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in liquid 4He near T„
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We have measured the critical attenuation of first sound in liquid He from 550 to 1700 MHz.

We can describe the attenuation due to the fluctuations of the order parameter up to 1.7 GHz,
using experimental data at lower frequencies from various authors. Above T~, the fluctuations

are the only phenomena and are analyzed with a scaling function of F72 with a characteristic

time r2 =2 && 10 '
&& ( ' sec, t = ~(T —T~)/T„~. Below T„,several phenomena are present.

In the range of 1 GHz, the main contribution is due to the fluctuations. We demonstrate exper-

imentally that the fluctuation attenuation is not symmetric about T~. We fit our data with a

scaling function of ~072.

I. INTRODUCTION

During the last ten years, many investigations have
provided important data on critical phenomena and
especially on the P transition of liquid helium, The
critical attenuation and dispersion of first sound at
low frequencies (&1 MHz) have been first described
in terms of order-parameter relaxations (Landau and
Khalatnikov'). Experiments (for instance from Willi-

ams and Rudnick') have confirmed the existence of
these relaxations, but the data exhibit an additional
attenuation due to the fluctuations of the order

parameter which are not so well known.
Recently Buchal and Pobell' have performed first-

sound measurements over a wide range of low fre-
quencies (2 —600 kHz). Above T„they described
the fluctuation attenuation with a scaling function of

7'2 being a characteristic time of the interaction
between first-. and second-sound waves. Below T„
they analyzed the relaxations as previously but more
precisely, assuming the symmetry of the fluctuation
attenuation around T„.

In a higher-frequency range, Imai and Rudnick'
performed an experiment at 1 GHz. It is not possible
to fit these data as was done for the low-frequency
case, especially for the relaxation attenuation which
becomes small compared with the fluctuation at-
tenuation. A complete description in 1 GHz range
requires data over a wide-frequency range,

We have measured the attenuation and dispersion
of first sound from 550 to 1700 MHz in liquid heli-
um. This experiment is a good opportunity to study
the fluctuations of the order parameter. We compare
these data to the low-frequency ones. As a result we
analyze these fluctuations in the same way from
2 kHz to 1.7 GHz, above and below the transition.

II. EXPERIMENTAL AND THEORETICAL
PRESENTATION

Several phenomena may contribute to the critical
attenuation and dispersion of the first sound in 4He

around T&. In this part we present two of these: the
first involves the relaxations of the order parameter
and the second involves its fluctuations.

A. Relaxation

Historically, the mechanism considered first was
the relaxation of the order parameter to its equilibri-
um value after an initial disturbance. The first-sound
waves are scattered by these order-pa'rameter varia-
tions. The problem has been treated by Landau and
Khalatnikov, ' They found a nonequilibrium order
parameter decaying exponentially in time, with a re-
laxation time ~LK, a resulting attenuation, and a,
dispersion of first-sound velocity. This process con-
tributes only below the transition (T & T„)where the
time average of the order parameter is nonzero.

It is known that Landau theory in its original form
is not a good description for critical 4He properties.
However it is possible to describe the attenuation
due to order-parameter relaxations in 4He by a linear
coupling between first and second sound. One ob-
tains for n~ and D~
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where 72 is the order-parameter relaxation time
r2 = rz t ", and t = l (T —T„)/T,

~
is the reduced tem-

peratu're. Au~ is known from thermodynamic rela-
tions and is. the difference between the first-sound
velocity at infinite frequency, u, (~), and the one at
zero frequency, u~(0) [ut ——(c)P/c)p), 't'].

Equation (1) states that the critical attenuation ate

has a maximum for co~2 =1 and vanishes at the tran-

sition. It is well-known experimentally that the criti-

cal attenuation is nonzero at T&, and for T & T„
there is also a critical attenuation. Thus we have to
invoke another process.

