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The oscillatory transverse magnetoresistance (Shubnikov-de Haas effect) has been measured
for the magnetic field in the binary and trigonal planes of single-crystal bismuth at liquid-
helium temperatures, using a technique which permits accurate identification and determina-
tion of the periods and measurement of the amplitudes. Periods observed in high-purity
samples fresistivity ratios (Rapo K/R4 2 K) 400] can be fit to the generally accepted Fermi-
surface model of one hole ellipsoid and three tilted electron ellipsoids. For resistivity ratios
( 300, additional periods are observed which recently have been shown to be caused by twin-
ning. The effects of twinning, together with the difficulty in interpreting oscillatory resistivity
data taken by traditional techniques, are suggested as explanations for the many spurious per-
iods reported in the literature and used as arguments for additional pieces of the Fermi sur-
face. By fitting the amplitudes of the oscillations to the theory for the magnetoresistance of
an electron gas with level (Dingle) broadening, the Dingle temperatures of holes and electrons
were found to be (0. 7+0.2) and (0.4+0. 1) K, respectively. These values are comparable
with earlier results of Bhargava from de Haas-van Alphen (thermodynamic as opposed to
transport) measurements, but are 50 times larger than the values estimated from zero-
field conductivity. Agreement within a factor of 2 is obtained when the increased scatter-
ing of carriers in the highest Landau level, due to their low velocities along the magnetic
field, is considered.

INTRODUCTION

The thermodynamic and transport properties of
many solids, when measured as functions of an
applied magnetic field, have components periodic
in reciprocal magnetic field. Such effects were
first observed by Shubnikov and de Haas (SdH) in
the magnetoresistance' and by de Haas and van
Alphen (dHvA) in the susceptibility of bismuth at
very low temperatures. Shortly thereafter, Lan-
dau3 showed these effects to be related to the quan-
tization of the electronic motion transverse to the
field which causes singularities in the density of
states of the electron gas. A stimulus for the
many recent investigations of these effects ~ was
the work of Onsager, who showed that the period
P of the oscillation is simply related to the ex-
tremal cross-sectional area S of the Fermi sur-
face normal to the magnetic field by P = 2'/hcS.

The oscillations increase in amplitude as the
temperature is decreased and are usually observa-
ble only near liquid-helium temperatures. How-

ever, at the lowest temperatures the amplitude is
limited by the intrinsic width of the Landau levels,
determined by collision broadening. The theory
was first discussed by Dingle, who showed that
the broadening is equivalent to an increase in tem-
perature by an amount TD, the "Dingle" tempera-
ture.

Though the Fermi surface for bismuth is now

well known, ' '" there have been many reports in
the literature' ~6 of periods observed by the SdH
effect which are inconsistent with the known Fermi
surface. In addition, there has been no systematic
study of the dependence of the amplitudes of the os-
cillations on magnetic field and on temperature,
though one report" indicates that the Dingle tem-
perature is approximately 50 times the value ex-
pected from a naive estimate. We report here the
results of a detailed study of the oscillatory mag-
netoresistance of bismuth as a function of tempera-
ture, magnetic field, and crystal perfection, in
order to resolve the above two inconsistencies.
These studies depend largely on novel measure-
ment techniques, ' ' which permit unambiguous
identification of interfering oscillations and accur-
ate measurements of their periods and amplitudes.

THEORETICAL BACKGROUND

Single Band

The theory for the motion of electrons in a mag-
netic field has been reviewed by many authors.
The transverse magnetoconductivity of a single
band, taking account of collision broadening, has
been treated rigorously by Miyake and by Kubo
et al. ' ' For a constant Fermi energy E~ their
results for the transverse conductivity 0„ includ-
ing spin, are
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In the above equations, 8„ is a thermal factor, 70
the mean free time between collisions in the ab-
sence of the magnetic field, T the temperature, and

&o, = eH/m, c the cyclotron frequency. I', the width

of the Landau levels due to collision broadening, is
itself an oscillatory function of the magnetic field
since the scattering depends on both the density of
states at the Fermi energy and the electron veloc-
ity, of which the component along the field ap-
proaches zero when a Landau level is at the Fermi
surface. For «&EF and EF constant, I' is given
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At low fields, sinh(2v'kT/h&u, ) in Eg. (2) can be
replaced by 8-3 kr in c and a Diable temperature-Bffa P2" /0 e

Te = I"/vk can be defined which will add to the real
temperature in 8„. For large H, though this ap-
proximation does not hold, one can still regard I
as an effective temperature TD.

