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The static dielectric function is studied for a transition metal on the basis of a model band
structure with noninteracting s and d bands. The free-electron approximation is used for
electrons in the s band, while a simplified tight-binding scheme is used for the d electrons.
Explicit expressions are obtained for the intraband and interband contributions to the dielec-
tric function. The model is applied to calculate the static dielectric function for paramagnetic
nickel for (3d)~ (4s)' and (3d) ' (4s) ' configurations along the three principal symmetry di-
rections [100], [110), and [ill). The contributions due to the intraband and interband transi-
tions are compared: It is found that the major contribution to the dielectric function is due to
the intraband transitions.

I. INTRODUCTION

The response of a many-electron system to an
external perturbation can be discussed in terms
of the frequency and wave-number-dependent di-
electric function e(j, ur). ' Here j is the wave
number and & is the frequency. Nozieres and
Pines and Ehrenreich and Cohen deduced explicit
expressions for the longitudinal component of the
dielectric tensor within the random-phase approxi-
mation, and they did not consider the local field
effects. Adler4 deduced an integral equation for
the generalized dielectric tensor, including local
field effects, and discussed some limiting cases
of the general expression. When we are dealing
with a system of nearly free electrons, the com-
plex expression for the dielectric function reduces
to a simple form. There have been attempts at
evaluation of the dielectric function for semicon-
ductors, ~ but because of the difficulties intro-

duced by the presence of d electrons, not much
work has been done on the problem of dielectric
screening in the transition metals. Recently,
Hayashi and Shimizu studied the dielectric screen-
ing in a transition metal. They considered two
models, first a single-band model for d electrons
and then a two-band model for s- and d-band elec-
trons. They did not consider explicitely the con-
tribution from the interband transitions.

In this paper, an explicit expression for the
longitudinal component of the static dielectric ten-
sor for a transition metal is deduced. The form-
alism, presented in Sec. II, is applied to the spe-
cific case of paramagnetic nickel in Sec. III. The
results are discussed in Sec. IV.

II. THEORY

The general expression for the longitudinal
static dielectric matrix in the random-phase ap-
proximation is
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c(q+G, q+G ) =Goo, — ~ 2 Q ~? 5~ 7 f[n, (k) —n; ~ (k+q+H)]/[E, (k) —E; i(k+q+H) ]j&floq+~' a a i r~

x&p, (k) ~exp[-i(q+ G) r]10~'~'(k+q+@)& &pr ("+q+H) lexp[i(q+6') r ] ~g, (k)&.

Here N is the number of unit cells in the crystal;~ I
00 is the volume of the unit cell; G, G, and H are
the reciprocal-lattice vectors; the orbital quantum
number / and magnetic quantum number rn act as
the band indices; E, (k) and g, (k) are the eigen-
values and eigenfunctions, respectively, corres-
ponding to the state specified by the wave vector
k; n, (k) is the Fermi occupation-probability
function for the state k for the band specified by
the indices lm; q is the phonon wave vector; and
e is the electronic charge. The summation on k
is over all the occupied electronic states. We re-
write Eq. (1) in the form

~(@+6 q+6 )-=5„-E(q+G,q+6 )~q+6~ ',
(2)

where I" has the obvious explanation. If we use the
orthogonality condition

& (q+ G, q+ G ) e '(q + G, q+ G ) = 5o G. , (2)
gt I

we obtain

(q+6, q+G ) = Goo. +~+ F(q+G, q+ G )

xe '(@+6",q+6') ~@+6~ '. (4)

This is the general expression for the longitudinal
inverse dielectric matrix obtained by Adler and
Wiser. I

In order to render the dielectric matrix (1) trac-
table to calculation, a model band structure is as-
sumed for the transition metal. Let z, and z~ be
the number of electrons per atom in the s and d
bands, respectively. The different d subbands are
characterized by the values of m. Because of the
presence of the perturbing field with wave vector
q, the electrons themselves undergo the intraband
and interband transitions and redistribute them-
selves. In this model, the dielectric matrix of Eq.
(1) can be written in the form

6 (q+6, q+G ) = boo ~ —E ~(q+ 6, q+ 6') —e«(q+ G, q+6 ) —e„,(@+6,q+6 ) —~„(q+G, q+6 ),

where e„(q+6, q+G ) = V(q+G)Q? ([n, (k) —n, (k+q+H)]/[E, (k) — E(k+q +H)] ]

x&g, (k)
l
exp[- i(@+6) r] li) (k+q+H)) &~)3(k+q+H) lexp[i(q+6') ~ r] lg (k)& (6)

c«(q+6, q+6 ) = V(q+G) & ~) ~5 ([n„(k)—n„~ (f+q+H)]/[E~ (k) —E„~(k+q+H)] j
H fft, m'

x& ~), (") lexp[- i(q+6) r]

lpga

'(k+q+H)& &gu '&k+q+H)
1

exp[i(q+6') ~ r] ly. -(k)&, (»

&~, (q+G, q+G ) = V(q+G) 5 ~~? {[n~ (k) —n, (k+q+H)]/[E~ (k)-E, (k+q+A)p
H m

'&&d.(k) l«p[-i(q+6) r ] lt. (k+q+H)&&4. (k+q+H) Iexp[i(q+6') r] I&4-(k». (8)

Here V(q) = 4me /X Qo qo.

