, /cs to be 0.1 (to correspond approximate-
ly to a solid-liquid helium interface), we computed
Z(8,, ¢,:0:) vs 0,, as shown in Fig. 2. There is lit- ) 60 9%
tle dependence upon 6 or ¢4, but the dependence eq (degrees)
on 8, is significant. A critical cone occurs in the

liquid, at 8¢ =sin"'(c,/cs) =5.7°. Figure 2 shows
that most of the energy transmitted by this three-
phonon channel is transmitted outside the critical

FIG. 2. Dimensionless integral Z in Eq. (3.6) vs 6, for
Channel I. The values of 6, and ¢, are 0° and 180°, respec-
tively.
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those of Channel / by at least an order of magnitude.
This is primarily because, for these other channels,
the constant which multiplies the dimensionless in-
tegral in Eq. (3.7) is much smaller than the constant
for Channel I. Note that Channels /V and VI are
responsible for mode conversion.’

B. Channel I/

For a phonon k incident from the liquid, or low
velocity side, there are also five channels, labeled
Channel Il and VII—X in Table I. In this case, the
dominant channel (Channel 1) is that for which K
decays into a phonon P in the liquid, and a transverse
phonon { in the solid. This is because the greatest
amount of phase space is available to @ when p em-
erges in the slow material. The intensity at the detec-
tor, which is now in the solid, is as in Eq. (3.3) ex-
cept that no factor of 2 appears outside the summa-
tion, since now only one phonon propagates in the
detection material. The intensity is given by

AZ MZ 4
M| K710, 9500 . - (39

100, 64:0) =—F=<—
( ‘ ¢q k) (2#)3ﬁ5CLCS

where the functions f},f,, and f3 in Z; are redefined
as '

2
fi=1-|Lsino,| |, (.10
Cs
fr==2]1 +-§-L-sin0k siné, cos¢>q] , (3.11)
s
and
f3=cos?0; . (3.12)

The resulting intensities in Channel //, given in
Fig. 3 for ¢, /cs=0.1, are quite different from those
in Channel /. The dependence on 8, and ¢, is weak,
but its dependence on 8, is strong.

Figure 3 shows that Channel I/ also permits the
transmission of energy even though the incident pho-
non is outside the critical cone in the liquid. There-
fore, both Channels / and /7 allow transmission of
phonons from regions which are forbidden by classi-
cal acoustic theory. This agrees with the experimen-
tal observations of Wyatt et al.!! Furthermore, from
Table I the ratio of the rate of energy transmission by
Channel 7 to the rate of energy transmission by
Channel /] is very large. Thus much more energy is
transmitted by these three-phonon channels in going
from the solid to the liquid than going from the
liquid to the solid. The experimental results of Wyatt
et al.,'! show this behavior also, but in a somewhat
less striking fashion than our table would indicate.
Therefore, although we have not yet considered the

.3

0°

20°

x>

40°

1 1 1
30 60 90

G)q (degrees)

FIG. 3. Dimensionless integral Z, in Eq. (3.11) vs 6, for
Channel //. The value of ¢, is 180° and the family of
curves represents various values of the incident angle 6.

details of the matrix element for these processes, it is
apparent that three-phonon processes are an attrac-
tive candidate for explaining both the transmission of
energy outside critical cones and the anisotropy of the
transmission of energy which is observed experimen-
tally. They can also explain mode conversion. We
consider the matrix element in more detail in Sec. IV.
We close this section with some remarks about two
different classes of interfacial three-phonon process;
namely, those involving only phonons on one side of .
the interface, and those involving surface phonons.
For all such processes, momentum is not conserved
perpendicular to the interface. Therefore, three-
phonon decay that from phase-space considerations
would be forbidden in the "fast" buik solid (such as
T—L+Lor T—L +7T) now becomes possible.
However, the available phase space for this process is

much lower than for the related process discussed in

this section (Channel /). On the other hand,

L — L + L processes involving phonons only in the
"slow" liquid have a significant amount of phase space
relative to Channel /I. This will be taken into con-
sideration later, when transmission from liquid to
solid is discussed. In the case involving surface (S)
phonons and two solid phonons (e.g., L =L +5)
there again is phase space available for such
processes. However, due to the high velocity of sur-
face phonons there is much more phase space avail-
able for processes with the surface phonon replaced’
by a phonon in the liquid. Nevertheless, one should
not offhand dismiss the possibility that such
processes occur with a measurable probability. We
have not pursued this question in any greater detail.
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IV. CALCULATIONS INCLUDING A
THREE-PHONON PROCESS MATRIX ELEMENT

Although the constant matrix element analysis is a
useful initial approach, it is nevertheless an incom-
plete one. The matrix element should depend on €,
04, 04, and ¢,. In order to obtain such a depen-
dence, we will model each of the two materials by an
isotropic elastic continuum and then apply classical
elasticity theory to obtain the matrix element. This
matrix element may then be incorporated into the
phase-space integrations of Sec. III. Only Channel /
will be considered.