8. Fluctuations

The first-sound waves are also scattered by the
order-parameter variations that are the fluctuations
around the equilibrium value, These processes con-
tribute on both sides of the transition. Several
theoreticians' have discussed this problem. Using a

mode-mode coupling method (one first-sound wave

breaking up into two order-parameter fluctuations)
and from general scaling arguments, Kawasaki' ob-
tains the following scaling form for the fluctuations
coritribution to the critical first-sound attenuation':

&F = CF fF(~rF)

where CF is a constant, s is a small positive number,
and TF = TF t is a characteristic time of the order-
parameter critical dynamics (x' being its critical ex-
ponent).

We must note that this expression is valid only

when the first-sound wavelength is much greater
than the critical fluctuation correlation length
(x» g).

C. Characteristic times

In the transition vicinity, several elementary
mechanisms can exist: Swift and Khadanoff have

made a detailed study of this proble~; they have

considered the breaking up, near T„,of a transport
mode into several other modes. They have found
two kinds of important phenomena. The first one in-

volves multiple production of first-sound waves with

a characteristic time rt = 4/ut ~ t t with ( the

coherence length tcc = got ', c
—

3 ) and ut the first-

sound velocity. The second important phenomenon
is an interaction between first- and second-sound
waves with a characteristic time r2 = g/u2 ~ t with

uz the second-sound velocity (uz —u20t, w ——,).
These two times differ by their critical exponents

and by their order of magnitude. As u~ )) u2, for
every temperature we have T) (& 72. So T2 is the

leading characteristic time for low frequencies
(c0r2 « 1). For higher frequencies, r~ becomes
more important.

D. Summary of experimental results at

low frequency (cu/2n' & 1 MHz)

At low frequencies, critical attenuation has been
analyzed for T ) T, due to the fluctuations of the
order parameter and for T & T& as the sum of both
fluctuations and relaxations. '

n+=nF+ for T )T„,
n =nF+nR for T & T, .

The fluctuation part of the attenuation is assumed
to be symmetric versus T„.2

For the same twe have nI- =nF =n+=—nF. So,
with this assumption, the relaxation contribution to
attenuation corresponds to the remaining part, for
T & T)„nq= n —n+. Then the experimental results
of n~ and also of the dispersion D~ are well fitted by

expressions (1) and (2). The involved characteristic
time is the time related to the second-sound velocity
~L~=—v.2=72t with' x = v+ w =1.062. The value of
&2 is adjusted from experimental results,
~2 = 2.01 && 10 "sec.

The fluctuations (nF ——cc+) contribution to the at-

tenuation has been analyzed with a scaling function
of ao7 for at least four decades of ~~.'

fF(r r) = (or/(c + co )r

with c =0.506 and 7=72.
Such an empirical scaling function with c =1 has

been first suggested by Ahlers. Recently, Kroll' has
attempted to calculate f~(cur) using mode-mode cou-
pling and renormalization-group theory: the results
[see for example Fig. 16 of Ref. 3(a)] disagree with
experiments at low frequencies.

From 2 —600 kHz, the characteristic time involved
for relaxations and fluctuations is the same. We
must note that both of these have. been determined
separately.

Buchal and Pobell' have also found a scaling func-
tion for dispersion of first sound. But the function
explains only experimental results on two decades of
co7 and diverges near T„.

E. First-sound attenuation
at higher frequencies

Earlier experiments' from 600 kHz to 3.17 MHz
have been analyzed in the same way; because of the
restricted frequency range the conclusions were less
refined.
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From 10 MHz to 1 GHz, three series of experi-
ments have been performed: from 10 —270
MHz t t, t2 at 650 MHz, ' and at 1 GHz. Tozaki and
Ikushima" have presented their own results, and re-
viewed the experimental data from 600 kHz to 1

GHz. As a result, they observed that for T ) T„,
the attenuation follows a scaling function of cur~

(with r, ~ t ", x' =1); below T, the conclusions were
not so clear (Fig. 3 of Ref. 11), but we can remark
that for frequencies larger than 160 MHz we can not
assume that the fluctuations part of the attenuation is

symmetric: for the same value of t, the branches 0.

and n+ can intersect and sometimes n+ & a . The
last experiment performed at high frequency is at 9
GHz, ' the attenuation is measured in the films for
T & T, and its interpretation involved the charac-
teristic time ~t 0 t

Thus it seemed interesting to perform an experi-
ment in the GHz frequency range in order to clarify
these points. The purpose of this paper is to describe
the results of such an experiment.