The expression for ~,„ is obtained by interchanging
the subscripts s and dm in (8).

A. Evaluation of' e~z (q + ~, ,q + ~ )

We have used the plane-wave approximation for
the s band,

y, (k ) = (Ã 0 o)
"' exp (i k r )

and E, (k) =Eo+5 k /2m, ,

where m, is the effective mass for the s band and
Eo is the energy at k = 0 in the s band. With these
approximations, (6) simplifies to the familiar ex-
pression
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Here the Fermi syhere for s electrons has the
rRdlus

n~, =(Sz, tta/&o)"' and p=tl+H.

8. KvaIuation of edd |'q+ 6, ij + 6'}

%e use the simple tight-binding fynctions for the
d electrons

y„.(f)=(~) "aKexp(if I.) y,„(r -L), (12)

where L is the lattice vector. Vfe write the d-elec-
tron energies in various d subbands in the ef-
fective- mass approximation

z,.(f) = z,'.+ n an'/am. ..
vrhere m~ is the effective mass for the mth 4 sub-
band and Eaois the value of E„(k) for k= 0. If
we write p = q+ 0 and use (12), we can write the
matrix element occurring in Etl. (7) in the form

f„„,y,* (f) exp(-ip' r)q„„,(f+y) dr =5„,J pe (r) exp(-ip' r)y,„,(r)dr

+{I/Z)&~K exp[-if (I.-L')] exp[i(p L'-p'- L)] f ttP (r)exp(-ip'. r) y„.(r+L-i')dr.
L L'

(14)

The prime on the summation indicates that the term
I = I is excluded. %'e neglect the multicenter
integrals, and the above matrix element reduces
to

where 4a, a ~ (p ) is the integral in the first term
of Eq. (14). The other matrix element occurring
in (7) is given by the complex conjugate of (15).
Because of the 5 functions present in the matrix
elements, the dielectric matrix reduces to the
d1RgonRl form~ Rnd %'e get

ea„(p) = 2&(p) Z L' &a,a (p) &aa, ,„(p)
fn ffte

&~ &".{f)/[E,.(f)-E,.(f„-,H)]]. {16)

1. Case (i): m=m'

This corresponds to intraband transitions in a
subband. In this case, we find that

vugh ex'e

&em&
4 &ys

&Fefft dk
o I'na/am, .—[(I'if+ p i')/am. ..] '

Rlld tile pl'lllle oil g llldlcRtes 'tllat 'tile 'tel'Ill m = m
is excluded. Evaluation of the above integrals
yields

&a. (p)=& ~'~a. ,a. {p) &a.,a. {y) ', .'(I, +I,),
(20)

where I = — = ——1+—&Fr
'

&FV P
4p

(21)

p' I (,) «a ~-ap+atn„, .-( ~) &

I",-ap. ann„...( ~) ~

e- {p)= - a '~a ~ ma. nba. l
&..,..{p)

I

'
P~" m

ay+2&a„„(-~)"')-
ap+at'n +(- X)"' (22)

c
4~Fdfft P 2~F4tn +~
44F~ P 2k'~ —P = (pa/t) [I+(I/t)] 2(1) I"[tan-'(- 2p+ 2@„.)(il) "'

Here kFg~ 1s R %Rve vector fox' the highest occup1ed
state in the subband dm and is given by, kF„
=(sttas, /Qg"'.

2. Case (ii): mom'

+tan-'{ap+atn„„)(~)-"'] if X& 0.

Here X= —4p {$+I)

and g = (m,„./m, ) —1.

(2s)

(a4)

(25)
Here we have to consider the transitions from

one subband to another subband. We rewrite Eq.
(16) in the form

eaa{y) =2«y) K & ' &a,a. (P) &'d, a~(P) Ia, (18)

Tile RnRlytlCRI 8Xpl'8SS1011S fO1' isa~ a~a(p) Rl'8

given in Appendix A.