A. Form of the interaction

Kittel'® and Ziman'” give the lattice displacement
operator for bulk plane-wave phonons in an isotropic
elastic material,

1
(7)) = >
Vl /2 Tu

1/2

2pwi, ] (ar#e‘k.{ + a%ue_lﬁ) é?u ’
4.1)

where U(T) is the displacement of the atom at posi-
tion T from its equilibrium position, V is the volume,
p is the density, #w,, is the phonon energy, ag, and
a{-“ are (dimensionless) phonon destruction and crea-
tion operators, w is the polarization index, and é;-“ is
a unit vector in the direction of the polarization of
the phonon. Since we are dealing with interfacial de-
cay processes, we must generalize Eq. (4.1) to
12

1 k A
VVZ ; ‘5’;“)—’(—'] (ak‘,_\l’k +HC) €kp s
kp »

(1) =

(4.2)

where ¥, is a scattering state containing the incident
phonon and its reflected and transmitted com-
ponents, and H.c. stands for "Hermitean conjugate".
(V and p are now the volume and density of the ma-
terial containing the incident phonon; this ensures
that the displacements of the two materials at the in-
terface will be equal.) For Channel /, the incident
phonon is an incoming ¥{* state and the outgoing
phonons are the states ¥~ and ¥},

Having chosen a form for the displacement opera-
tor, it is now necessary to choose a form for the cu-
bic interaction which allows a phonon to decay at the
interface into two new phonons. We assume that
there is rotational symmetry about the z axis (which
is perpendicular to the interface). The following five
operators have this symmetry:

Q,u, , Oyu,+0,u,, O,u,—d,u,,

(0,u)? +(8,) , (8,u)? + (B,u)? .

They may be combined to form 16 possible cubic in-
teractions. In the absence of rotational symmetry
about the z axis, even more cubic interactions be-
come possible.

Treating each material as an isotropic elastic con-
tinuum, thus permitting both longitudinal and
transverse phonons, we find 24 possible three-
phonon channels, such as

Lo—L.+Lg, Tg—Toy=T,, Ly—Lo+T,.

Clearly, with 24 possible channels and 16 possi-
ble interactions for each channel, we must limit the
scope of the investigation; we choose to consider
only Channel / in detail, in order to compare with the
data of Ref. 11.

A simple choice for the cubic interaction for

Channel Iis H'= ) 3'dT, where
I '=C(8,u)(8,u,),(8,u,) ,5(2) , (4.3)

Cis a phenomenological coupling strength of di-
mension erg/cm?, and the & function ensures that
this process occurs only at the interface. Note that
the angular dependence of this interaction is not con-
sistent with the results of Ref. 12, which will be dis-
cussed in Sec. V. However, the results of Ref. 12 be-
came available only after our calculations had been
completed.

Each of the displacement operators is to be
evaluated on one side of the interface; we will evalu-
ate them in the "slow" material 8, which we now treat
as an isotropic solid, rather than a liquid. Consider
the ¥ state in which a plane-wave phonon of wave
vector Ko in the xz plane is incident from the "fast"
material a. There will be two reflected waves of
longitudinal and p-transverse polarization with wave
vectors K,y and K,,. (A "p-transverse” phonon is po-
larized in the plane of incidence; here, in the x-z
plane. An "s-transverse" phonon has its polarization
parallel to the interface; here, perpendicular to the
plane of the incidence.) There will also be two
transmitted waves, one longitudinal and one p
transverse, described by wave vectors Eﬁ, and EB,.

All these wave vectors are in the x-z plane. The
wave vectors Ko, Kas, and K, are at 0o, Okar, and
0rq:, these angles being measured from the —z axis.
The wave vectors kg and Eﬁ, are at ;5 and 0g,
measured from the +z axis. These angles are related
by the acoustic analog of Snell’s law,

s‘m()' =L” 4.4)
sinf c

where ¢ and ¢’ are the phonon group velocities.
The W¥{* state in the 8 material is given by

A Ky, T A A K, T
‘Ifﬁz’)=kmtk1e' ol + (kg X 5)tge B, (4.5)
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where 4, and ¢, are the longitudinal and transverse
transmission coefficients. The ¥{~ state has two
"transmitted" waves in the o material joined with two
“reflected" waves in the B8 material to give a phonon
Qo in the B material; in the 8 material, it may be writ-
ten (for ¢, =0),

B/"' + (qAﬁl X)’)\)rq(,—)elcwt-r )
(4.6)

where 757 and i are the reflection coefficients for
the ¥~ state. The ¥\~ is treated in the same way.
For ¢, =0, ¥ 3 is obtained from Eq. (4.6) by a ro-
tation of ¢go.

