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We have calculated the distribution function and drift velocity of electrons in the (ill)
valleys of Ge. The model used is essentially a one-valley model for an electric field in the
t100 ) direction and without any electron transfer to higher valleys. The nonparabolicity of
the conduction band and the nonclassical occupation of the acoustic modes are taken into ac-
count. The coupling constants were obtained from a fit to the low-field mobility, and because
of the inclusion of nonparabolicity, the optical-mode coupling was smaller than previously
used. The calculated drift velocity is in excellent agreement with the results of Ruch and
Kino, and shows a low-temperature negative resistance which vanishes at somewhat above
77'K. Although the electron energies at an electric field of several thousand V/cm indicate
that some electron transfer to higher valleys is probably taking place, it is likely that this
transfer is not primarily responsible for the observed negative resistance, but rather results
in the resumption of a positive conductivity at still higher electric fields.

I. INTRODUCTION

The discovery of current oscillations in n-type
Ge by McGroddy and Nathan' and the subsequent
observation of a negative resistance in the bulk
I-V characteristics ' have resulted in a renewed
interest in the electrical conductivity of Ge.

In comparison with the negative conductance
observed in the I-V characteristics of GaAs, the
negative conductance in Ge with the electric field
along a (100) direction is relatively small and de-
creases with increasing temperature, vanishing
at somewhat above 100 'K.

Theoretically, the conductivity properties of n-
type Ge and GaAs should differ significantly in
detail, since they depend upon features of the band
structure and upon scattering mechanisms which
are considerably different in the two materials.
In GaAs, with its dominant polar optical-mode
electron scattering mechanism, the drift velocity
of electrons in the central minimum shows little
tendency to reach a limiting value for electric
fields at which electron transfer is unimportant.
At higher fields (& 3000 V/cm) electrons increas-
ingly transfer to states in the (100) minima which
have a considerably greater density of states than
in the lowest conduction minimum and a much
lower mobility. The electron transfer mecha-
nism, therefore, acts rather effectively to produce

a negative resistance in GaAs.
In Ge, electron transfer is also possible, but

the effect on the electrical conductivity should be
less drastic than in Gahs, because the densities
of states and drift velocities of the upper and lower
minima are not greatly different in Ge. In Ge,
however, which is nonpolar, the drift velocity
would be expected, under certain assumptions,
to reach a limiting value without electron transfer,
so that even a small modification of the I-V char-
acteristics due to transfer could cause a negative
resistance.

The assumptions which yield a limiting drift
velocity in Ge are not exactly obeyed, and it is
important to accurately know the drift velocity of
the electrons in the lowest minima if we are to
understand the over-all I-V characteristics. In
spite of some transfer to the (100) valleys, the
electrons in the (111)valleys probably constitute
a majority of the carriers over most of the nega-
tive-resistance region of interest.

The pressure experiment of Melz and McGroddy'
is, in fact, qualitatively consistent with the model
whereby the negative resistance in Ge is removed
rather than produced by electron transfer to higher
valleys. They found that the reduction by hydro-
static pressure of the separation between the (111)
and (100) valleys was accompanied by a decrease
in the amplitude of oscillations and an increase in
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the electric field threshold. The decrease in the
valley separation would be expected to facilitate
electron transfer and thereby lower the threshold
field, if transfer was responsible for the oscilla-
tion-producing negative r esistance.

To more accurately assess the contribution to a
negative resistance of the electrons in the (111)
valleys in Ge, we have calculated their distribution
function and drift velocity with an electric field in
the [100]direction without employing the following
simplifying approximations:

Paraboljcity of E versus kin conduction band.
We have assumed a hyperbolic E versus k rela-
tionship characteristic of a direct energy gap of
1.54. This is a slightly greater nonparabolicity
than is given by the observed direct gap of 2. 2 eV.
However, the 1.54-eV value corresponds to the
mass variation observed by Aggarwal et al. ' in
magnetopiezotransmission experiments. The non-
parabolicity enters into the calculation of the group
velocity, density of states, etc. To be consistent,
we have also included the decrease in the overlap
of the cell periodic part of the wave functions be-
tween initial and final states in calculating the
scattering probability for electrons. The effect
of nonparabolicity on the I-V characteristic is to
produce a negative resistance, since the effective
mass increases with electron energy.