C. Evaluation of ed&(q+ C,q+ @')

We substitute for P, (f) and g„(f) from (9) and
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(- I -ii) ~( I)gag n, (f) —n, (f+ q q H)
E (k) —E, (f+ tl+H)

& 5aa. 6,o'. (1/Q o) paa„(F) exp(if r) dF

y, (r) exp(-if r)dF.
Q nQO

(2V)

The presence of the 5 functions renders e„,(p', p")
diagonal. The transitions to be considered here
are from the d band to the s band. Therefore, the
sum over the initial states f is to be carried out
over all the occupied states in the subband dm.
The state k+ q+ H in the s band should be unoccu-
pied for the transitions to take place. Therefore,

(12), respectively, in the matrix element occurr-
ing in (8) to obtain

J „g, (f) exp(-ip' ~ r)g, (f +p) dr

=(flo) "a5„.f„y„a(r)exp(if r)dr . (26

The other matrix element in (8) is the complex
conjugate of (26). Combitiing (26) and (8), we get

Here ur, =(stt'z, /no)t~',

a =la[(m, /m, )—1] —p',
b =2'.

(33)

( )
328 m, g( ) - [z,la)]'s'da)

&& [&o~&o' e Io+ (Dt'm D't-~+D-t~D't ~) It

+(Da.Il', .+a',.O', .) I,] . (34)

D~.~ are the elements of rotation matrices' with
argument ( —y, —P, —o.'), where o., P, y are the
Euler angles. Io, I» and I2 are defined by Eq.
(BS). We find

Io =
4 {aIao si„a+~ Ia4)

z~ is the number of electrons per atom in the sub-
band dm, 8» is the angle between the vectors f
and p, and dQ~ is the solid angle. The evaluation
of the angular integration is tedious and is given
in Appendix B. The final expression for e„(p) is

I,=~(- I„,+I„,),

&&exp(if r ) dr y, (r) exp(-if ~ F) dr.
(28)

These integrals can be simplified (see Appendix A)
to give

Ia = 'o' (~a I.o- I.a+~a I„4),

b-awhere I„o= ——ln
b a+a

I 2a a 5-gJ„g=-- —+-Y ln 6+a (s6)

»;*(e.,e, ) 1';(e„y,). (28)

Here 8, and p, are the polar angles of vector f and

Z, (u) = f"I,(Io)Z„(r)o'dr. (30)

j „(kr) are the spherical Bessel functions and Itl(t)
is the M radial wave function. Using (AS) in (30),
%'e get

(31)

The symbols are explained in Appendix A. Using
the approximations (10) and (13) for E,{k+p) and
Eo (f), respectively, and replacing the sum over
k by integration, (29) yields

e { )= ' (4~)' ' g """[Z(u)]'u' u
OP

a &a *{ea4a) 1'a {ea 4'a)
did (32)

0 —5 cos8pp

D. Evaluation of ozd{q+ C, q+6')

Here me proceed in a manner analogous to that
used for deriving the expression for eo, (p). How-
ever, we have to consider the transitions from the
s band to the d subbands. %'e find

, {;) p(p) 5& (4)'[E,(if.P)]'
no . .E,(f) —E,„(k+p)

~r;(e„„y...) r, a(e, .„y„,), (3V)

where e„,o, Pa.a are the polar angles of the vector
k+p. The summa, tion over k is over all the oc-
cupied states in the s band. Using Eqs. (10) and
(13) for E,(k) and Ea (k+p), respectively, we
obtain
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32e' ~ '»D a
' ap [&a(~k+p~}1 ya (saapa (I)aap)1'a (saapk (t)aap) d&a 2

&Da P =tl „aka~~ma„k dk o pOP 0 —5 cos8pp
(ss)

+(D-'im»'-m+D» &'-»- } 'I1 k dk

+(D q D» ~ „Dg„D„g „If ')g 2 dk]. (40)

Ia, I, , and Ia are obtained with the help of (C3),
(C4), and (SO):

4 4

I(» = 2(48) Z Q a», a»a»»a/
k=1 /=1

x f ' (2p'- k'+sk'ta+4pkt)'«[S(t)] ' (41)

with S(t) =((a» +k +p +2kpt)

x(»aa/+ ka+ p + 2kp t) (a —bt), (42)

where a = k (m„ /m, —1) -P .
The angular part of the integral (38} is discussed
in Appendix C. Using (C2), we can write

1, = —aa(42)aug, a,a, a,

'& [(P+kt) (k +Pa+ 2kPt) —(Pd. kt)4] dt

(43)

and I, =~ (48) a» a/»a»»a/
15 2 '» k'(t'- 1)'dt

-1 St
(44)

The integrals in (42)-(44) can be evaluated by us-
ing the method of partial fractions for the two
cases i =j and i 4 j separately. The final expres-
sions are very lengthy and we do not give them
here. In fact, the numerical integration proved to
be more convenient for these equations.