Now define

M= (n.—-1,1,1|H'|n,0,0) , 4.7

where the indices correspond to the ocgupation
numbers for phonons of wave vectors k, q, and P,
respectively. Using Egs. (4.2)—(4.6) in Eq. (4.7) we
find

1/2
_ i HCA | Fwrwgwyng @
M=Vt TSowwive | BEEOum

' (4.8)

where
2 Cpt

Bk =t} COS Okﬁl - ‘E— e sm()kﬁ, cosl)kﬁ, ’ (49)

Bt

c

= coql 2 Bl :

B, =cos°8, +rycos’8, — P sin@, g, cosf,p, ,
Bt

(4.10)

Cal .
B, =c0s’0,, +r, cos’6, — ;f’— Ty SiNB,p, COSO, 5, -
Bt .

(4.11)

Note that although B, and B, contain no energy
dependence, B, depends upon €,/€; because the an-
gular position of the wave vector p depends on the
angular position of q and the length of q.

B. Intensity
Using Eq..(4.8) in Eq. (3.1), and setting
Vo= Vg=V, we find

CznkA E/Z

18, bq,0 0k) = e
Beyy oy by 32p.p3m VB

x Z,(0y o 020 $ag) 4.12)

where the dimensionless function Z, is given by

x*(1 —x)2dx
(f1X2 +f2X +f3)1/2

Z2(8ky 04y bg) = f
X |BcB,B,(x)|?, (4.13)

f1, f2, and f; are given by Egs. (3.5), (3.6), and
(3.7), and x = ¢,/ ¢.

We now find the dependence of B, on x. Equation
(4.4) allows us to express B, in terms of 8y, With

€, =€ — €, and —lz|| =f)'|| +a'||, we find

xsinb, sing,

=tan!
bry x sinfy  cosp, + (cpi/c,) sinby
(4.14)
and ‘
sinf, sing
9, =sin~![[—= - "% (4.15)
0 x—1 sing,,

" The argument of sin™! in Eq. (4.15) will not exceed

unity or diverge because the range of integration is
only over those values of x for which 0 < 0,,0 =90°

corresponding to real values of p,.

Before evaluating the integral in Eq. (4.13), we
need the reflection and transmission coefficients
which appear in Egs. (4.9), (4.10), and (4.11). To
obtain them, one must solve four equations (two in-
volving stresses and two involving displacements), in

1
30 60 30

9, (degrees)
%

FIG. 4. Dimensionless integral Z, in Eq. (4.13) vs the
detector zenithal angle 010. The value of ¢"0 is 0° and the

family of curves represents various values of the incident
angle 6.
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four unknowns!'® (the reflection and iransmission
coefficients), for the three phonons k, P, and @,
given the three input parameters 9,,0, ¢>qo, and 0"0'

Equation (4.13) was evaluated numerically by using
Simpson’s rule, with suitable modifications when a
singularity appeared in the region 0 =x <1. A typi-
cal plot of Zz(BkO, 84, ¢qo) vs 8, for ¢, =0 and
various values of 0k0 is shown in Fig. 4. The materi-
al dependent parameters used are

CafCpt=CarlCpi=palpg=10

and ¢/ cqr=cp/cp=3. These ratios are approxi-
mately the values appropriate for a NaF—solid-*He
interface. Although the basic shape of these intensity
curves are unchanged by the inclusion of the matrix
element, the matrix element causes a much stronger
dependence upon 9"0' As before, most of the energy

w/2 2w
1| .
U=J:) j; [[—ianmoq d()q dd)q

Clef

 32pupimiiicca

The integral over d ¢, 0 gives 2 since normal in-

cidence gives azimuthal symmetry. The integral over
d()qo was performed numerically. In order to find a

typical value of €, the energy of an incident phonon,
we define a thermal value of (ef) by writing

<€6) -—M (4.18)
k] — .
fnkp(e) de

where p(w) is the density of phonon states. The
result is

(€f) =1.16 x 107! T6 | (4.19)

where T is the temperature in °K. Using values ap-
propriate to NaF and solid “He, and setting 7 =1°K,
Eq. (4.17) gives

U=1.19x10712C?.