The first two terms in Eq. (1) are results of
scattering between Landau levels and the last three
terms are results of scattering within a level. In
the limit I" 0, the third and fourth terms will di-
verge. This divergence was first discussed by
Davydov and Pomeranchuk, ~ who pointed out that
the expected value of I'0= 0/vo must be modified
when the quantization alters the time the electron

Bismuth is a group-V semimetal having a rhom-
bohedral crystal structure, with two atoms per
unit cell. The structure is a slight distortion of
a face-centered cubic lattice, obtained by elonga-
tion along a body diagonal, the trigonal (e) axis.
One of the three remaining twofold rotational axes
is defined as a binary (x) axis; the bisectrix (y)
axis is a third orthogonal axis. The slight distor-
tion causes an overlap of the fifth and sixth Bril-
louin zones so that some of the 10 electrons per
unit cell in the otherwise filled fifth zone go over
into the sixth zone, creating equal electron and
hole densities of 3~10' per cm3 at low tempera-
tures. The electron Fermi surface' '" consists of
six half-ellipsoids at the L points in the zone; a
principal axis of each of these ellipsoids is along
an axis of twofold symmetry (the binary), the other
two axes are tilted from the trigonal by an angle of
+6'. The hole surface 'o'" consists of two half-
elliysoids of revolution about the trigonal axis cen-
tered at the T points.

For a single band, the resistivity p„ the experi-
mentally determined quantity, is proportional to
0~ at high fields. However, for the case of bis-
muth in which the densities of holes and electrons
have been shown to be equal within 5%, "'~'~0 p,:0'g

q
where 0'g ls given by a sum of expx'esslons

like those in Eq. (1) for each piece of the Fermi
surface. From Eq. (1), writing OT for the oscil-
latory terms, substituting p„' ~ for m~/noe vo, the
zex'0-field coIQponent of the x'eslstlvlty, and p. g fol

e/ vomthe average mobility transverse to the
field (where m, is the appropriate cyclotron mass),
one can write

p.= p '"(p'&'/c') (1+OT) '.
For amplitudes of the oscillatory terms «1, the
case for moderately high fields, i. e. , (dao& 1 but
n =E~/I&a, not small,

p.=p'" (p'.&'/e') (1 —OT) . (7)

Thus, for bismuth, there will be a monotonic term
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proportional to H and the amplitudes of the oscil-
lations will also be multiplied by a factor of H .
One should note that, in contrast to the case for a
single band, the resistivity will be a minimum at
the singularities in OT.

The above assumes both E~ and Dingle factor
constant and should be applicable to bismuth for n
large near E~. However, when the separation of
the levels becomes a significant fraction of E~, the
change in E~ must be taken into account and con-
stant broadening cannot be assumed.

Despite these limitations there appear to be cer-
tain directions of the magnetic field in bismuth for
which the above low-field theory may be used at
higher fields. For example, for H along the bi-
nary, the cyclotron masses of the holes and of the
electrons in one ellipsoid are relatively large
(0. 14 mp and 0. 22 mp, respectively), while elec-
trons in the other two ellipsoids have small cyclo-
tron masses (0. 011mp) ~ For the two identical
ellipsoids, the effect of H on E~ will be minimized.
Smith et al.~' have calculated a maximum varia-
tion of approximately 2%%up in Er for H along the
three principal axes, for H up to 15 kG. The vari-
ation of I' with H is taken into account through
Eq. (5).

EXPERIMENTAL DETAILS

The apparatus and the method, described in de-
tail previously, ' have two important features:
First, the monotonic H term in the magnetoresis-
tance (Eq. I) is subtracted by a bridge arrange-
ment, allowing increased amplification of the oscil-
latory part, and second, the magnetic field is
swept such that 1/H varies linearly with time, so
that the oscillations are sinusoidal in time, making
it possible to use real-time differentiators and fil-
ters to separate the periods. The periods (in 1/H)
are obtained directly from the recorder trace;
averaging is accomplished by measuring over a
number of periods. The accuracy of period mea-
surements, from 1 to 10%, is determined by the
magnetic field and sweep calibrations, - sample ori-
entation, the number of cycles observable, anddis-
tortion by other periods. For some directions of
field (e.g. , along the principal axes), the oscilla-
tions are unambiguous and exactly periodic; for
others, the interpretation depends on having data
at nearby directions. If the number (depending on
the period) of well-resolved periods is sufficient,
the field and sweep calibrations limit the accuracy
to 1% between 2 and 13.5 kG. Orientation errors
are at most 1/p and, in general, are much less.
The larger errors are due to a limited number of
observable periods or to distortion by other
periods.