E. Evaluation of 6d& and end in Free-Electron Approximation

The expressions for e„, and e, „are quite com-
plicated even when we use extremely simple forms
for wave functions of s and d electrons. We there-
fore thought it interesting to evaluate e„, and e,~
by adopting the free-electron approximation for
electrons in the d band also. The electron ener-
gies are written by using the approximations (10)
and (13). &„, is given by

(-) 4m. 1 g p' 1
( ),g, knk, - p (-ki) 020k,-2p —(- ai)"'

(»4 p =»/a pr apk+
»7

+~ » 2~k 2p+( t» )»/a +
2»}k +2p+( t» )»/a

for p. 1& 0,

=(km, /aa&)(1/p)Q (l„(p /n)(1 ~ 1/0) 2(a&l (tan '(- 2 + pa)n(kaq)

(48}

~ )an-'[(2k+ 204„)(a,) "'))) for p, & 0. (48}

kg„~ kg„~ P 2 l 2k'~& —g kgd~+P
4p 4g g I

2kgq~P+ q kgb~- P (4V)

»i=(m, /m, ) —1,

t»» = 4p'(1+»1-),
and ao is the Bohr radius.

2
)~ 4m' m

~sunup~ =~~
7TgOP

(48)

(49)
Similarly,

2r. k»4 —2p —(- t»a)' ' Nk»D+2p- (- t»a)"'
0

for

4m pa 1 2» —2p 2t k+z, » 2p+ 2/k», for p2& 0.



920 S. PRAKASH AND S. K. JOSHI

k~s k~s p 2
Her e Ism = 1+

4p 4f

12k''s p ~ ks's +p
i
2kzs p+& kzs -p

and

g = (m,./m, ) —1,

p., = —4p'(I+ f ).

III. CALCULATIONS AND RESULTS

A. Model for Band Structure

(63)

(64)

The formalism developed in Sec. II is used to
calculate the dielectric function of paramagnetic
nickel. In the literature, there exist many calcu-
lations" "for the band structure of nickel in the
paramagnetic and ferromagnetic states. We have
based our model on the results obtained by Hanus"
for paramagnetic nickel using the augmented-plane-
wave method. The s and d bands are admixed by
the s-d interaction. The s and d characters of the
wave function in a band vary as a function of k.
The bands have a dominantly s character at F&, but
d character at the ~„L„and Kf. symmetry points.
It demands heavy computational effort to use the
results of a realistic band structure in the calcula-
tion of the dielectric matrix (1). We therefore
thought it worthwhile to construct a model utilizing
the calculations of Hanus, but one with noninter-
acting s and d bands. This model should predict
the general behavior of the dielectric matrix.

We start with the energy values as a function of
electron wave vector k along the principal symme-
try directions [100],[110], and [111]obtained by
Hanus. The noninteracting bands are obtained
from the results of Hanus for the eigenvalues at the
high symmetry points, The s bands are obtained
by joining I', to 4', , F& to K„and F, to L2 in the

[010], [110], and [111]directions, respectively.
For the d bands, I', z is joined to X, in the [010] di-
rection; I'» and F~5 are joined with upper and lower
K„respectively, in [110]direction; and &z, is
joined with L, in the [ill] direction. The results
of such an interpolation are presented in Fig. 1.
The plots for d bands look similar to those obtained
by Yamashita et al. "using the modified tight-
binding approximation.

The d bands are fivefold degenerate, and the dif-
ferent d subbands should be assigned with different
magnetic quantum numbers m. This is done by
examining the d component of the basis functions'
for the representations F, X, E, and L, F» has
Y~ and Y~ components. X2 and X„which join with

F», have both Y,'and Y2 components. However, K4
has the components Y2 and joins with X2; we there-
fore assign m = 2 to F» -X& and F» -K4 subbands.

F»-X,. and F»-K& are chare. eterized by m = 0.
L, has Y2 and Y& components, hence the d subband
I',z-L, (doubly degenerate) is to be specified by
m = 0 and 2. I'25 corresponds to Yz , Y~, and Y~

components. X5, which joins with F2, , has Y2
and Yz components. However W, in the [120] di-
rection and Ez in the [110] direction, which join
with X„have the basis functions with component
Y,'. L, also joins with X,. We therefore assign
m= 1 to the d subbands F2, -X„F~'5-K2, and

F25 L3. The X3 has Y&' component, E, has Y2
and Y~ components, but it joins with X3; there-
fore m =- 1 is assigned to the d subbands F25 X3
and I'2, -E,. The m = —1 is also assigned to the d
subband I'z, —L, (doubly degenerate). The re-
maining subbands I"3,-E, and I"2, —L, are charac-
terized by m = —2. The m assignments for differ-
ent d subbands in the three principal symmetry
directions are displayed in Table I.