III. EXPERIMENT

We have performed a measurement of first-sound

attenuation and velocity in He around the A. point
(1.4 —2.4 K) at high frequencies (550 —1700 MHz).

quartz. Various rings ranging in thickness 3 —8 p, m

were used. The system is then aligned with a
goniometer and the parallelism of the two interfaces
is better than one minute of arc.

B. Experiment

In order to obtain, for different frequencies, the at-
tenuation and velocity of first sound versus the tem-
perature, we measure the relative variations of the
transmitted signal (in dB) and the variations of
phase. The phase qI) is measured by interference and
the reference is the first reflected echo in the emit-

ting quartz.
The cell is immersed in an helium bath and the

temperature is measured through the helium-
saturated vapor pressure of the bath. The accuracy
of our temperature measurement is better than 1 mK.

C. Direct experimental results

The first point is that there is no critical dispersion
(D = u —uo) of first-sound velocity in our range of
frequencies (550 —1700 MHz) and temperature (1.5
—2.3 K) within the precision of our data (Fig. 1).
The accuracy of our phase measurement is

A. Principle

We use a classical ultrasonic transmission method
through a sample of liquid 4He. An elastic and
periodic deformation, generated by a transducer, pro-

pagates through helium. We measure the intensity
and the phase of this deformation after crossing the
sample.

The cell is made of two X-cut quartz rods separated

by helium. Because of the strong attenuation of heli-

um in our range of frequencies and temperatures, we

need a very thin sample, a few micrometers thick.
The transmitted signal has to cross two quartz-

helium boundaries. Because of the impedance
mismatch between quartz and helium the transmis-
sion loss is —27 dB at each interface. This ab initio

loss implies that the incident signal must be rather
large. The transducer is made of ZnO layers deposit-
ed on platinum with a fundamental resonance at 1200
MHz (T~h.). The frequency response is essentially

constant from 500 to 2400 MHz; with an incident
po~er of 100 mW, the first echo reflected by quartz
at 1 GHz and 4 K is about 80 dB above the noise. A

classical superheterodyne system is used for detec-
tion.

Good experimental conditions require very parallel
faces. The quartz rods are cut in the laboratory with

a face parallelism precision of 10 sec of arc. A mylar

ring defines a space for helium between the two

0-

1.6 1.8 2.2 T( K)

FIG. 1. Variation of the ratio 2vrg/cd vs rt'or diff'erent

frequencies. The full line corresponds to
277.(j)/co=277. deut/ut obtained f'ron& d =4.1p, +0.2 and frol11

the variations Au& ot the velocity vs temperature (Ret's. 15

and 16).
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Transmitted signal {dB)
IV. TRANSMISSION COEFFICIENT

THROUGH THE SAMPLE

+ Record n. 1
+ p =72%
+

+

++++

80

8

t'ef 2

Record n'2
p =40m

TA
I

2.2 T. (K)

FIG. 2. Two records of the transmitted signal vs T ob-
tained at 1100 MHz with two sample thicknesses
(d~ —7.5p,m and d2 -4p, m).

We first make this calculation in the case of a per-
fect parallelism between the two interfaces. We con-
sider a system of three media with two parallel boun-
daries. If we designate k~, p~, v~ the wave vector, the
density, and the acoustic velocity in the quartz, and

respectively k~~, p~~, ~~~ those in helium, we define the
complex impedance ratio of the two media

I

kii&ir pii
Zoe

' =
kI VIPI

(5)

All these quantities are real except

k~~ = k'+ik",

zo —2.2 & 10 and 8 characterizes the attenuation of
the medium (tane=k"/k' = n/k'), ll being small here,
i.e., 8 —a/k'- nd/@.