For directions of the field in which the principal

harmonic of one period dominates and where the
monotonic term is exactly cancelled, the ampli-
tudes can be measured directly from the recorder
traces. When higher harmonics become impor-
tant, the amplitudes can be determined and the ef-
fect of imperfect cancellation of the monotonic
term eliminated by fitting to an analytic expression
for the oscillations derived from Eq. (6) [see Eq.
(8)].

Sample Preparation

Samples were cut from large single crystals
grown from 99.9999% pure zone-refined bismuth

by a modified Bridgeman technique as described in
Ref. 18. The resistivity ratio R3Qp x/R4 p x which
was of the order of 200 after cutting and planning,
could be increased to - 500 by annealing near the
melting point for - 200 h. Current and potential
leads were attached with Ceroseal 150 solder or a
bismuth-cadmium eutectic. Sample data are found
in Table I.

EXPERIMENTAL RESULTS

Periods

The angular variations of the periods of elec-
trons and holes in the binary and trigonal planes
were determined using samples 28-3-b and 10-b-l
in Table I. In the figures, A, D, and F~ indicate
data taken using an amplifier, differentiator, and
rejection filter, respectively. The period to which
the filter is tuned is indicated in parentheses in
units of 10 ' G '.

Examples of period data are shown in Figs. 1-3.
Figure 1 shows the oscillatory part of the magneto-
resistance (Rs~) of a trigonal sample plotted ver-
sus reciprocal field for the field along the bisec-
trix for three amplifier gains. The electron per-
iods (8. 05 and 4. 02x10 G ') are readily deter-
mined by direct measurements on the graph. Fig-
ure 2 shows similar data for the same sample, only
now with the magnetic field direction —10 from
the bisectrix. This is typical of data for which
multiple periods due to different part of the Fermi
surface are superimposed. The present technique
is particularly useful for handling such data, and
careful analysis' allows us to associate each of
the minima with the correct period or periods.
For this case, the three electon periods are 2. 81,
5. 1, and 7. 92&10 G

Figure 3 shows the results of an attempt to ob-
serve the electron periods for H near the trigonal.
(The period along the trigonal has been observed
only recently in dHvA measurements. ") The filter
was tuned to reject the hole period (top curve); how-
ever, the remaining dominant oscillation was the
hole second harmonic, as confirmed by observing
the phase between the two traces for H in the bi-
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ex erimental results.TABLE I Sample data and p
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Sample
Dimensions (cm) B3pp 'K/~4. 2'K

X
Periods (10 G- )

-5 1

HolesElectrons Remarks

10-5-1
28-3-b
II-1"
II-Cy-2 b

D-G"

0. 38
4. 66
5. 00
dia.
4. 25

0.35
0.46
0.28
0.71
0.60

4. 00
0. 51
0. 25
3.54
0. 30

190
200
160
460
500

Average
Errors

Electron tilt angle
Carrier densities per ellipsoid

Electron
Holes

Dingle temperature
rection, P=7. 0 xElectrons, binary dire

Holes, trigonal direction, P= 1.57 x 10

7. 05, 0.51

7. 0

7. 03, 0..51
+0.07, 0. 02

8.05, 4. 02
8.23, 4. 17
8.30, 4. 0
8.06, 4. 13
8.10,4. 02
8.15,4. 07
0.10, 0. 07

X, P
0.48
0. 50

0.49
0. 02
+6'

1.58, 8. 0
1.57, 7. 9

1.57
1.57
0. 02

0. 96 + 0. 03 x 10 /cm17 3

2. 91+ 0. 12 x 10 /cm17 3

(0.7+0.2) K
(0.4 6 0. 1) ' K

Unannealed
Unannealed
Unannealed
Annealed after cutting
Annealed after cutting

red b him (cf. Ref. 34).
'Twin electron period.