Elastic acoustic-nzode scattering. In this ap-
proximation, the energy loss due to the acoustic-
mode phonons is ignored, and the acoustic modes
are assumed to be classically excited. This is
not a very good approximation when the energy of
the electrons becomes large and the separation in
k space between initial and final states, and there-
fore the phonon energies, becomes appreciable.
We shall take into account the energy lost due to
acoustic-mode scattering. This is a mechanism
for which the rate of energy loss increases more
rapidly than with optical-mode scattering, and
therefore it disposes the electrical characteristics
towards a positive resistance. We will also cal-
culate more exactly the scattering by the acoustic
modes. This is necessary since a moderately en-
ergetic electron will be able to interact with acous-
tic-mode phonons of considerable energy. For a
0. 1-eV electron in Ge with a. longitudinal effective
mass m& = 1.58m, where m is the free-electron
mass, and a velocity of sound s = 5&&10 eV/sec,
the phonon energies range up to

k8=s&&2(2m~E) ~ =0.013 eV or e=-150'K.

At the lower temperatures such modes are not
classically excited, and at the lowest temperatures
spontaneous acoustic-mode emission dominates
acoustic-mode scattering. Because the scattering
rate for spontaneous acoustic-mode emission in-

creases at a more rapid rate with increasing elec-
tron energy than does acoustic-mode scattering
with classically excited modes, the scattering by
spontaneous emission contributes to a negative
resistance.

Although we have removed several approxima-
tions which might obscure the existence of a nega-
tive-resistance characteristic, we have retained
or have adopted several other approximations
which will be discussed as they occur in the mathe-
matical treatment.

II. MATHEMATICAL TREATMENT: BAND STRUCTURE

The conduction-band structure of Ge is well
known. ' There are four equivalent valleys located
along the (111)directions in k space, with the
minima at the Brillouin-zone faces. The longitu-
dinal mass mr, along the [111]direction is much
larger than the transverse mass m&. The curva-
ture in the transverse direction is mainly due to a
k P repulsive interaction with a valence band of
symmetry L, approximately 2. 2 eV below the con-
duction minima. When two bands have a strong
exclusive mutual interaction determining their
curvatures, Kane' has shown that the resulting
E-versus-k dependence will by hyperbolic in form
(apart from the free-electron term) rather than
parabolic. These conditions will approximately
be met for the dependence of E on transverse k
(k, k, ) in Ge. Neglecting the free-electron term,
this dependence is given by

E = ,' Eo ([ 1+ [2h'(k„'+ k-,')/Eo mr ]]"' 1). (1)

Aggarwal, Zuteck, and Lax found that the cy-
clotron resonance transverse effective mass varied
in a manner consistent with Eq. (1), but corre-
sponded to a somewhat greater degree of nonpara-
bolicity, which is given by a value of E~=1.54 eV.
This enhanced nonparabolicity is understandable
if there is a partial cancellation of the curvature
produced due to the I 3 valence band by a higher-
lying conduction band.

We shall assume that the form of the E-versus-k
dependence in the longitudinal direction is the
same as that for the transverse direction. The
dependence of E on k is therefore given by

E = s Eo (( 1+ (2k '/Eo) [k ( m *) '
~ k] j"'—1 ),

(2a)

where (m *) ' is a tensor inverse mass given by

(m, 0 0
(m*) '= 0 m, 0

0 0 rnJ.

in the principle-axis system of a valley. Although
we shall evaluate certain quantities considering
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the geometry of the actual energy surfaces, it mill
fox' the Inost part be convenient to trRQsfolIQ the
60ipsoidal energy sUX'fRces to spheres, using the
transformation'I k = (m, /m )I~~ %, where the con-
ductivity Mass Mc is given by

m, = [-,'(2/mr +1/m~)] ' .

Equation (2a) becomes

Z =-.' Z, [ (1+2a'k'/Z, m,)"'-1]".

2E (1+8/Eo)
m, (1+2Z/Zo)

(a.k)'= 2m, Z(1+Z/Z, ),

p(Z) =4vk'm, mP/(2~)'
~ ~ ~

m',"
= {m,m,II3/2"'"a') Z"'Z(Z),

where Z(Z) = (1+Z/Z, )"'(1+2Z/Z, ) .
R(E) is the ratio of the hyperbolic and parabolic
den81tles of states.

The scattering probability for nonpolar aeoustie-
mode scattering is of the forxn

J;„-„-=a e'~ s'[xtI(z'+@~-&)

+(X+1)n(Z'-h~-&)]„

~ = 1/[exp(e~/r T'} 1] . —

Here A~ is the energy of acoustic %aves of %'Rve

number +q capable of scattex'ing an electron from
an i.nitial state of wave number k to a state of wave
number k+ q by either the absorption of a phonon
(N) or the emission of a phonon (K+1).