The results of Wyatt et al.,!! suggest that at tempera-
tures around 1 °K the heat current due to three-
phonon processes is the same order of magnitude as
the direct transmission heat current predicted by
Khalatnikov. (Although our calculation is for solid
‘He, whereas the experiments are for liquid ‘He, our
results should be appropriate to the experiments, at
least with respect to order-of-magnitude calculations,

is transmitted outside the critical cone. Note that
here we have treated the He as a solid, rather than a
liquid; this should not affect the results qualitatively,
and should have only a minor effect on the quantita-
tive results.

We now estimate the magnitude of the surface en-
ergy C, which is the only adjustable parameter in this
phenomenological theory. Since the transmitted in-
tensities for the matrix element given by Eq. (4.3)
are weakly dependent on 6, o We will assume normal
incidence (8 0=0). The incident energy flux is
given by
(4.16)

lin= Ng€xCyp .

1
v

Therefore, the rate of energy transmission by three-
phonon processes (normalized to the incident rate) is

/2 2
fo fo Z(6k,=0, 8, , b, ) sinb, db, do, . 4.17)

which is all that is needed.) Thus, in order to solve
for C, we now equate U to a, the acoustic transmis-
sion coefficient for normal incidence. For NaF
against solid *He, «=0.029. Solving c’for C and
changing units, we find C =9.8 eV/ A2 If one mul-
tiplies the crystal cohesive energy density for a typical
solid (e.g., Cu) by the lattice spacing, one finds the
coheosive energy per unit area to be in the order of 1
eV/A2. Therefore, realistic values of the coupling
strength C will allow the three-phonon contribution
to the interfacial heat current to be as large as the
direct transmission contribution. (Section V provides
a more extended discussion of C.) Because of the
limited available phase space and the similarity
between the phonon group velocities, we do not ex-
pect three-phonon processes to contribute significant-
ly to the heat current across interfaces between classi-
cal solids (e.g., NaF against Cu). Indeed, our calcu-
lations show that for NaF against Cu, the three-
phonon heat current is equal to the direct transmis-
sion heat current at 1 °K gnly if the surface interac-
tion strength is 1.5 GeV/A2 (If the surface interac-
tion streglgth takes on the more reasonable value of
1.5 eV/A?, the three-phonon heat current equals the
direct transmission heat current for NaF-Cu only at
pulse temperatures of 10® K.) Furthermore, experi-
mental measurements on interfaces between classical
solids show that the Khalatnikov theory is sufficient,’
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which implies that three-phonon contributions to the
heat current are negligible in these systems.

Recall that our choice of the interfacial cubic
anharmonic interaction was only one of sixteen possi-
bilities, if we can limit ourselves to a symmetrical in-
terface. One might argue that we have been too
specific in our choice of this interaction, which will
affect the details of the angular distribution of the
transmitted energy. The angular dependence of the
matrix element in 7(8,, ¢,;8) is contained in the
terms By, B,, and B,. Since By and B, do not
depend on x, and B,(x) is a slowly varying function
of x, we decided to absorb By, B,, and B, (which
contain the angular dependence of the matrix ele-
ment) into the phenomenological constant C in Eq.
(4.12) and call this new constant C. The result is

C.'znkA E/Z
32p.p3mVECY

100, bqy 0x)) =

X Z3(8ky g Bq,) (4.20)

where

x*(1 —x)2dx

(f1X2+f2X +f3)1/2 ’ (421)

Z3(8ky 04y D) = f

and the phase-space angular dependence of Z3 is con-
tained in the functions fi, f,, and f3. Using Egs.
(4.17) and (4.21) and again setting U =« at 1 °K, we
find C =0.96 eV/A2. Again, the required coupling
strength has a reasonable value.

We have also studied our predicted energy (tem-
perature) dependence. Wyatt er al.!! plot the exper-
imentally measured dependence of Ep/Ey versus
temperature for NaF —liquid “He, where Ep is the
energy transmitted within the critical cone and E7 is
the total transmitted energy. Our theory gives

Ep Up + Uk

, (4.22)
Er U+Ug

where U is given by Eq. (4.17), Up is the same as U
except that the integration d()qo is only within the

critical cone, and we assume that Uy is the acoustic
contribution within the critical cone, given by

/2
UK=2L 01(91() Sin0k cosfy dgk . (423)

Here we have

ppcg, [l —(cp sinf/co) 12

|t (8,) |2
(4.24)

and t,y(8,) is solved for each value of 6, numerically.
For the NaF—liquid-*He interface, where the *He is
considered now as a liquid in evaluating Eq. (4.23),

0.) =
a( k) pacalcosgk

the value of Uy is 8.74 x 1073, Using Z; in Eq.
(4.17) we find

U=5.57x10"1¢°T* (4.25)

where T is the temperature measured in °K. Equa-
tion (4.4) gives the critical angle in the helium for
the NaF—liquid-*He interface as 3.2°, and this results
in a value for Up given by