It is clear from Fig. 1 that the Fermi level in-
tersects only the s band and the d subband with
m = I. All the other d subbands lie below the
Fermi energy; hence they are completely filled.
If there are z, electrons per atom in the s band,
then there will be z„,=2 —z, electrons per atom
in the unfilled d subband with m = 1. In the para-
bolic band approximation used by us

kz, =(3vzz, /Q~) ~3 and kz„=(3vzz«/Qo) ~

Let the s band and the unfilled d subband intersect
the Fermi level at the points A and 8, respectively,
as shown in Fig. 1, then the effective masses m,
and m„, for the parabolic bands F, -A and F~5-8
are given by the relations

m, =k kz, /2[(E„+0.016)],

m« = k kz«/ [2(Ez —E(I'zs))] .
Here E(Fz, ) is the energy for the representation
I'„ tabulated by Hanus. The energy scale has zero'
at Fj The energy will be measured by Rydbergs
and the distance will be measured in Bohr units
throughout. The completely filled d subbands with
two electrons per atom are filled up to zone bound-
ary. The Brillouin zone is replaced by a sphere
of radius k&.

We still have to estimate the average effective
masses associated with filled d subbands. We cal-
culate the effective masses for bands along differ-
ent symmetry directions using the eigenvalues tab-
ulated by Hanus, but with a shift of zero, as men-
tioned above. Using these values of the effective
masses, the eigenvalues at k = k~ are calculated
for all the filled d subbands and in all the three
symmetry directions under consideration. We then
use the Houston's method to average the eigenval-
ues for the three directions and to get the average
eigenvalues for each of the m = 0, 1, 2, and —2 sub-
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FIG. 1. Model of the non-
interacting band structure for
paramagnetic nickel based on
the calculations of Hanus (Ref.
13).

0.2

0.0

X K
I

A

TABLE I. Assignment of the magnetic quantum num-
ber m to different d subbands along three principal sym-
metry directions.

[010)

F2) X5
I'25 X3
I'2, —X3

[»0)
I'i2- &4

r,',-z,
I'25- &3

r,',-z,

I,2 L3
I",

& L3
5 L3

I'25- L3
I'25- Li

2
0
1

—1
—2

bands. The final values of the effective masses
are derived from the averaged eigenvalues.

The effective masses deduced in the manner de-
scribed above are then used to calculate the model
isotropic energy band structure shown in Fig. 2.
The effective masses m„m~, and the Fermi mo-
menta k&, and k~„, are calculated for the two con-
figurations (3d)' (4s)' and (3d)" (4s)0'. The
model parabolic bands for these two configurations
are shown in the Fig. 2 by the solid and dashed
line. s. The values of all the parameters are
presented in Tables II, III, and IV.

B. 3d Radial Wave Function

The 3d radial wave function in a parametrized
form (Appendix A) for the neutral atom of nickel
is available from the work of Watson' and Cle-
menti. The 3d radial wave function obtained by
solving the Schrodinger equation for the potential
used by Hanus in his augmented-plane-wave calcu-
lations is compared in Fig. 3 with the radial wave
function obtained by Watson and by Clementi. It is
found that Watson's wave function is nearer to the
results of our calculations. Moreover, Watson's
wave function is a linear combination of four qx-

ponential functions whereas Clementi's wave func-
tion contains five terms. This simplification re-
duces the computational work considerably.
We therefore decided to use the Watson 3d neutral
atom radial wave function in this calculation. The
parameters of the wave function are given in the
Table V.

C. Dielectric Function

In view of the model chosen for the band struc-
ture, the following types of transitions are respon-
sible for the readjustment of electrons in response
to an external field: (i) from unfilled s band to un-
filled s band, (ii) from unfilled and filled d sub-
bands to unfilled d subband, (iii) from unfilled and
filled d subbands to s band, and (iv) from s band
to unfilled d subband. These contributions are cal-
culated with the help of Eqs. (11), (16), (34), and
(40), respectively, for the configurations (3d) (4s)'
and (3d) ' (4s)''. The dependence on the direction
of the vector p enters through the polar angles 8~
and Q~ in Eqs. (16), (34), and (40). Because of
the choice of the polar axis and the use of spherical
harmonics, the dielectric matrix does not exhibit
the symmetry of the crystal. ' The dielectric
function e(p) is calculated along the directions
equivalent to the principal symmetry directions
[100], [110], and [111]. For example, p is taken
along all the six directions equivalent to [100],
and corresponding values of ~(p) are obtained.
For a value of p, the simple average of all the six
values of e(p) is taken as the average e(p) along
[100] direction. Similarly, for [110] and [111]
directions, the averaging is done over all the
twelve and eight equivalent directions, respective-
ly. The values of ~„,e«, &~„and e,~ for the
(3d) (4s) configuration along three principal sym-
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0.

0.

0.

(3d)9,4(4 )0~ 6

0.6223
0.8247
0.6381
4.3431

ass
Ape|
ms

0.7374
0.7374
0.8958
3.4723

TABLE III. The Fermi radii and effective masses for
s and unfilled d bands for the configurations (3d) (4s)'
and (3d) '4(48)0 8. The radius is in units of 1/ao and mass
is in atomic units.