There are sevexal approximations usually made
in the treatments of acoustic-mode scattering
probability: (i) to ignore the acoustic-mode phonon
energy, since h«$, and consider the initial Rnd
final states to be equal in energy; (ii) to expand
the Bose function for N, assuming that k{d «kT
and therefore that N»1; (iii) to assume that 8=1
and ignore the decrease in overlap bet%een initial

and final states as q becomes largex. %6 shall
make only approximation (i}, although we will not
neglect the energy lost to the acoustic Inodes.

The variation of the scattering probability, be-
cause of the decl'ease of overl3p %'1th incx'BR81ng

pbonon %'3ve DUIQber, BliIQinates Inuch Gf the en-
hancement of the scattering rate which oceux'8 be-
cause of the gx'eater increase with energy of the
density of states in a hyperbolic band as compared
to a parabolic band. Matz has considered the
decrease of this overlap in a two-band system, and
%'6 hRve used his expre881on for the vRx'1Rtion of
the Gvex'1Rp Rnd hRve evaluated lt8 effect, upon the
rates of energy loss Rnd momentum loss. The use
of Matz'8 result involves the assumption that the
amount of I -point wave functions xnized into that
for the conduction band is the same in the longitu-
dinal direction as the transverse at a given ener-
gy«The deflc16Dc168 of our kIlowledge Gf the Dllx-

1ng Rnd curvature of the conduct1GD-band st3te8 ln
the longitudinal direction can be shown to result
in relatively little uncertainty in the drift velocity.
This is because (i) the effects due to the decrease
1n Gvex'13p GD the BD61gy loss x'Rte Rnd the IQomen-
tum loss rate appxozimately cancel in the drift
velocl'ty alld (io the conductivity effec'tive IIlass ls
largely deterIMned by the transverse Bffect1ve
mass. The expression given by Matz for the
square of the overlap 8, using the expansion coef-
ficients given by Kane for two bands, becomes

B'= (1/4n') [(~ E.)"2(n'-E'. ) -.8

+ {Il -E~)'cos'8+ ~13 (Il -Eo)'(1-cos'8) ], (7)

where q =Zc+ 2E, I Kt = I K t, and cos8 is the an-
gle between K and K (in the transformed coordi-
Ilates) .

The decrease in overlap mill affect the momen-
tum and energy loss rates in slightly different
%'ays. 81nce the ovex'lRp cox'I'ection 1ncx'BR868 %'lth

the angle of scattering, the effect of this correction
on the momentum loss wiQ be greater than for a
mechanism which is not dependent on the angle,
1«e«y Donpolax' optical-IQode enex'gy loss «The
overlap correction for the momentum relaxation
rate is given by

M(Z)=(II)-' j (1-cos8)~ 8'sln8d8,

where we assume that the scattering mill be iso-
tropic. ID Fig. k we compare the decrease in the
overlap function of the increasing 616etx'on energy
with the invex'se of the change in the density of
states obtained in going from a parabolic band to R

hyperbolic band. The very close agreement be-
tween these two eux'ves leads to R computational
simplification in which the corx eetions in the mo-
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PIG. l. Effects of nonparabolicity versus electron
energy in the conduction band of Ge. H is the increase
in the electron effective mass due to nonparabolicity, L
is the overlap factor 82 averaged over an energy sur-
face, and M involves an average of this factor weighted
by 0.—cos8).

mentum relaxation time for overlap and the cor-
rection for a hyperbolic-band density of states are
taken as exactly cancelling, that is M(E) B(E)= 1.

The average overlap correction for optical-mode
energy loss is somewhat smaller since it involves
Rn Unweighed Rvel Rge ovex' RQ 6Qergy sul fRce.
This correction I-(E)=5 ' is also plotted in Fig. 1
along with R(E) '" for the sake of comparison.

In tx'eating the acoustic-mode scattering mox'e

exactly, we have, nevertheless, made several con-
venient approximations. The momentum relaxation
rRte consists Gf the scattex'lng with spontRneous
phoDGQ eIDlsslon and the induced scattering pl'G-
cesses and is of the form

1 ——' a
~
sk- 'k~~( E-- E-, )7' 2 u, " "' (2v)3

As Ik -k 'I
exp(haik -k 'i/kT) —1

d'k '
x &(Ea -Ea ~ ) ~ s(2F)

field. If we had spherical energy surfaces, the
first term could be integrated analytically and

would give —,
' A p(E)Ask, where k, the average value

of the phonon wRve QUIDbel fox' R spherical sux'fRce

of radius k„easily shown to be —', u, .
The second term involves an integral over Bose

functions fol vRx'ious phoQOQ wRve numbers Rnd

enexgies. For the smallest angle scattering or at
very high lattice temperatures the term in the
scattering probability of the form

As fk-k' I

exp(hs ik —k 'i/kT) —1

is expandable and becomes simply proportional to
kT. Under most hot-electron conditi. ons this ap-
proximation cannot be made and the second term
cannot be analytically evaluated.