Up=2.08 x 10"3¢°TS . (4.26)

We now rewrite Eq. (4.22)

Er _al’Té+1

= , (4.27)
Er  bC'TS+1

where a and b are given by
2.38 x 107! cm*/erg? °K®
and
6.37 x 107% cm*/erg? °K*,

respectively. We performed a least-squares fit of Eq.
(4.27) for the data from 0.6 to 4.4 K given by Wyatt
et al.,'! using C as the fitting parameter. The best fit
is given by € =10.1 eV/AZ

A comparison of theory with experiment is shown
in Fig. 5. Clearly, the T ¢ dependence in the theory
is much too rapid to explain the data. In particular,
the fit for 1-2 °K is not good, and (Ep/Er) e, may
just be saturating near 4 °K, whereas (E,/Er)y, sa-
turates very near 1 °K. In addition, at the higher
temperatures our calculation has the energy within
the peak being dominated by the three-phonon pro-
cess. This is contrary to experiment,!! and can be
taken to mean that the angular dependence of the
matrix element given by Eq. (4.3) is inappropriate
because it permits too much energy to enter within
the critical cone. Other evidence that Eq. (4.3) is
inappropriate!? will be discussed in Sec. V. Because
the transmitted pulse within the critical cone seems
to maintain its shape for all incident pulse tempera-
tures, it is likely that Ep is probably not very tem-
perature dependent. It would be of some interest,
therefore, to try to fit £p/Er to the form
(AT®+1)/(BT®+1) for A =0. Without attempting
this fit, it is nevertheless clear that once the three-
phonon process "turns on", it will rapidly come to
dominate, with Ep/Er approaching zero rapidly as T
increases. In fact, the data relevant to this question
is not really definitive.!! Physically, however, the
BT ¢ term must saturate. Such an effect is observed
in the Sabisky-Anderson experiment.’ We believe it
is worthwhile to consider this question in some detail.

From previous considerations it is clear that our
simple golden-rule calculation (a type of first Born
scattering calculation) gives the result that the ratio
of the flux of transmitted energy (via the interfacial
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FIG. 5. Dimensionless ratio E,/E, in Eq. (4.28) vs temperature 7. The solid curve represents the values predicted by the
theory. The data points (@) are those given by Wyatt et al. (Ref. 11), where the error bars are shown when they are larger

than the symbol.

three-phonon process) to incident energy has the
form D ®, where w is the incident frequency. For
large w, D »® exceeds unity, which is unphysical. A
self-consistent theory would replace D w® by a quanti-
ty which does not exceed unity. In the context of
trying to fit Ep/Er, we must replace BT®+1 by a
quantity which does not exceed the ratio of the total
incident energy to the energy transmitted by direct
processes. For example, we may let

BTS+1—BTS/(1+FT% +1,

which approaches B/F +1 for large 7. This has the
correct physical behavior, but varies too rapidly with
temperature, when compared with experiment. Until
the question of how the process actually approaches
saturation is answered, it will not be possible to fit
certain aspects of the data. Note that a related sa-
turation problem (for one-phonon processes via the
transfer Hamiltonian method) has been studied by
Toombs and Bowley.!”2° They were able to solve for
their 7-matrix exactly, because of the simple form of
their interaction, involving only two-phonon
processes. However, the T-matrix equation for the
present problem, involving three-phonon processes,
can be expected to be much more difficuit to solve,
being an intrinsically many-body problem.

Note that, because of the saturation effect, the
form of Eq. (4.27) can be expected to hold only near
the onset of interfacial three-phonon processes. Un-
fortunately, this involves the lowest pulse tempera-
tures, for which good data was difficult to obtain.
(See Fig. 2 of Ref. 11, where the error bars are larg-
est at the lowest pulse temperatures.)

So far we have only discussed the NaF —“He data.
We now consider the ‘He — NaF data, whose most

prominent energy-transfering interfacial three-
phonon process (Channel /I) involves a “He phonon
breaking up into a “He and a NaF phonon. In this
case, not all of the incident phonon energy gets
across, so the transmission E7 is less, and therefore
Ep/E7 is larger. Indeed, it seems to saturate at a
value near 0.13, as opposed to a value on the order
of 0.005 (or less) in the NaF —“*He case. The reason
Ep/E7 is not so small in this case, despite the «®
dependence of the interfacial three-phonon process,
may be due to the competition of the more dominant
interfacial three-phonon process involving phonons
from the liquid only (L — L +L). This process was
discussed briefly in the previous section.