A short calculation gives the transmission-
coefficient intensity (with zo « 1, which is the case
in our experiment)

h$/@ —10 3, and the precision on the velocity
(5@//=au/u) is then Au —0.2 m/sec. Very close
to T&, this accuracy is even worse because the signal
is very small. This rather bad precision is due to our
small sample thickness d —5 p, m.

From an extension of low-frequency measure-
ments, we expect at 1 6Hz,

u „—uo —0.05 m/sec for [ T —T, [
—40 m K

and

u„—u0-0. 2 m/sec for
~
T —?'~~ —4 m&

These values are of the order of magnitude of our
precision. This means that we can not measure this
dispersion.

The intensity of the transmitted signal exhibits, at
all frequencies, a critical divergence at the X point
(Fig. 2), and also exhibits some extra oscillations.
As shown above, the first-sound velocity u~ in heli-
um varies with temperature. These velocity varia-
tions induce phase variations of the transmitted sig-
nal (@= ~1/u&). Because the transmitted signal is
the sum of different reflections in the sample, the
phase variations will cause oscillations in the
transmitted intensity through wave interference.

We have now to relate these experimental records
to the attenuation in the sample.

8z(2)

cosh2k "d —cos2k'd
(6)

We must note that this formula is not valid when
k "d «1, but this expression suits our experimental
conditions where the transmitted signal is always
small.

To the first order, the phase P of the transmitted
signal is equal to k'd. Equation (6) gives, other
parameters being constant, the oscillations of T;„,
with $. This expression (6) of the transmission al-
lows us to explain some records ~here the parallelism
is particularly good, but usually we need a more re-
fined expression of the transmission coefficient, tak-
ing into account a slight defect of parallelism (&1').
We have made this calculation assuming several
things:

(a) Under oblique incidence both transverse and
longitudinal waves are created in the quartz; a longi-
tudinal wave brings much more energy (about 10~
more, for an incidence of 1' between He and quartz)
than the transverse ones; then we neglect the
transverse ~aves.

(b) The reflection and transmission coefficients at a
single boundary depend on the incidence angle to the
second order only; when the incidence angle is small
we are allowed to consider at the first order these
coefficients as constant.

The total transmission coefficient in amplitude can
be rewritten from calculations very similar to the opt-
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ical "air corner"; we obtain
++a

T, „= J—T(p)dp,
with

T(p) 4& e iH —
X (e n )2n+1

N =0

d +p being the thickness of the sample, and p vary-

ing between two extreme values +e. (2e is the
difference of thickness due to the defect of parallel-
ism. )

After some straightforward calculations, "one can
obtain, assuming coshk "» —1 and sinhk "» —k "»,

1

zo
h2 2ysin@cosh8$ + 2 2ycos@sinh8$

arctanh +arctan
cosh'8d —cos2$+ y' cosh 8@—cos @—yt

total

Ototal

rll'2

= 40m
= 0,95
= 3 2 ~0 ' ~total

,go

0

cosh'(8@) —cos'@—y' & 0

with y =sink' ».
If cosh'8@ —cos'@ —y' (0 (y and cos$ being po-

sitive) arctan'( ) must be transformed into
(7r —arctan'l ~) for continuity.

This expression is only valid for sample thicknesses
and attenuations not too small (k "d ) 1) and for a

small value of e (k"e ((1).
%e analyze our results with such a transmission

coefficient. The value of y can not be determined
experimentalfiy, even through frequency variations.
%e consider y as an adjustable parameter. From the

experimental records and with the calculated expres-
sion of I;„,we can obtain the ultrasonic attenuation
versus temperature for each of our frequencies. One
can see, for instance, on Figs. 2 and 3, that from two
different records at the same frequency with different
sample thicknesses, our analysis gives the same curve
for the attenuation. This demonstrates that Eq. (g)
connects very well our records with the attenuation,
even if this formula is a little bit complicated.