Configuration (3@~(4g) i

Cf
0,4I

K
LU

0.3

0.2

0.1

0.0
0.0 0.2 OA

k (1/ao)

0.6

metry directions are tabulated in Table VI. Sim-
ilar calculations were repeated for the configura-
tion (M)" (4s)0' '. The dielectric function for the
configurations (M) (4s)' and (3d) ' (4s)0' are
shown in Figs. 4 and 5, respectively. The values
of e~, and e,~ calculated from (45), (46) and (50),
(51}are tabulated in Table VII. When we compare
these free-e1.ectron approximation values with the
values of ~„, and c,~ calculated in the manner ex-
plained above, we find that the free-electron ap-

TABLE II. Physical parameters for nickel.

e arameter a 6.6586Lattie p
(in units of Bohr radius ao)
Volume of the unit cell
(in units of ao)
Radius of Brillouin sphere kz
(in units of 1/ao)

= 73.8034

0.9292

FIG. 2. Isotropic energy band structure for paramag-
netic nickel. The solid lines are for the configuration
(3d) (4s)' while dashed lines are for the configuration
(3d) ' (48) ' . The filled bands are identical for both the
configurations. The numbers by the side of the d sub-
bands denote the magnetic quantum number m assigned
to them.

proximation yields very high values for ~„, and

&s~ ~

IV. DISCUSSION

The contributions, to E«are separated into two

parts. When m=m, the transitions take place in
the same subband, which should not be completely
filled. In this case m=m =1. When mmmm, the
transitions are from filled d subbands to the un-

filled d subband. The two contributions are pre-
sented for few p vectors with components p„, P„
P, in the [100], [110], and [111] directions in
Table VIII. In the m = m' part, it is found that

e«(p) decreases rapidly with increasing p. The
contribution of the second part, i.e. , for m 0 m

is very small compared to the contribution from
the first part for smaller values of P while the two

contributions are of the same order for larger val-
ues of P. This is because the denominator of (16)
is much larger in the latter case than in the former
case for small values of p while these denomina-

tors become comparable for larger values of P.
The larger value of &« for the configuration

(3d)~' (4s)0's compared to the value for the configu-
ration (M) (4s)' results simply because of the
larger number of itinerant d electrons for the
former configuration. The general behavior of

&« for both the configurations is similar. &„ for
the configuration (M} '4 (4s) 0'6 has a smaller value
than that for the configuration (3d) (4s)', and this
is easily explained on the basis of the larger num-

ber of 8 electrons available in the latter configura-
tion.

The conti ibutions due to 1nterband tl anslt10ns
i. e. , e~, and e,„, are much smaller than e„and

For smaller values of P, z„, and e, are of

opposite sign, while for larger values of P they
have the same sign. The magnitude of c~, and e,„

TABLE IV. Isotropic effective masses for different
filled d subbands in atomic units.

—29.9760 18.7257 —13.9398
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APPENDIX A

hall evaluate the integral

) = f pf (r) exp(-ip ~ r pg. ~ r r .

s stem is shown in Fig.i . 6. UsingThe coordinate sys em ' i .
y,.(r}=~,(~) I;(8, y

exp(- ip ~ r) =4m & (- i)'"

(e ~) ~,-(p.) I,-IB 8 ) (A3X Q Vga
m"=-l

in (Al), we get

)" & z;."*(e„y,))=4~ —i" p*~rm, r'~' p

2 w at ~re( )x f"q, .(Pr)li, (r)if,.(~)r'd~,

xr;*(i},y)I;.'(l}, y) dn.

Wth the help of the relation

, f,
' I;-"(e,e) I; (e, e)I,.'m+ m'

g )dg

4&(2l + I)

&&C(l l l;000),

(A4)

I'- *(e„4,)
e et

)N

)=4& & (-i)'+km, l'm' p ~ py p

(2l + I) 2l +

(A5)I l l m I'm)C(l"I'I;OOO).
r momentum an par'Here the angular

b h-Gordan coeffx-rules operate througu h the Clebsc-
C l "l'l; 000), respec-cients C(l l

tively'. xgnW' ner's closed expressio
cients is
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~(llllil I~ ~

) 5 (2l )
(l+l —l )!(l—l"+l')!(l"+l'- l)!(1+m)!(l m}!
(l" l'. l.1)!(1"-m")!(l"+m" )!(l'- m')! (1'+my!

(- 1)" (l + l+m —v)! (l —m'+ v)!
v! (!-l"-) l'- v)! (l+m —v)! (v+ l"- l'- m)! (A5)

The index v assumes all integral values to be such
that none of the factorial arguments are negative.
For the Sd wave functions both I and l are 2, and
allowed values of / are 0, 2, and 4. Summing over
l in Eq. (A5) a.ud substituting the values of
C(l l l; 000) from (AG), we get

408 1/2
a,„,„.()p) =) pp . ~ ( F, (ppp, 4p)

1/2
xc(2)?; m" m'm) pp ( I

)' "
(pp, 4p)

TABLE VI. Relative Magnitudes of ~~, ~~, e~, and
e~& for the configuration (3d) (4g)'. Here p is measured
ln llnlts Of 1jAO

xC(422; m" m'm) I„
where I, = J j,„(pr)EBB„(r)rBdr.