We close this section with an estimate of the ratio
of the rate for interfacial four-phonon processes to
the rate for interfacial three-phonon processes. If a
matrix element of the form

CO,u)%(z)

is taken, then C“ has the same units (energy/area)
as the C we previously consider for interfacial three-
phonon processes. It is probable that C® and C are
of the same order so that the relative rates of the two
processes are in the ratio

|4

- 2
r=(9.u,) TPE

(*;—211'13)]

where the last factor is the maximum phase available
to the fourth phonon T, which can lie in a hemisphere
of radius . We make / as large as possible by consid-
ering it to propagate in the liquid, so / =w,/c. The
characteristic value of w; is %m, where w is the in-
cident phonon frequency (which must split up its en-
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ergy into three final phonons). Replacing 93,4, by an
upper limit, /| T,|, where U is given by Eq. (4.1), we
obtain

2 __h

Lowp
2oV 4

2‘:'1')3 3

r=|/

_ el

2472pc’
For liquid *He we may take p =0.15 cm™ and
¢ =2.4x10* cm/sec. If we consider w;=5 x 10!
sec”! so

f=0/2m)30,;=2.5x10" Hz,
then we obtain
=2x107*.

This implies that four-phonon processes are relatively
negligible at the frequencies and temperatures of in-
terest for the Kapitza problem.

V. DISCUSSION

In considering the problem of the anomalous Ka-
pitza conductance, which has eluded solution for so
many years, one must take a somewhat different atti-
tude toward theory than in the case of many other
problems. Rather than subjecting the theory to rigid
quantitative tests in a few selected experiments, it is
here more important to see first if the theory is capa-
blé of satisfying a broad range of criteria specified by
the experimental data. Indeed, since there is no
universal quantitative characterization of this
phenomenon, it is not clear that any particular quan-
titative fit would be meaningful. We therefore sum-
marize our qualitative results. ,

We have seen in the above that the mechanism of
interfacial three-phonon processes is capable of ex-
plaining the qualitative aspects of Wyatt et al.!!
Furthermore, our estimate of the interaction strength
is consistent with the mechanism being important
only in the case of interfaces between classical and
quantum materials. In addition, Channels /V and VI
are consistent with the mode conversion reported in
Ref. 5. Detailed analysis of this question is worthy of
further investigation. .

Another satisfactory aspect of the mechanism is
that it becomes important only in the case of high-
frequency phonons; this agrees with the measure-
ments of Sabisky and Anderson.” Furthermore, the
interfacial three-phonon process mechanism increases
so rapidly with frequency that it must rapidly sat-
urate. This also is in agreement with the work of
Ref. 9.

We should repeat the very important point that,
being a process mediated by the interaction at the in-

terface, it should be very sensitive to surface prepara-
tion, contamination, etc. This is a very strong argu-
ment in favor of a surface-mediated mechanism of
any sort, and the present one is certainly in that
category.

We now discuss what is perhaps the most puzzling
aspect of the pulse experiments. In the work of Guo
and Maris,’ and in that of Kinder and Dietsche,”
the reflectivity as a function of helium film thickness
saturates for very thin film thicknesses. Specifically,
in the case of Kinder and Dietsche, using 290 GHz
pulses and an ambient temperature of 1 °K, satura-
tion is nearly reached for a 12 A thickness. If the
phonon incident from the solid splits into two pho-
nons in the liquid, we may take 145 GHz as a charac-
teristic frequency for the phonons in the final state.
This corresponds to a 16 A wavelength. Given that
most phonons will not move normal to the interface,
and therefore will see an effective thickness larger
than 12 A it is not unreasonable that nearly bulk
behavior is observed at such thicknesses. It should
be remarked that, in terms of the three-phonon pro-
cess mechanism, the inelastic processes observed by
Kinder and Dietsche certainly involve both an initial
and a final state phonon in the solid, and probably a
third phonon in the liquid. This is not the most effi-
cient of the interfacial three-phonon processes, but
there is probably sufficient phase space available to
be consistent with the observed intensities (note that
no absolute intensity measurements were made).

After our calculations were completed Weber
et al'? published the results of 290 GHz pulse ex-
periments involving LiF and NaF (100) surfaces
cleaved in high vacuum at 1 °K (in the absence of a
helium leak, presumably better than 10~!2 Torr).
The pulses were only 3° from normal incidence, and

- their reflectivity was studied, as in the related work

of Kinder and Dietsche. The most novel of their
results occurred in the case of the fast transverse
(FT) pulse in LiF, for which the polarization