R. L. Hartman an samd mple II-Cy-2 prepare yCrystal II was grown by
'No twin period observable.

20'- 24' of the trigonal direc-within -20 -+

les were. necessary for correc zn e-
iodtation since the minimum, e ec r

go pthis lane is nown
x10 G ' The electron period cou no
H er a low-amplitude ong-pion — eriod (-8x10

d f II within 10—G ') oscillation was observe or ' ' '- 5
he tri onal direction. The same oscillation

sample II- .-1 ' Other examples of da a o
are found in Ref. 18.

Angular dependences of the electron an o e

'. 4. Theinar lane are shown zn Fag.iods in the binary p
urves 1 and 2 in ica e' d' te the mea-large dots along curve

' surface. Theeriods for the electron Fermi sur ace.
experimental errors along t ese cu

10 ' G ' for the large period s to 0.0. 1x
G ' th shorter well-resolved p eriods. TheG for e s

d th by dot sizes or erroor
1 d2) 1 ltd

ac is indicate ex er
s. The solid lines an

kst ' 's" equations for anfrom eKetterson and Eckstezn s
th measured values of theellipsoid aidal surface using the measure

the eriods in eth b'sectrix direction
's" al fo th 1 ct on(Table I), and Bhargava's va ue or

IO 5
O (ltG)

IO
I

.5
I

O (kG)

O
OT0'

0 0

0 0
10-b-I
I-Z
O-IO'from Y
P=2.8, 5.I, 7.92x IO 5G-'

{e lect r on)

l~ il I

IO
' 20 " 30

I I

40 50
I/O (G )

I

60
I

70x IO 5

le for HFIG.. 1. SdH osci a ill t ons in a trigonal samp
t three amplifier gains.along the bisectrix a ree

II I

IO 20 30
C C C C

II I

-S40 50 60 70 x I 0
I/O (G ')

2. SdH oscillations in a trigona p
' onal sample for H

c indicate the locations of minima associated wit e
three observed periods.
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period in the trigonal direction l. 17x 10 ' G '.
Two ellipsoids have the same variation of period
with field (curve 2). The dots along curve 3 indi-
cate the measured hole periods in this plane with

an error of -0.02&10 6 '. The solid line is cal-
culated from the ellipsoidal model using the mea--

FIG. 3. SdH oscillations in a binary sample for H
—10' from the trigonal usingthe filter to rejecthole peri-
od at l. 56 &10 6, and the differentiator to bring out
expected short electron period. The short period actu-
ally observed is the second harmonic of the hole period.

sured values along the trigonal and bisectrix axes.
The small dots indicate the second harmonic of the
holes observed near the trigonal.

Crosses, triangles, and circles indicate periods
that do not fit into the accepted Fermi surface of
bismuth. The crosses might be explained by har-
monics or by interference among the other oscilla-
tions; however, the circles and triangles along the
trigonal would be hard to explain in this way, since
the only periods of detectable amplitudes in this
direction are due to the holes. These trigonal os-
cillations were observed in sample II-1 as a func-
tion of temperature. ' The temperature dependence
of the amplitude gave an effective mass of approx-
imately 0. 010 mo. The same periods were also
seen in dHvA measurements, using the technique
described by Bhargava. Data on these periods
were not as good as those on the major periods,
the error being of the order of + 10% due to the few
low-amplitude cycles observable, and it was im-
possible to make a connection between these tri-
gonal periods and the other unexplained periods in
Fig. 4. In presenting a preliminary report on
these data, it was learned that similar periods had
been seen in other investigations.

We subsequently discovered that carefully an-
nealed samples with resistivity ratios above -400
did not show these periods. However, the periods

Sx
I 0+

FIG. 4. Angular depen-
dence of the electron peri-
ods (curves 1 and 2) and
hole periods (curve 3) in
the binary plane. Large
dots are experimental points;
solid lines are calculated
from the periods along the
principal axes and the tilt,
as suming an ellipsoidal mod-
el; small dots indicate mea-
surements of the second
harmonics of the hole peri-
ods. Triangles, squares,
and crosses are periods
arising from twinning.

I I I I I I I I I I I I I I I I I I I I I

240' 260' 280' 500' 520' 540' 0 20' 40' 60' 80' IOO'
-Y +z +Y

MAGNETIC FIE LD DIR ECTION
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could be induced by straining (bending in a four-
point jig at either room or helium temperatures)
and eliminated by annealing near the bismuth melt-
ing point. For resistivity ratio increasing from
- 250 to 400, the amplitude of the period dropped by
a factor of approximately 20. It was then learned
that these periods result from twinning.