In our analysis we must assume that y is a con-
stant during a whole record. This assumption is only
va/id for certain values of y.

Our nonparallel analysis needs a calibration point:
we choose it in the temperature range of 1.8 —1.9 K.
We know from previous experiments at 1 GHz ' (and
from our own results for strictly parallei samples)
that the first-sound attenuation is almost constant in
this range of temperature. %e assume, and we verify
this assumption in good parallelism cases, that in this
range the total attenuation is proportional to cu'. Our
anaiysis is done with 8 =2.9 && 10 'cu/2rr (cu/2' in

GHz) for T —1.8 —1.9 K (which is in agreement
with Ref. 5). We obtain by this method a total acctt-
racy 58=5 &10 ".

V. CRITICAL VARIATIONS OF
ULTRASONK ATTENUATION

+
+0 +g+~~~+

e want to isolate the part of the attenuation pure-

ly due to the phase transition. From our experiments
we obtain

8( T) = k "/k' = [v( T) /o)] n( T)

1.6 1.8

Tp
l

v(K)

This value of 8 is the sum of a critical part H~ and a

noncritical one 88, which is our background.

A. Noncritical 8: 8+

F&G. 3. ValUes of ~«„~at l 100 MHz obtained from the

records No. 1 and No. 2 of Fig. 2.

The choice of 88 is a delicate problem. At low fre-
quencies other researchers covering a small range of
critical temperature chose a temperature-independent
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background up to 271 MHz; Tozaki and ikushima"
assumed a background attenuation linear in tempera-
ture. At 1 6Hz, an estimate~ has been made of the
background attenuation due to classical losses: shear
viscosity and thermal conductivity for T & T& and
only shear viscosity for T & T&. The result is that Hq

is proportional to cu. For T & T„wetake into ac-
count the contribution of shear viscosity and thermal
conductivity (see Fig. 4); for T ( T„there is an addi-
tional term to Hq. The elementary excitations (pho-
nons and rotons) give, at low temperatures, a contri-
bution which peaks at 1.5 K and 1 6Hz. ~ This addi-
tional part of 8~ proportional to eo is very difficult to
calculate precisely", we estimate the total attenuation
Hq for T & T& by a smoothly linear temperature-
dependent contribution. The variations of 8& are
shown on Fig. 4. The contribution due to shear
viscosity for T & T„is sho~n for comparison. The
value of Hq is about 20% of the maximum total at-
tenuation; the frequency dependence of 0& is taken
linear. %'e have verified that a weak variation of the
slope of Hg has a small incidence on the scaling func-
tions described later in the text; we take into account
this variation in order to estimate the accuracy of the
scaling functions.

8, Critical attenuation i9g

plotted in Fig. 5. As wc can sec in this figure, and as
wc mentioned before, it is no longer allowed to as-
sume that the fluctuations are symmetric versus T&.
(For certain values of r, we have e+ ) u ). We shall
then separate/y analyze our results above and below
T„;we begin by the critical attenuation

at the A. point.

1. Var latIoM Nit& fregQencp of
the critical attenuation

at the A. point

Thc value of the attenuation a at the transition
gives the coefficient cF~'+' " of Eq. (3)
[fF(cur(T„))= ll. The study of u, over a broad
range of frequency ~ould give a measurement of
1+s/x; from 2 to 600 kHZ, 1+s/x =1.15; but if the
results up to 1 6Hz afc added to thc previous
results, a fit requires 1+s/x =1.33." We have to
note that values of 0, & depend on the estimation of Hq

which varies sensibly from one work to another. Our
own values of n„raceompatible with 1+s/x =1.33
up to 1200 MHz; for higher frequencies we need a
higher value of 1+s/x.

Some of our results on the critical variations are

Gtotll

gp
OO

0

g+++0++

gq

FIG. 4. Circles show the variations of 8«„&at 775 MHz;
the full line is the background 8& (see the text); the crosses
correspond to the shear viscosity contribution 8„for
T& Tg.