9,u, (a=x,y) is completely in the surface plane;
there the relative reflectivity against liquid helium as
opposed to high vacuum was unity, within an accura-
cy of at least 1%. In terms of interfacial three-
phonon processes, we interpret this to mean that a
d,u, term is absent or nearly absent from the interfa-
cial cubic anharmonic interaction for a clean (100)
surface in LiF. Further, it must mean that ordinary
("dirty") surfaces either have a much larger anhar-
monicity than clean surfaces (which we are inclined
to doubt), or that they are sufficiently irregular that a
phonon which appears to be polarized in the surface
plane is, in fact rather far from being polarized in the
surface. It would be very helpful in this regard to
study pulses impinging. on clean surfaces at non-
normal incidence. We anticipate that the FT pulse
would retain its relative reflectivity of almost unity,
since it would still be polarized in the surface plane,
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and would thus have the same weak (or absent), in-
terfacial cubic anharmonic interaction. The FT data
further means that, since the FT pulse at 3° from nor-
mal incidence has a small component of d,u, — 9, u,,
this term cannot have a large anharmonic coefficient
C.

The slow transverse (ST) pulse in LiF had a 94%
reflectivity. This mode is dominantly of 9,4, polari-
zation, with small amounts of 9,4, and d,u, +9,u,,
and very small amounts of d,4,. The non-100% re-
flectivity must thus be due to a large coefficient C for
9,u, or d,u, +8,u,,0r to a very large coefficient C for
0old;.

The longitudinal (L) pulse in LiF could not be
seen. However, for NaF it gave a 96% reflectivity.
This mode is dominantly of 9,«, polarization, with
small amounts of 9,4, and 9,u,, and very small
amounts of 9,u, +9d,u,. The non-100% reflectivity
must thus be due to a moderate coefficient for 9,u,,
or a large coefficient for 9,4, or d,u,, or a very large
coefficient for d,u, + 9, u,.

The data on transverse pulses in NaF, with a 94%
reflectivity, seem to provide no new information.

If we combine the information obtained from each
of these experiments, we conclude that 9,4, and
Oxt, + 3,u, have the largest cubic anharmonic coeffi-
cients, that d,u, and 9,4, — d,u, have smaller coeffi-
cients, and that 9,u, has the smallest cubic anhar-
monic coefficient. This analysis can only be con-
sidered a tentative one, due to the assumptions about
the long-wavelength limit and rotational symmetry
about the interface, to make no mention of the fact
that the experiments of Weber et al. were not per-
formed with the interfacial cubic anharmonic interac-
tion in mind.?! , ]

It should be noted that the angle of incidence
(nearly normal to the interface) in the experiments
of Weber et al. is very atypical of a thermal distribu-
tion, unlike the case of the phonon distribution in a
typical A, experiment. It is therfore quite possible, if
the reflectivity of typical (non-normally incident)
phonons is not changed much when the surface is
clean, that the overall value of A is not much affect-
ed by the clean surface. Indeed, this appears to be
the case for the work of R. C. Johnson, who meas-
ured A, on KCI crystals cleaved in liquid “He along a
(100) plane.”? To within about 20% there was no
change in h; on going to the crystal face cleaved in
the liquid.?

As a final piece of experimental evidence in favor
of interfacial three-phonon processes, we mention the
results of Wyatt-and Crisp on the frequency of pho-
nons emitted into liquid *“He from NaF.?* These au-
thors studied the angular distribution of emitted pho-
nons using both a broadband phonon detector (a
bolometer) and a high-pass phonon detector (a tun-
nel junction). They found that the bolometer detect-
ed a relatively larger signal for phonons outside the

critical cone than did the tunnel junction. In other
words, the frequency spectrum for the phonons emit-
ted outside the critical cone is lower than for the pho-
nons emitted within the critical cone. This is just as
one would expect if interfacial three-phonon
processes are responsible for "cone breaking".

We now present additional support for a matrix
element of the form (2.2), and a theoretical estimate
of the expected value of the coupling strength C.
During the past decade, it has been established that
the first overlayer of *He on a typical solid surface
(with the possible exception of some of the rare
gases) is in the form of a solid. Therefore, whether
the bulk *He is liquid or solid, the interfacial cubic
anharmonic interaction must be that for a solid-solid
interface, as in Eq. (2.2). Furthermore, because the
first layer is in many ways quasiclassical (as will be
discussed shortly), it is possible to estimate the
coupling stgength C. We find a value in the range of
0.2—2 eV/AL

The evidence that the first overlayer of *He.is solid
has been obtained in many ways. Specific heat and
vapor pressure data make it clear that there is a sharp
change in behavior as the first overlayer forms and
the second overlayer begins, with the specific heat of
the completed first overlayer well described by a
two-dimensional Debye model.?>2® Furthermore,
neutron scattering data show clear Bragg peaks,
permitting the deduction that (at least on a Grafoil
substrate) the first overlayer forms a triangular
lattice.?’ It should also be noted that quantum-
mechanical calculations show that the first overlayer
of “He has an rms deviation normal to the interface
of less than 0.3 A.2® Thus the *He atoms in the first
overlayer are reasonably well-localized relative to the
“He atoms in the second overlayer. Although we do
not know how localized the atoms are within the first
overlayer, since the Debye temperature of the first
overlayer is comparable to the bulk value we may
suppose that, for their motion along the surface,
atoms in the first layer are about as quantum
mechanical as they are in the bulk.