We have adopted an approximate method for
evaluating this term. In this method we see how

closely a distribution of Bose functions can be fitted
by single function fox' a phonon wave numbex' char-
acteristic of the dimensions of the energy surface
in k space. This approximation is similar to the
Einstein approximation in the early theory of lattice
speclflc heRt8 If / 18 R constRnt of ox'der Unity

we find that the second term of E(l. (9) can be very
closely approximated for spherical surfaces by

/Asks
exp(YRsk„/kT) —1

%6 show the accuracy of this approximation in Fig.
2 for p= 3..45. %6 shouM emphasize that this type
of approximation is not really essential to these
calculations, but greatly reduces the amount of
computation involved while introducing only a small
6X'x'ox',

Due to the ellipsoidal energy surfaces of the Ge
valleys the integrals in the acoustic-mode scatter-
ing rate are slightly more complicated in their
evaluation. They must be evaluated for the field
components along each of the principal directions
of the valleys, and the distribution of phonon en-
ergies depends on the initial state k as well as the
final state k'. If we numerically evaluate the first
and second terms in E(l. (9) for ellipsoidal sur-
faces appropriate to Ge, we find, in terms of 01,
= (I) '(2mrE)", that to a very good approximation

—= Ap(E), Ãs 0.78)'~ + —() .(10)
7' exp Ss 0.7k&, kT

We have assumed an electric field in the [100] di-
rection making equal angles mith the longitudinal
and the two transverse ellipsoid axes, and have
weighted the results for longitudinal and transverse
fields by the corresponding reciprocal effective-
mass elements. For conditions under which Ask&
«AE the acoustic-mode scattering rate clearly be-
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y() 8) hIk-k'Is/AT
a{hi((-k'iS/AT) i ~sphere of radius k

~%SSZgT

e ~g ks/&T} )

Because of the effects of nonparabolicity on V and
p(E), we find that the temperature dependence of

p, is somewhat steeper for a given choice of coupling
constRnts than lt 18 when pR1'Rbollc bRnds Rre Rs-
sumed. The consequence of this is that a smaller
component of optical-mode Scattering is required
to produce a given temperature dependence. %6
find that a mobility of the form

p= 8800(T/300) ' ' cm /Vsec

ls best fitted by the VRlues B= 0, 125 and $V= 4
+ 10 Sec with sf~ = 0 119 mo Fox' a PRx'abollC

band, the value of B=0.195 for the best mobility
fit would be significantly larger.

2
bkS/g T

FIG. 2. Approximation for the contribution to mo-
mentum scattering by nonclassically excited acoustic
modes. The exact integral over modes vrith various
phonon energies and degrees of excitation is represented
to a reasonable approximation by scattering by modes
with a single-phonon energy proportional to the dimen-
sions of the energy surface im k space. The above curves
are for spherical energy surfaces, although scattering
over ellipsoidal surfaces is treated similarly.

comes WkT(E/h&o)"o.
If we include the overlap correction and the op-

tical-mode scattering, the momentum relaxation
time can be written

In strong electric fields the electron distribution
function ceases to be thermal, but if the fields are
not too high the distribution reaches a steady state.
The method we shall Use to calculRte tI16 dlstrlbu-
tion function is one originally used by Levinson
and applied independently to InSb by the author. '5

In this method the net flux of carriers through any

energy surface due to the acceleration of the elec-
tric field is equated to the downward flux of car-
riers because of energy loss processes. This
amounts to setting up a continuity equation in a
one-dimensional energy space, except that the po-
sition of a particle can change discontinuously when

a phonon is emitted or absorbed.
The total flux through an energy surface due to

the electx'lc field 8 Rnd lnelRstlc scRttel lng may be
written 48+ Cs. In analogy with the current passing
through a surface in real space given by i = fpv ds,
the field-induced flux in k space is given by

f f dk
(2v)s dt

'

%6 shaH, first evaluate Cg for spherical energy
surfaces. Using the relation

dk 1= —e8 and dS(", =2w~k ~ksin&d8,

x (E/h(d )' +B [N (E/no( + 1}

(N, ~ ()(s/s, —()"']I,
where N~=[exp(K&o/kT} —I] '. Here B is the
ratio of the optical-mode eoupbng constant to the
acoustic-mode coupling constant 8' and A&o is the
optical-mode energy.