Figure 5 shows the electron periods (curves 1-
3) as functions of angle in the trigonal plane. Again
the dots are the measured values and the solid
lines are calculated from the periods along the

principal axes. The errors range from about 0. 1
&10 G for the large periods to about 0. 03&&10 ~

G ' for the smaller ones. A few periods are
shifted off the curves because of the interference
between oscillations. There is also a discrepancy
near the binary axis for the small electron periods,
which may be the effect of nonellipsoidicity or the
flatting of the ends of the ellipsoid in the long direc-
tion. A similar effect was seen and discussed by
Bhargava. " The isotropic hole period in this plane
is shown along curve 4; the error is ™0. 02&10
G-1

For samples with resistivity ratios between 160

and 500 (Table I) the measured periods along the
principal axes agree within experimental error.
The carrier densities per ellipsoid calculated from
the averages of these periods are n, = (0. 96+ 0. 03)
x10' cm, n~=(2. 91+0.12)x10'~ cm 3. The ratio
n&/n, = 3.03 is in better agreement with the model
than one can expect from the uncertainties in the
periods.

Dingle Temperature

E/ec talons

Careful measurement of the magnetic field de-
pendence of the amplitudes of the oscillations was
made on sample II-Cy-2 with H along the binary
axis and the current along the trigonal axis, at
temperatures between 1.4 and 4 'K. In this case the
dominant oscillation, with period Vx10 ' G, is
due to the electrons in two valleys which make
identical contributions to the resistivity. Typical
data are shown in Fig. 6. The Dingle temperature
was determined by a self-consistent (computer)
best fit of the envelope of the oscillations at the
peaks and valleys of Rz" to the expression [cf.
Eq. (6)]

R„'"=Ax H&x OT/(1+ OT), (8)

8x
IO'

CI0
CC
UJ
CL

0 po
X

I I I I I

t0 I 5 20
MAGNETIC FIELD DIRECTION

30
Y

FIG. 5. Angular dependence of electron periods
(curves 1-3) and hole periods (curve 4) in the trigonal
plane. Dots indicate experimental data; solid lines are
calculated from the periods along the principal axes,
assuming an ellipsoidal model.

where A depends on the sample parameters and
gain of the measuring system and P is expected to
be - 2 from Eq. (6). A and P are also determined
from the fit; however, small variations in P have
a substantial effect on the value TD, with only a
small change in the mean-square error in the fit.
A first approximation to T~ could be obtained from
the low-field region (OT «I), where the sinh can be
replaced by an exponential, assuming a value for
P. A set of values for TD spanning this value was
then used to calculate OT/(1+OT) with I" given by
an iterative solution to Eq. (5). In calculating OT
for electrons, which have a nonparabolic energy
dispersion, '7 the value of EJ; in the argument of the
cosine term in Eq. (1) was taken as that obtained
by assuming equal spacing of the Landau levels with
the cyclotron mass equal to the value at the Fermi
energy. This "parabolic" E~ has a value of 15.S
me V.

The phase factor, —w/4 in Miyake's expression,
was experimentally close to zero as seen in Fig. 6
from the plot of the quantum number for each mini-
ma, which corresponds to an energy level at the
Fermi surface, versus 1/H. With the effective-
spin factor v assumed to be 2, 3' a phase of - —v/8
gave the best calculated fit to the over-all shape of
the oscillations, x points in Fig. 6. The quantity
OT/(1+OT) was then factored out of Eq. (8) and
the values of A and p were determined from a
least-squares fit to the remainder at various tem-
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FIG. 6. Magnetic field dependence
of the large-period electron oscilla-
tions for H along the binary. x's
indicate points calculated from Eq.
(8) and Miyake's expression for OT;
the straight line is a fit to the plot
of the Landau-level numbers versus
corresponding values of 1/H at the
minima (dots), and indicates a phase
close to zero; location of the maxima
in 1/H are shorn by circles.