We thus conclude that motion normal to the
surface, being relatively well localized, is probably
less quantum mechanical than motion along the
surface. For purposes of estimating the surface
anharmonicity, we will assume that motion normal to
the surface is quasiclassical. Corrections to our
estimate will be a function of a deBoer parameter for
the surface, Ay, and will be small if Ag is small
(corresponding to the classical limit). We will not be
able to obtain a reliable estimate of the surface
anharmonicity associated with motion along the
surface, since the associated harmonic motion of the
“He atoms is so quantum mechanical. Nevertheless,
we would find it surprising if it differs much from the
value associated with motion normal to the surface.

To obtain the cubic surface anharmonic energy
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density B, we argue as follows. This quantity, in
bulk, has the form e/a>, where € and o are the
Lennard-Jones parameters. The surface
anharmonicity should also be of this form, with
appropriate values for € and o. Thus the ratio
(e/0?)4/(e/ ), should give, more or less, the ratio
of the surface cubic anharmonicity to the bulk cubic
anharmonicity. In equation form, this means that

B, = Byle/d?)/(e/a?)s] .

Bulk values of B, run from 10'2to 10" erg/cm’.?®
To obtain (e/d°),/(e/o>), we consider a Cu-*He
interface. The value of o, ususally taken to be the
arithmetic mean of the o’s for the two types of
interacting atoms,>® does not differ much from o, for
bulk Cu. However, the value of €, usually taken to
be the geometric mean of the €’s for the two types of
interacting atoms,> is probably about 0.1¢, for bulk
Cu. This estimate assumes that Cu can be described
by an equivalent Lennard-Jones potential, whose
value can be obtained via dimensional analysis from

0p=ale/MaH'?,

where 8p is Debye temperature, « is a dimensionless
constant, and M is the atomic mass.’! By comparing
bulk Cu to bulk Ne (both of which form an fcc
lattice) we obtain

(e/Ma03)cy=(e/M203)ne ,

thus permitting an estimate of ec,, if we take

ocu/ oNe to be in the ratio of their lattice constants.
Specifically, we find oc,=2.22 x 1078 cm,
€cy=2120 x 1071 erg, so that oy =2.38 x 1078 cm,
€,=172x 107" erg. This yields B; =0.1B,, so that
we expect B, to be on the order of 10!'—10!?
erg/cm®. To convert this to the cubic anharmonic

x3(1 —x) dx

energy per unit area, we multiply by the distance
across the interface, about 3 x 107 c¢m, to obtain

C = Bya lying in the range 3 x 10°~3 x 10* erg/cm?,
or 0.2—2'eV/AZ cThis overlaps with the range of
values 1—10 eV/A? needed to provide a ,
semiquantitative fit to the data of Wyatt et al.!!

To summarize, we have shown that interfacial
three-phonon processes are consistent with the quali-
tative aspects of a large number of experiments relat-
ing to the Kapitza conductance problem. In addition,
the number of interfacial interactions is so great that
is is plausible that the model can be made to fit the
quantitative aspects of these experiments. Neverthe-
less, the following should be kept in mind: the calcu-
lations we have performed are valid only in the vicin-
ity of onset, whereas the existing experiments have
been performed at frequencies away from onset.
Therefore no quantitative comparisons can be made
until the theory is extended beyond the onset, or un-
til experiments are performed in the vicinity of the
onset, where the »® dependence is predicted.
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APPENDIX

Equation (3.4) for Z, may be evaluated from ex-
pressions given by Gradshteyn and Ryzhik.>> The
result is )

Z,(0,, $4:0:) Efx, (f1x2+ fox + f)12

= [X())2[RS (x) = C(x) + DE (x)1;* + (RP +DQ) fI2 n2[AX 2 +2f1x + £, (AD)

where
2 ) 3
XGx) = fixd + fox + 13 | S(x)=—3’—‘f—2l—~l’l"2-}’?§f-’+%% L W= E(x)=2—;l—:—;12~ (A2
and
72 33 FO211f5=5F2)  3f}—4f.fs
R=1+22t, p==2 p Jo olilazofal g 2N o5
8/, ar, . b 1677 0= “ay
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