The coupling constants are determined by ad-
]ustlng W Rnd + to fit tI16 ob8erved low-field Dlo-

bility between 100 and 300 K. %6 write the low-

field mobility as

p = —f V re ~'r p(E) dE/ f e s ~"rp(E) dE . (12)
SkT

where 8 is the angle between $ and k, and making
the assumption (the diffusion approximation) that

f=fo+A cos8

where fo is isotropic, Cs becomes

2veSo ko
4'$ =

(
o ( fo+ fg cos8) cos8 sln8d8 . (14)

The contribution from fo vanishes due to symme-
try. If we put

~ of, = -v'ego
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p(Z) = 4va'/(2m)' av,
we obtain

C~ = ,'7 (e—g)'v'sz P(Z) . (15a)

In evaluating Cg for ellipsoidal energy surfaces,
8 becomes the angle between k and 8 in the trans-
formed coordinates. The result

the phonon wave vector averaged over both initial
states k and final states k '. For energy surfaces
of the shape appropriate to Ge, numerical inte-
gration yields for this average (Ik-k'I )

0.73ki'
Having obtained fo, we may evaluate the drift

velocity vD, where

v = E7 —e 'p(E)dE e ~p(E)dz,

c, = —.
' r(eh)'v',—p(z) (15b)

and the average energy E, where

is almost identical with (15a) except that V and p
are those values appropriate to ellipsoidal surfaces
given by Egs. (3) and (5). We shall discuss the
accuracy of the diffusion approximation below.

The flux due to scattering is contributed both by
the optical modes and the acoustic modes. The
first contribution is simply

c,.= wzf, (z) = we[a, f p(z')(E'/a-~, +1)«~
8-hgp

xz(E'+ 5+0)L dz ' —(%0+1)J p(z')

x (E '/au)0 —1) R(E ' —h(oo) L dE

The first term includes all those processes in
which an electron initially between the energies
E -A&p and E absorbs an optical-mode quantum
and goes to an energy above E. The second con-
tribution includes processes in which the electron
at an energy between E and E+h~p emits an opti-
cal-mode phonon and goes to a state below E. The
overlay correction factor L between states at E'
and E'+A&p was taken to be

I. =[L(E')L(E'+a~,)]'" .
The flux due to the emission of acoustic modes

is a smaller but significant part of the total flux.
We shal1. consider only the spontaneous emission
processes, since for a hot-electron distribution
the flux due to phonon absorption very nearly can-
cels the flux due to stimulated phonon emission.
The spontaneous flux includes all those states
which are within an acoustic-mode phonon above
the energy surface under consideration. The
acoustic flux may be written

\

W oh

z+~ I~'-l l

x 5(z —E —jets ~a —a
~ ) 6 p(z ) dz . (17)(2v)'

U we put, f(E') = f(E), since f is slowly varying
over a phonon energy, we obtain

C,.= Wp'(E) a's'(~k -k'~ ') f(Z), (18)

where (lk' -k~ ) is an average of the square of

E = f Ee ' p(E) dE / J e ~
p (E)dz . (20)

For a steady-state distribution 4g+ +& =O. In-
serting Eq. (13) we obtain

sf, 3(e,.+@~)
(«)" I' p(z)

(21)

If we assume f, is of the form e " ', we may
write

sfo

The distribution function is obtained by iteration.
Starting with a trial function, Sg/SE is obtained,
yielding a new fo. To obtain a rapid convergence,
the function g„ in the nth trial is of the form

V. RESULTS

In Table I we have summarized some of the
values of parameters which were used in these
calculations.

TABLE I. Values of the parameters usedin this paper.

s =1.58m
guo ——0.082 m

8'= l.54 eV
B =4x10~ cm/sec

~L =- 0.0375 eV
mr=4xl0 sec '
Ea= 0.125

&yt u-u't} =0.7I
(~ a - a '

t '} = 0.73&~

Bgg„(z,)=~ Z —,
~-" ~E,

,
+(1-~)g„,(z;) . (22)

q=l

Computations were facilitated using an IBM
model 65 computer in conjunction with a remote
APL time-sharing terminal. Because of a limited
memory, the number of intervals in energy was
limited to approximately 45. At higher energies
an analytic extrapolation was used. We estimate
that the error in the quantities calculated was ap-
proximately 0.2 /o.
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VI. DISCUSSION

The main conclusions we would make from these
calculations are the following:

(i) If the most important intraband effects are
taken into account, an I-V characteristic results,
having the correct magnitude, negative resistance,
and temperature dependence of this negative re-
sistance. There is doubt as to accuracy of some
of the results where f, /f0 is becoming comparable
to unity.