peratures. The small monotonie term remaining
in BH" due to the imperfect cancellation of the H
term was eliminated by an iterative calculation
which used the symmetry of the envelope function
to determine the effective reference for the oscil-
LRtory terms. Since, Rs wRS n1entloned above,
near the minimum error small changes in 7&
were compensated by changes in p (assuming p not
to be a. strong function of temperature), values of
T& for various ranges of p which gave errors near
the minimum were obtained. For two ranges of P,
2. 0+ 0. 1 and 2. 25 + 0. I, these results are shown
as a function of temperature in Fig. 7. For values
of P very much outside these ranges, the error in
the fit begins to lnel'eRse slglllfleRntly. From Flg.
7, assuming p independent of temperature, TI,
ranges from (0.V +0.2) 'K at - 1.4'K to (0.4
+0. 2) 'K near 4 K. However, for a slight varia-
tion of p over this temperature range, a value of
T~ (0.6+0.2) 'K would be consistent with the data.
Since the amplitudes are larger at lower tempera-.
tures, the best value for TD is (G. 7+0.2) 'K at
l. 4 'K, for p = 2. 1 + 0. 2.

Holes

l„O)

& P-2.0
P - 2.25

W Q5—
0

O

H —X.
P -7 Q x lQ G (electron)

ii j~)

lations, from the plot of level number versus 1/H,
Fig. 8, the phase factor in Miyake's expression
Eq. (1) is -0. Since the minimum values of n ob-
served for the holes were much larger than those
for the electrons, the harmonics were of relatively
lower amplitude and the exact phase was less criti-
cal and was assumed to be zero. For holes the .

best value of P was quite close to zero; the values
of T~ versus temperature for three ranges of p are
shown in Fig. 9. P andy'or TD are less dependent
on temperature (assuming their dependencies do
not cancel); the best value of Te for holes is
(0.4 +0. 1) 'K for P 0.

The amplitudes of the hole oscillations were
measured as a function of magnetic field for field
along the trigonal axis and current along the bi-
nary in sample II-G at temperatures between - l. 3
and 2. 0 K. The same analysis described above
was applied to these data, an example of which is
shown in Fig. 8. In this case, since the spin fac-
tor p of -1 introduces a phase of - w in the oscil-

0
l.o

l

2.0
l

3.0 4.0

FIG. 7. Electron Dingle temperature for the large-
period binary oscillations as a function of temperature
for two ranges of p. Dashed lines are fit by eye to
in.dicate the general trend.
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IO
I

H (kG)

1Z —G
I —XH" Z

'(hole)

0& )P
CL

Magnetic field de-
pendence of hole oscillations
for H along the trigonal.
Straight line is a fit to the plot
of Landau-level numbers ver-
sus values of 1/H at the mini-
ma, and indicates a phase (due
in this case to spin) of 7t/2.

0 10 20
I I

40 50
IIH (G-I)

I

60
I

70
l

80xl0 5

DISCUSSION

Periods

II- 6
I — X
H — Z

P -1.58 x lO G '(holey'

0 P ~,2 to-, p
&& P -4.l to-. l

f) P +.2 to+.5

0

I-

0.5 —
&&

() 0
0

I

l. 5
I

l.7
I

l.9

FIG. 9. Hole Dingle temperature for the trigonal
oscillations as a function of temperature for three ranges
of p. The dashed line is a fit by eye to show the general
trend.

As seen from Figs. 4 and 5, the majority of the
observed periods agree, within experimental er-
ror, with those expected from the known Fermi
surfaces for the electrons and holes. ' From the
annealing data and Holland's x-ray and SdH results
on strained crystals, the periods near the trigo-
nal axis (Fig. 4) are attributed to bisectrix periods

in a twin crystal. One of three possible orienta-
tions of the twin with respect to the parent puts
an angle of 116' between their positive trigonal
axes, with their binary axes along the same line
but with opposite directions. This places the twin
negative trigonal axis at approximately 284 in
Fig. 4. The left-hand set of x points then corre-
sponds to the expected electron periods obtained by
shifting curve 1 by - 74' to the left. Some of the
lower points near 280' are probably due to holes,
as are the x points around 305'.