0

Vfe evaluate the integral I;. with the help of %'at-
son's 3d radial wave function

4

If„(r)= 5' a, r'exp(- n, r). (AO)

4

I() = ~~ 2 a; Q~AB)
i=1 j=l

(Alo)

a( Qg (- p42 +24+ 3p42)
pi=1 j=l (A11)

The wave function involves the parameters a; and

n, . %e then get

0.2
0.4
0.6
0.8
1.0
1.5
2.0
2. 5
3.0
3.5
4. Q

4, 5

—e'~(p)

20. 8969
5.1257
2. 2028
1.1765
0.6971
0.1718
0.0437
0.0169
0.0079
0.0042
0.0024
0.0015

f100] direction

4. 2028
l.1078
0.4552
0.1962
0.0922
0.0162
0.0049
0.0020
0.0010
0.0005
0.0003
0.0002

79.0620
18.0548
6.9253
3.1834
l.5736
0.2289
0.0359
0.0096
Q. 0035
0.0016
0.0008
0.0005

t.1lo ] direction

—&,~(p)

—I.1100
—0.6207
—0.4699

0.2185
Q. 0082
Q. 0059
0.0010
0.0001
0.0000
0.0000
0.0000
0.0000

4 4

I4 ——5 E a;a, [210(A1-AB) —45AB —'2 A4+AB],i=1 j=l
(A12)

(n;+ n~)~1 4 [p2+ (n n }2]2
(A13}

(n;+ n, ) [(n;+ n, )'- 3p']
(A14)p'[p'+ (n;+ n„)'] '

24(n, + n, ) (n, + n, )' p'-
(A15)2 pB [pB (n n )2]4

V2(n, + n, ) —5p'- (n, + n,.)'+ 1Op'(n, + n, )'
4 pB [pB (n n )2]B

(A16)0.2828
0.5657
0.8485
l.1314
l.4142
2.1213
2.8284
3.5355
4. 2426

10.3838
2.4955
1.0293
0.5072
Q. 2444
0.0339
0.0101
0.0041
0.0019

38.3628
8.0700
2. 7263
l.0549
0.3882
Q. 0313
0.0062
0.0018
0.0007

2. 3787
0.5469
0.1825
0.0619
0.0232
0.0043
0.0013
0.0006
0.0003

—0.8518
—0.3043
—0.0751

0.0064
0.0656
0.0023
0.0002
0.0000
0.0000

( )
))' )(pp, ~ pp, )p —)Dpp'(pp, ~ ppp)m

(A1v)
%'e give below the specific values of 4, , ~ which
have been used in our calculations:

0.3464
0.6928
1.0392
1.3856
1.7321
2.5981
3.4641
4. 3301

6.8787
1.6171
0.6332
0.2665
0.0831
0.0144
0.0044
0.0018

24. 8435
6.8287
1.4466
0.4458
0.1065
0.0103
0.0020,
0.0005

1.6021
0.3457
0.0933
0.0261
0.0103
0.0019
0.0006
0.0003

F111) direction

5.3939
3.2891
0.0482
0.0116
0.0087
0.0006
0.0001
0.0000

~„,„(p)=& (5 )"'Br, '*I, ', (302)"Br—,"-I„

~21,21(p }= Io —c (5&) rB*IB—f(&) r4* I4,

(p) =-'(30~)'"r-'*I --'(1041)' 'r-'*I (A18)

&„,„(p)=-—,'(3 )0'~71' 'rI, - ( ~2)5"2' ' rI„
aB 2 „(p)=- 2(52/V) r, I4.
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APPENDIX 8

In this A
integral

ppendhx, we shall evaluat the e angular

I r 2~ Y2 (8~, $~) Y~ (8a, Qa)
cos8 k

kp

We rotate the coo
thro

rdinate system shown
' F'g.

rough an angle $~ about the Z axis and
wn xn ig. 6

ng e ~ about the new F axes. The

new Z axis obtained after the se
i id thwi vector p. If ~
angles which

, y are the Euler
w ic rotate the coordinate s

to the coordinatina e system X" F" Z"
e system&, & Z

P =8 and
, then n=

y-ar monies in n

D( o, P, y), t. e.
with the hei ofp o rotation matrices

~ ~ )

Yg (8 , (o P ~)Y, (8„y,). B2

Here 8H, are the polar angles fs o vector k in the
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e(p) and E &(p) using the free-electron
approximation for the configuration (3d) (4s) . P is mea-
sured in units of 1/ao.

k+p

tpl

0.2
0.4
0.6
0.8
1.0
1.5
2. 0
2. 5
3.0
3.5

240. 6554
49.2092
17.7336
7.3659
3.3308
0. 5849
0. 1787
0.0721
0.0345
0.0186

—&su(p)

—54.5128
—11.8872

3.7036
1.3607
0.3689
0.2838
0.1390
0.0412
0.0176
0.0089

new coordinate system X, Y, Z while 8„$»
are zenith and azimuthal angles in the old coordi-
nate system X, F, Z. The angle 8» becomes 8 in
the new coordinate system. Multiplying both sides
by D*' ~ (o. P y), summing over m, and using
the orthogonality property of rotation matrices,
we get

D' " ~ (o'Py) Y,"'(8, P) = Y, "(8„,P, ). (B3)

Replacing m by I and using the property
FIG. 6. Coordinate system.