FIG. 5. variations of 8(T) at 775 MHZ (crosses) and
1690 MHz (circles); the full lines correspond to
8/8„=-(uv2/(c+aor2) with v2=2 &10 ' t ' sec (Ref 3).
c =0.5 for T & T„and c =1 for T & T„.
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2. Critical attenuation above Tq

Figure 6 presents the values of n/n~ = 8/Hq vs
(2rr/co)(T —T),) for T ) T„.It shows that from 10
MHz to 1.7 6Hz, u/tt„ is function of cur with
7 -- t '. In order to connect these results with the
low frequency ones we have to use a more precise
value of the critical exponent of 7. %'e analyze our
results with the value obtained by Buchal and Pobell'
from 2 to 600 kHz (r2 =2 x 10 "t' sec) and also
Eq. (4) with c as a free parameter.

Our conclusion is that one can describe the critical
attenuation from 2 kIdz to 1.7 6Hz for T & T„with
the same scaling function (see for instance, Fig. 7)

Ot'c ~c O) V'2

A}t 8) C + (d7'2

with c =0.50+0.05. This result is in good agreement
with Buchal and Pobell's work. '

For 1.5 and 1.7 0Hz, there is a small systematic
deviation from this law of about 10%. %e do not
have any explanation about this point.

3. Critical attenuation below Tq

From the experimental data (see Fig. 5), the fluc-
tuations contribution below T& is of smaller ampli-
tude than above. Moreover a fluctuation term alone

can not explain the attenuation @maximum that we
observe a few millikelvin below T„.Between 550
and 1690 MHz this maximum has in fact a small am-
plitude (5 —10% of the total attenuation) and occurs
in temperatures ranging from the transition. to 10 or
20 mK below T„.In a first analysis we will ignore
this small maximum and try a study of the critical at-
tenuation in terms of fluctuations for
20 & ~T T, (

-&200 nmV. . t9

a. Fluctuations of order parameter. For T ( T&, ex'-

pression (9) is no longer useful but we may take as
trial function the one proposed by Ahlers4

~F1 ~F1 72
A}t 8}, 1 + 0}7'2

Using this function we fit the critical attenuation
for T ( T, (except in the vicinity of the small max-
imum close to T„)from 550 —1690 MHz (see Fig.
8). Our experimental accuracy gives the constant 1

in the trial function with a precision of 10'/o. It is im-
portant to note that the same characteristic time v2 is
used in both expressions (9) and (10) to describe the
fluctuations above and belo~ T„.

In our frequency range, and for T' & T„,we.
describe the critical attenuation as the sum of a fluc-
tuation part [Eq. (10)] plus a small contribution
which gives a small maximum close to T„.Before
discussing more about the fluctuations we shall study
this small maximum.

It gc
t}sc

A 1.696HZ
e 16Hz

o 775 MHZ

0 18.4 MHZ

+ 10-9 MHZ

05 T&TA

01 ——
10-12 10"10

+ 2mhT
A3

(K/Hz}

FIG. 6. Scaling plot Hc/8„& vs 2m(T —T„)jco for T & T„from 10.9 MHz to 1.69 0Hz. The data at 10.9 MHz and 18.4 MHz
are from Ref. 11 and at 1 6Hz from Ref. 5.
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( qP 3 ) 8

INHz

NIHz

MHz

05 i.

0.1-
2.05 2.1 2.15 T ( K)

50 100
I

150 (mK)

FIG. 8. Variation of 8g vs Tat different frequencies for
T ( T„.The full lines correspond to 8/8„=&T2/(1+~72)
with ~2 ——2x 10 ' t ' sec.

FIG. 7. ttc/tt„c vs T —T„for T ) T„atdifferent fre-

quencies; the full lines correspond to 8/8„=so~2/(0. 5+~~2)
with ~2=2 x10 ' t ' sec (Ref. 3). The data at 18.4
MHz are from Ref. 11.

b. Residual attenuation for T ( T„.This residual at-
tenuation is obtained after two successive subtrac-
tions (es and then HF~). Its amplitude tl, (residual) is
about 10 ' and is essentially constant from 550—
1700 MHz; the accuracy of this value is quite bad, 50
to 100%; hence the residual attenuation 8, is approxi-
matively proportional to the frequency.

