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Off-diagonal matrix elements of the exchange operator are computed for a degenerate elec-
tron gas having a small sinusoidal density modulation. The extreme nonlocal character of
exchange is shown explicitly by its wave-vector dependence. The Slater exchange approxima-
tion severely underestimates the off-diagonal action of the exact exchange operator (by a
numerical factor approaching ~ for long-wavelength modulations). Such errors are largely
compensated by neglect of the correlation potential.

In recent years there has been considerable de-
bate' on how best to approximate the (nonlocal) ex-
change operator A with a local potential. A fre-
quent choice is the Slater p' ' relation

Ae= —3e (3p/8w)'i3,

where p(r) is the electron density. We believe that
an explicit display of the properties of the exact A.

for a simple case indicates the futility of debate.
Consider a degenerate electron gas having a den-

sity

gq-e' ' [1+(V/2&.)e'~' +(V/2n, )e ""], (3)

where the energy denominators dre n, ,(k) -=E(k)
-Z(k+q), etc. We neglect any k dependence of
V. These wave functions are the ones generally
employed, e.g. , in the random-phase approxima-
tion (RPA), with or without local exchange and cor-
relation corrections If we t.ake E(k) = a'k /2m and
sum lg„l over all occupied states, we find the
modulation to be

(4)

p(r) = p, (1 —p cosq r) . (2) where

The mean density is po = + 3m, and the fractional
modulation P is assumed small. We shall presume
that the modulation is caused by a (total) perturbing
potential Vcosq r. Accordingly, the one electron
wave functions are

g(~) -=-'+ [(1—x')/«]lnI(1+~)/(1 —~)
I

and Ez ——8' ke/2m .
The matrix element of the Slater potential is,

from (1) and (2), in the pure-momentum represen-
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FIG. 1. Matrix elements of the exchange operator
A. for an electron gas with a small density modulation

p cosq ~ r. The ratio of the exact to the Slater values
are shown for k at the center C, the equator E, and the

poles P and Q of the Fermi sphere. The curves remain
the same if the sign of q is reversed, except that P and

Q are interchanged. Matrix elements of A and A~ are
in the pure-momentum representation. All curves for
k on the Fermi surface between P and the equator will
have a singularity at q= 0. All curves for k on the Fermi
surface between Q and the equator will have two singu-
larities: at q=o and at q=2 I A', l. From Eq. (7) it is
easy to show analytically that all singularities are
logarithmic.

tation

&k+q l& & l
k)=- e'k~p/4v .

One should observe that, for a given P, this is in-
dependent of both k and q.

On the other hand, the exact exchange operator
is defined by the transformation it effects on a gen-
eral function q)(r),

A((('(r) = P [J )))R (s)(e / I
r sl)q()s)d's]g(r) .

(6)
The summation includes all occupied states k with
spin parallel to that of q)(r). We insert (3) into
(6), eliminate V'with the help of (4), and obtain off-
diagonal matrix elements in the Pure-monzentum
representation

&k+ql~ lk)=-pz, /g

4ve 4vea

(IIP —k I'k, (k ) IP -Tc —q I'6 (li'))'

In contrast with (6) this depends markedly on both
k and q.

The ratio of (7) to (6) is shown (as a function of
q) in Fig. 1 for several points in k space. The
striking (logarithmic) singularity at q = 2k+ for the

point Q is the mathematical origin of the spin-den-
sity wave-instability theorem. The extreme vari-
ation of (7) with k and q indicates that, for wave-
function calculations pertaining to real materials,
approximate exchange potentials should be judged
empirically.

The average of (7) over k within the Fermi
sphere is not particularly relevant. However, in
Fig. 1 it would fall monotonically from the value
2 at q=0 to 1.5 as q-~. This latter limit contra-
dicts a previous calculation due to Payne, who
concluded that the exchange potential falls rapidly
to zero for q & 2k+. The oversight in Payne's work
is subtle. He optimized (by a variational calcula-
tion) the admixture of k+q components inQf[
caused by an applied sinusoidal perturbation m(r).
The resulting modulation in electron density was
misinterpreted by failing to isolate (off-diagonal)
exchange contributions from a renormalization of
the ur(r) contributions caused by (diagonal) exchange
corrections to the energy differences ~, and ~ .

The foregoing remarks are relevant to an ex-
planation why the exchange potentials for the points
E, P, and Q in Fig. 1 diverge like ln(1/q) as q-0.
(One might have expected them to approach the
Kohn and Sham value —,'. ) It is well known that the
spin susceptibility }t(q) is enhanced relative to the
Pauli value at q = 0. However, if one were to com-
pute }('(q) for small (but finite) q by perturbation
theory, taking into account only the exchange cor-
rections to E(k), }t(q) would approach 0 as [ln(1/
q)] '. An exchange potential which diverges as
ln(1/q) must be present to compensate this effect.
Otherwise the exact (Hartree-Fock) }t(q) could not
be continuous at q = 0.

We observe that the extreme nonlocality of A
calls into question the reliability of any local ap-
proximation to it, especially in a band calculation
where the k dependence of the electron wave func-
tion and energy is the major question. However,
if one insists on replacing A with a local operator,
the question arises: What is the most appropriate
average (over k) of (k+q ~A )k)() The answer de-
pends, of course, on what one ultimately intends
to calculate. However, a particularly appealing
choice is the following: What is the local operator
which, when acting in first-order perturbation,
gives rise to the same charge-density modulation
that A does' One can show that this is given by
the average of Eq. (7) (over occupied k states)
computed with a I/A, (k) weighting function. In
other words, it is the average of (7) weighted (al-
gebraically) in proportion to each electron's con-
tribution to p. This weighted average shown in

Fig. 2 falls from In(~) at q = 0 to a minimum near

q = k~, goes through a sharp maximum near q = 2k+,

and approaches 1.5 for large q.
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FIG. 2. Weighted average of the exchange operator
for an electron gas with a small density modulation.
The weighting function employed was proportional to
each electron's contribution to the modulation.

The physical consequences of the large exchange
potentials, illustrated in Figs. 1 and 2, will of

course be moderated by (compensating) correla-
tion potentials. The work of Kohn and Sham' has
shown that in the small-q limit the sum of the ex-
change and correlation potentials is slightly larger
than —,

' of the Slater potential. However, their
work seems to suggest that (for q-0) the exchange
potential is —,

' of Eg. (1) and that the correlation po-
tential is much smaller and of the same sign. The
present work indicates that (for q-0) the exchange
potential approaches ln(~). We conclude, then,
that the correlation potential approaches —ln(~)
in such a way that the sum of exchange and corre-
lation potentials equals the sum given by Kohn and

Sham. It is perhaps academic to argue how a sum
is divided into parts, if it is only the sum that mat-
ters. However, the physical mechanisms which

might enter a (future) microscopic theory of the
correlation potential may depend on whether the
result to be obtained is small and positive or
large and negative. A treatment of the nonlocal
properties of correlation is an outstanding theoret-
ical challenge.

Inspection of Figs. 1 and 2 shows that's severely
underestimates the off-diagonal action of the exact
exchange operator. The empirical success of the
Slater exchange approximation in energy band cal-
culations can be attributed to compensation of this
error by neglect of the correlation potential.
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