TABLE VIII. The values of e~(p) for m =m'=1 and

for m& m', for the configuration (3d) (4g)'. P is mea-
sured in units of 1/ao.

D.'*. (~py) =D.'.( r, V-, —~—),

we obtain

Y (8 , &.}= ~.D~. ( r, tl-, &)—Y, —' (8, 0) . (B4}

0.2
0.4
0.6
0.8
1.0
1.5
2.0
2.5
3.0
3.5
0.2
0.4
0.6
0.8
1.0
1.5
2. 0
2. 5
0.2
0.4
0.6
0.8
1.0
1.5
2.0

0
0
0
0
0
0
0
0
0
0
0.2
0.4
0.6
0.8
1.0
1.5
2. 0
2. 5
0.2
0.4
0.6
0.8
1.0
1.5
2. 0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0. 2
0.4
0.6
0.8
1.0
1.5
2. 0

m =m'
m=1

79.3344
18.2886
7.1106
3.3220
l. 6729
0.2496
0.0349
0.0069
0.0016
0.0004

38.6063
8.2154
2. 8005
1.0793
0.3900
0.0232
0.0026
0.0003

24. 8017
4. 7603
1.3849
0.4091
0.0869
0.0055
0.0006

—&uu(»
mmmm'

0.0089
0.0283
0.0459
0.0528
0.0484
0.0271
0.0139
0.0072
0.0037
0.0019
0.0164
0.0435
0.0526
0.0426
0.0303
0.0119
0.0047
0.0019
0.0418
0.0664
0.0618
0.0367
0.0195
0.0048
0.0014

For the sake of convenience, the arguments (- y,
—p, —n) of D' ~ are dropped. Using the relation
Yo*(8», Q») =(- 1) Yo (8», Q») and (B4) in(Bl), we
can write

I=(-1) ~F LD ~ D

.Y (8, y) Y;"(e, P „„a- b cos8 (B5}

=( l} 2v+, D', D' .

~P» (cose)Pj (cose) sine de

a —b cos8
(B6)

For l = 2, the allowed values of m in the sum are
0, +1,+2. Therefore,

I ~ =2 Pg (cose }Po (cos8)
a —b cos8

I=(- l} [DomDo-mlo+(DsmD-x- +Dc D|- )I|
(»)

where
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The elements of rotation matrices are evaluated
with the help of the general expression

D' . (npy) = exp(-im n) exp(- imy) 7, (- 1)'

[(f+m)! (l —m)! (f+ m )!(l —m )!]
s!(l —s —m )!(l + m —s)!(m'+ s —m)!

x( 1 p)2t+m-m'-2s ( sin P)m'-m+2s (B9)

Here the sum is over integer values of s for which
the factorial arguments are greater than or equal

to zero. The matrix elements of rotation matrix
D' ~ (-y, —P, —n) can be written easily for l = 3
with the help of (B9). The coefficients of Io, I„and
I2 in (B7) are given by the following expressions:

g)0~D0 ~= —2 sin P cos P,2 2 3 ~ 2 2

D„D, , +D „Df g 2(4cos P —3cos'P+ 1), (B10)

and Ds&D s &+D R, D2 &
= —2 sin'P (cos P+ 1).

APPENDIX C

To evaluate the integral

3 [Z,(!k+p!)]'r,(,8.„y...) y;*( 8„„y„,)dn,
0 0 0 —5 cosegp (C 1)

we proceed in a manner similar to that described in Appendix B. We get finally

I=(- 1) [DO~DO ~ID+(D q~D) ~+Dg~D g )I(+(D s Ds +Da D )I ],
~ [Fs(lf+p!)] P~ (cos8~+~)Ps (cos8,',~) sin8d8

0 a —5 cos8

(c3}

(c3)

8„~ and Q~,~ are the polar angles of vector f+ p
in the coordinate systemX, Y, Z . It can be
seen from the Fig. 6 that

I
4a+p= &

and cos8"=p (! +p)/IpI I&+pI

=(p+ kcos8)(ka+ps+ 2k' cos8) 'i' .
(c4)

Using (C4) in (C3), the principal value of the inte-
gral I ~ can be evaluated.
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