The apparent maximum of the total critical attenua-
tion moves off the transition as the frequency in-

creases: from 2 mK at 550 MHz, it comes to 5 mK at
1690 MHz; and so does the residual attenuation max-
imum: for 550 MHz this maximum occurs at

) T —T„~=5 + 3 mK and 14 +3 mK for. 1500 MHz.
In our frequency range we have roughly 4T ~ co.

This maximum of attenuation which exists at any fre-
quency can be interpreted at low frequencies as a re-
laxation contribution [Eq. (1)] of characteristic time

v2, in this low-frequency range its amplitude is bigger
than the fluctuation attenuation. At higher frequen-
cies we can no longer describe it in terms of relaxa-
tion. The order of magnitude of this maximum and
its variation with frequency (proportional to au) are in

agreement with the low-frequency relaxation, but
the temperature where the maximum occurs does not
agree with the low-frequency results: at 1 6Hz,
cov2 =1 corresponds, to d T =40 mK and not 10 mK
as we found experimentally. For this maximum oth-

er phenomena may be invoked. One can think of
order-parameter relaxations of characteristic time
r& = g/u&, corresponding to first-sound waves interac-
tions. '4 But at 1 GHz, with (« —I A and u~ —230 m/

sec, eor2 =1 occurs when IT -0.4 mK, which is not
at all where the maximum peaks experimentally.

To explain this small maximum, Lyuksyutov and
Pokrovskii have proposed a process of first-sound
diffusion by quasistatic order-parameter fluctuations.
This process also does not fit our data: the tempera-
ture maximum occurs also for kg = «&r ~

—I, so that
at 1 6Hz, AT-0.4 mK. Moreover this process
would give an attenuation proportional to cu' which
we do not observe experimentally.

In conclusion none of these phenomena can, by it-

self, explain the residual critical attenuation for
T ( T„.Anyway we have no argument to say that
the observed phenomenon is a pure one; it may
result from a mixing of several different phenomena.

VI. DISCUSSION ABOUT FLUCTUATIONS

We shall now return to a larger discussion of the
fluctuations. We have established above that the
fluctuations for T ) T„aredescribed from 2 kHz to
1.7 GHz by the same scaling function (9) with the
same characteristic time v2. Below T„ourhigh-
frequency experiments lead to another scaling func-
tion (10) with the same characteristic time r2 This.
result seems to be in contradiction with the low-

frequency results, where the fluctuations below T„
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are described by Eq. (9). Two interpretations are
possible:

(a) The fluctuations for T & T„may evolve from
low frequencies to high frequencies; that would mean
that we have two types of fluctuations (low and high
frequencies). But for T & T„,the same trial function
(9) fits the results on a really wide range of frequen-
cies from 2 kHz to 1.7 GHz.

(b) The other possibility is that fluctuations had
not been settled precisely at low frequencies for
T & T& by the symmetrization method. The fact that
at low frequencies the relaxation maximum is much
bigger than the fluctuation contribution is a handicap
for a good evaluation of fluctuations below the transi-
tion. As this problem vanishes around 1 GHz, we

can study, in a good way, fluctuations from 550 to
1690 MHz. We can think that expression (10) is also
valid for low frequencies. To test this idea, it would
be necessary to reanalyze low-frequency results for
T & T„with a fluctuation attenuation described by a

scaling function (10).
The study of relaxation for T & T„,done by

Buchal and Pobell from 2 to 600 kHz, is not affected
by our procedure. Subtracting Eq. (9) or the other
Eq. (10) fluctuations function of the total attenua-
tion, at 600 kHz, changes only the amplitude of the
relaxation peak without moving its position in tem-
perature (the amplitude was a free parameter in the
analysis). In this range of frequencies, fluctuations
and relaxations have a contribution to attenuation of
the same order; an inaccurate fluctuation contribu-
tion (9) instead of Eq. (10) has a weak influence on
the apparent behavior of the relaxation peak, anyway

up to 600 kHz; for higher frequencies (for example,
163 MHz""), it becomes necessary to use Eq. (10)
to analyze the data.