Since many of the data reported to date' ' were
taken on crystals for which the resistivity ratio
(R3QQ x /R4 2 Q) was 200 or less for crystals grown
from fairly pure material, from the results indi-
cated in Fig. 4 we would expect to see the effects
of twinning in these data. The long anomalous
period for magnetic field along the trigonal, now

known to be due to twinning, is, in fact, seen in
the data of both Lerner' and Eckstein and Ketter-
son. ' It is clearly seen in Fig. 8 of Ref. 14 and
can be estimated to be about 8x10 ' G '; it is not
quite so apparent in Lerner's data. (Ref. 12, Fig.
4). In these cases we might expect to see spurious
periods, especially short ones, either from the
twin or from the additional interference between
the twin and parent periods, particularly when re-
cording the first or second derivatives of the mag-
netoresistance as a function of magnetic field.
Lerner does report short periods, varying from
0. 5 to 0. V5x 10 ' G ' between the binary and bisec-
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trix axes, which he attributes to a heavy hole band.
Although Eckstein and Ketterson's samples had
the lowest resistivity ratio, - 110, they report very
few periods, and no short ones, that do not agree
fairly well with the accepted Fermi surface. Up
to - 10 from the binary axis, Lerner's periods are
quite close to our measured values of 0. 5&10 ' G '
for the isotropic hole period in the trigonal plane.
In the region within - 20' of the bisectrix, the data
are similar to those shown in Fig. 2 at 10' from
the bisectrix, where it is quite difficult to separate
the periods even for the undifferentiated data.

Balcombe and Forrest' have reported direct
measurements of the total magnetoresistance as a
function of field on samples with reported resistiv-
ity ratios of 120, 300, and &1000. Their method
of detection has inherently low sensitivity due to
the large monotonic magnetoresistance of bismuth,
and the data have a large amount of scatter. How-

ever, they do show that some of the periods ob-
served by Lerner can be explained by the interfer-
ence of the known periods in bismuth.

From our data, obtained by a method which re-
duces the possibility of interpreting interference
peaks as spurious periods, from the analysis of
Balcombe and Forrest, " and from the effects that
can be produced by twinning, we conclude that
there are no reported periods which cannot be in-
terpreted in terms of the known band structure of
bismuth.

Dingle Temperature

The measured values of the Dingle temperature
for electrons along the binary, -0.7'K, and for
holes along the trigonal -0.4 'K are in agreement
with the previously reported values determined
from dHvA measurements. " Using Hartman's
values of the average scattering times (go) associ-
ated with the conductivity, and I'0= 5/7'o, the ex-
pected values are -0.01 and 0.007 'K for elec-
trons and holes, respectively. Thus, the mea-
sured values are approximately 65 times
larger than this naive estimate. This discrepancy
can be explained, however, and a close estimate of
the Dingle factors can be obtained by an argument
similar to that used by Davydov and Pomeranchuk
for estimating I'. Their method is applicable to
point scatterers of small cross section, for which
each collision is considered an independent event,
but in which case repetitive collisions occur be-
cause of the orbital motion and the low velocity in
the z direction when a Landau level crosses the
Fermi level. In the present case, because of its
high dielectric constant -100,' bismuth has a
large Thomas-Fermi screening length, of the order
of 500 A. This is equal to the cyclotron radii of
the electron and hole orbits for fields of 1000 and

2500 G, respectively, for H in the direction consid-
ered. Thus, for most of the above measurements,
the orbit radius is of the order of or smaller than
the screening length. When the orbiting electron
encounters a scatterer as it drifts along H there
will be a continuous interaction rather than the
periodic one assumed by Davydov and Pomeranchuk.
B.nce the scattering rate is proportional to the total
time of the scattering interaction, which is inverse-
ly proportional to the velocity of the particle as it
moves past the scatterer, an enhancement fac-
tor is obtained which will be given by the ratio of
the velocity in the absence of the field (the Fermi
velocity vz) to that in the presence of the field n, .
The expression for 7 becomes

where E, is the energy associated with the motion
along H. Letting I' =K/7, and invoking the self-
consistent relation2 ' ~ E,= I' (i. e. , for the Landau
level at E~, F., approaches zero within the width of
the level), then

(IO)

from which

From the values for E& and 7O for the electrons
and holes, the respective values of TD from the
last equation are 0. 31 and 0. 17'K. The agree-
ment, within a factor of 2 of the measured values
(Table I), is very good, considering the large ini-
tial discrepancy and the approximations of the
model.