(ii) Although the effects of intervalley transfer
have been neglected in these calculations, there
is probably a significant amount of transfer at the
fields considered. It is doubtful, however, that
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FIG. 7. Percent of the total energy loss due to the
acoustic modes for 5

creases with increasing energy. In Fig. 7 we see
the fraction of downward flux due to acoustic-mode
energy loss versus electron energy. The curves
are for a very high field such that f(E+8'&ua) = f(E).
The fraction of energy lost to the acoustic modes
is typically of the order of 10/o. At finite fields
the optical-mode loss falls off and the fraction of
energy loss due to the acoustic modes is somewhat
greater than shown in Fig. 7.

The dependence of the distribution function on
energy is somewhat more complicated than the
effective-electron-temperature description. At
low energies, in the vicinity of h0 and below, the
falloff in the distribution is very small because the
flux due to the optical modes and the acoustic
modes is very small. At high energies the rate of
the logarithmic decrease is superlinear because of
the effects of nonparabolicity and acoustic-modes
energy loss. These features are in evidence in the
semilog plot of fa versus energy in Fig. 8.
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FIG. 8. Calculated electron distribution functions at
77 and 300 'K showing accelerated attenuation at higher
energies due to nonparabolicity and acoustic-mode en-
ergy loss.

this transfer involves the majority of electrons
as in GaAs, but at the higher field the drift velocity
is no doubt affected by both the scattering between
the (111)and (100) valleys and the partial popula-
tion of the (100) valleys.

(iii) On either the intravalley or the electron
transfer models of the negative resistance the
vanishing of the negative resistance must be due
to substantial electron transfer, since in our cal-
culations there is no mechanism which causes the
resistance to change from negative to positive at
higher fields. The intravalley mode1. presented
here, however, would be consistent with the in-
crease of the oscillation threshold with pressure
observed by Melz and McGroddy.

Recently, Fawcett and Paige~' have made Monte
Carlo calculations of the drift velocity for n-type
Ge. They have included the (100) valleys in their
calculations but have not included those features
of the (111)valleys which contribute to an intra-
band negative resistance. Any negative resistance
they obtain is, of course, the result of electron
transfer to the (100) valleys and depends upon the
assumed properties of these valleys.

The parameters describing the (100) valleys in
Ge are obtained from the information available
about Si, and there is also some check from low-
field hydrostatic pressure experiments, which
brings the (100) valleys below the (ill) valleys in
Ge. The major difficulties in such an approach
are the following: (i) Our knowledge is still imper-
fect concerning the scattering mechanisms in Si;
(ii) there is almost certainly a significant differ-
ence in the detailed description of the scattering
and band structure of the (100) extrema in Si and

Ge, e.g. , the frequencies of the lattice vibrations
spectrum of Si are approximately V07p greater than
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in Ge; (iii) the observed negative resistance is not
obtained in the calculations if a high probability for
nonequivalent intervalley scattering is taken into
ac count.

A dip in the low-field conductivity of Ge at hy-
drostatic pressures which cause the (111)and

(100) acts of valleys to cross in energy indicates
that the scattering probability between these sets
of valleys in Ge is rather high. It is a curious
result of theories involving electron transfer that
the more easily carriers can scatter between non-
equivalent valleys, the more remain behind in the
lower valley (s) at a given field. Fawcett and

Paige have noted that with a strong intervalley
coupling constant it is difficult to obtain a negative
conductivity at 77 K because of the small amount

of transfer.
A complete theory of the conductivity of elec-

trons in Ge would need to consider the contributions
to the conductivity of the both (111)electrons and
the transferred electrons. In this paper we have
considered the contribution of the (111) electrons
and have shown that if the relevant details of the
band structure and scattering mechanisms are
taken into account, a negative resistance in good
agreement with the observed I-V characteristics
results. Although we have not included any effects
due to electron transfer, we would conclude that a
theory based primarily on electron transfer is
perhaps more incomplete in its consideration of
important mechanisms contributing to a negative
resistance in Ge.
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