From 2 kHz to 1.7 GHz, we can describe the criti-
cal attenuation due to fluctuations of the order
parameter by the scaling function (10) above T' and

Eq. (9) below T„,with the same characteristic time

T = 2 x 10 12' 1'p62 sec

We have to note that nothing justifies the scaling
functions (9) or (10). Scaling arguments predict only
the same critical exponent on both sides of the tran-
sition for the characteristic time v2. Swift and Ka-
danoff using mode-mode coupling theory associated
with scaling arguments predict that the critical times
~1 and ~2 are symmetric versus T),.

At this point, our description of the fluctuations
around T& uses one characteristic time v2 and two
different scaling functions of Eqs. (9) and (10).
These two scaling functions differ only by the value
of the constant c in Eq. (4); c =1+0.1 below T„,
and c =0.5 + 0.05 above the transition. An alterna-
tive way to fit the data is to use one scaling function

and two different characteristic times,

O.'Fl ~F1 ao 7

8) 1 + cU'T

with

7=—~ =~2 for T & T„
~ =—v+=2' =2v2 for T & T),

and ~+ depend on temperature in the same way.

~2 is still the relaxation time which describes the at-
tenuation due to the relaxation of the order parame-
ter (interaction between first- and second-sound
waves). This description is valid from 2 kHz to
1.7 GHz, remembering our last discussion of Buchal
and Pobell's results for T & T„.

If we formulate our results in such a way, we have
a ratio r+/r =2 for the same values of t We .can
suggest a comparison for the value of this ratio with

recent results of renormalization-group calcula-
tions. ' ' To do this, we assume that

(12)

Now we try to estimate the ratio (+/( . The
renormalization-group theory allows us to define and
evaluate some universal ratios. For instance, the
thermal conductivity X for T & T„canbe written"

~m = R igoCp'"('" (13)

'2
g+ R

Rg
(14)

The theoretical values of R and R „givea ratio
($+/g ),h =2.25. Due to the rather large inaccuracies
inherent in methods of calculations, "such a good
agreement is probably fortuitous. It would be in-
teresting to compare the ratio $0+/$0 with the other
experimental values of the correlation length. For
T & T„values of go are deduced from the measure-
ment of second-sound velocity ' or from its damp-
ing. 24 Unfortunately for T & T„,the correlation
length can not be directly measured. So it is not pos-
sible to compare the ratio of the experimental values
of gp with the theoretical one or with our own results.

where R
„

is an universal number, gp is a dynamic
coupling constant, C, is the specific heat, and $+ is

the correlation length for T & T),. The experimental
value R „'"'=0.3 is in reasonable agreement with the
calculated one R z" =0.36.2 In the same way, anoth-
er universal amplitude ratio R may be defined from
the characteristic frequency r» (k) at T„.The value
of R is difficult to reach experimentally ', an esti-
mate gives Rm" =0.54.

In the case of helium, we obtain a relation between

Rm and R„,'
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VII. CONCLUSION

As low-frequency elastic waves provide a good op-
portunity to study the relaxations of the order param-
eter below T„,high-frequency elastic waves provide a
good way to study the fluctuations of the order
parameter. As a result we have shown that the fluc-
tuations are not symmetric about T„.

Using only one characteristic time v2 which also is
the relaxation time of the order parameter at low fre-
quencies, we find two scaling functions to describe
the fluctuations above and below T&. In an alterna-
tive way, it is also possible to explain the experimen-
tal results with only one scaling function and. two dif-
ferent characteristic times. The theoretical data do
not allow us to choose between these two possibilities.
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