Comparison with Transport Theory

&lee talons

The expression for the resistivity, Eq. (6) with
OT given by Eq. (1), gives the correct general
shape of the data for the large-period electron
oscillations observed in the binary direction, for
quite small values of n, when the experimentally
observed nearly zero phase shift is inserted (cf.
Fig. 6). The significant features are the sharp
minima in the observed resistance, which accord-
ing to Eqs. (1) and (6), correspond to density-of-
states singularities at the Fermi level, and
broadened maxima when the Fermi level lies be-
tween the singularities. By comparison with the
results of Kunzler et al. 5 on the oscillatory heat
capacity, it is clear that the minima do in fact oc-
cur when the density-of-states singularities cross
the Fermi energy. As discussed earlier, this is as
expected for a semimetal with equal electron and
hole densities when ~,v &1 for both carriers, in
contrast to the expectations for a carrier of one sign.
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The above fit shows that the major contribution
to the oscillatory magnetoresistance is due to the
second term in Eq. (1), arising from collisions
in which n changes. At high fields the effect of the
oscillatory component in 1" is to increase the
broadening at the minima and reduce it at the maxi-
ma. This results in a small oscillation in the log-
arithmic term and causes the amplitude at the
minima to be smaller, and those at the maxima to
'be larger, than their values for constant F. The
slight phase shift that is present, approximately
—w/8, is responsible for the observed shifts of the

peaks toward lower fields for H&kG (Fig. 6).
The oscillatory terms [Eq. (1)]due to collisions

in which n is constant begin to have significant am-
plitudes above - 5 kG. However, the effect on the

shape of the oscillations is slight for the phase,
approximately zero. The fourth term has the same
general effect as the second; the fifth term contri-
butes to the second and higher harmonics, and its
phase is such that were it present in greater am-
plitude, it would shift the peaks in the direction op-
posite to that observed. For the range of Dingle
temperatures observed here, the logarithmic term
in Eq. (1) has a maximum amplitude of about 25%
of the first harmonic of the second term for g = 2.
Its principal effect is to add a small component to
the monotonic background.

From Fig. 6 it can be seen that the minima of
the oscillations have a constant period down ton = 2.
This is in contrast to Lerner's 'class IV" oscilla-
tions (Ref. 12, Fig. 8) for magnetic field along the

binary, which he finds aperiodic for n & 7. The
"spiky" form of these oscillations seen by Lerner~2

and by Eckstein and Ketterson at high fields, us-
ing their derivative techniques, can be understood
from the shape of the undifferentiated oscillations
in Fig. 6. Since the maxima are broadened and

are aperiodic at high fields, only the zero cross-
ings in the derivative which are associated with

the minima will be periodic.

Holes

In general, because of the higher cyclotron
masses of the holes, the effect of the harmonics
will be smaller than for the electrons. For elec-
trons, at n = 6 the ratio of the amplitudes of the
second harmonic to the amplitude of the fundamen-

tal is 0. 3; for holes, the ratio obtained from the
best fit of the data to Eq. (6) is 0. 08 and is in
agreement with the data in Fig. 3, which yield
0. 08+0.02 for the ratio. At high fields, as seen
in Fig. 3, the general shape is the same as for
electrons. A phase of -0 fits the data, assuming
an effective-spin factor p= 1. ' Since the harmon-
ics have less effect and since the shape is difficult
to determine for n& 10, no attempt was made to
analyze the data with phase other than zero. In
general, the peaks seem to be shifted toward
lower fields, which would indicate a small negative
phase factor.

We cannot explain the fact that the power of H in
the factor multiplying the oscillatory terms is ap-
proximately 0, rather than 2, as found for elec-
trons and expected for holes. A second unex-
plained feature of the data is the sharp decrease in
the remaining monotonic term in the magnetoresis-
tance which is observed above -5 kG, Fig. 8. The
logarithmic term has the correct sign for the ef-
fect; however, its amplitude is too small ( 10% of
that of the first harmonic at the highest fields in
Fig. 8).
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The optical constants of disordered binary alloys A+, ~ have been computed in the coherert-
potential approximation for all frequencies, all g, and all reasonable scattering strengths,
using a simple one-band model. Our results are compared with the classical Drude formula,
arid deviations are found stemming from critical points and the effects of alloying. In addition,
the high-frequency behavior is shown to be dependent on the concentration z and scattering
strength in the alloy.

I. INTRODUCTION

In the present paper the frequency-dependent
conductivity o(~) of random binary alloys is cal-
culated for all frequencies, all impurity concen-

trations, and a wide range of alloy scattering
strengths. The coherent-potential approximation
(CPA) is applied to the Kubo formulat for the com-
plex frequency-dependent conductivity. This ap-
proximation has been shown '3 to lead to easily


