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Off-diagonal matrix elements of the exchange operator are computed for a degenerate elec-
tron gas having a small sinusoidal density modulation. The extreme nonlocal character of
exchange is shown explicitly by its wave-vector dependence. The Slater exchange approxima-
tion severely underestimates the off-diagonal action of the exact exchange operator (by a
numerical factor approaching « for long-wavelength modulations). Such errors are largely
compensated by neglect of the correlation potential.

In recent years there has been considerable de-
bate! on how best to approximate the (nonlocal) ex-
change operator A with a local potential. A fre-
quent choice is the Slater p'/® relation

Ag=-3e%3p/8m/3, (1)

where p(¥) is the electron density. We believe that
an explicit display of the properties of the exact A
for a simple case indicates the futility of debate.

Consider a degenerate electron gas having a den-
sity

p(T)=po(1-pcosq-¥) . (2)

The mean density is pozk§/3ﬂ2, and the fractional
modulation p is assumed small. We shall presume
that the modulation is caused by a (total) perturbing
potential Vcosd-¥. Accordingly, the one electron
wave functions are

P2 e™ 1+ (V/28,)e ¥ (V/28 )], (3)

where the energy denominators are AJE)EE(E)
-E(k+3), etc. We neglect any k dependence of

V. These wave functions are the ones generally
employed, e.g., in the random-phase approxima-
tion (RPA), with or without local exchange and cor-
relation corrections. If we take E(K)=#%%2/2m and
sum |3 |2 over all occupied states, we find the
modulation to be

p=(3V/2EQg(q/2kp) , (4)
where
g()=3+[(1-%%/4x]n|(1+x)/(1 - %) |
and Ep=i%k/2m .

The matrix element of the Slater potential is,
from (1) and (2), in the pure-momentum represen-
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tation
EK+3|Ag|k)= e®pp/am . (5)
One should observs that, for a given p, this is in-
dependent of both k and q.
On the other hand, the exact exchange operator

is defined by the transformation it effects on a gen-
eral function ¢(¥),

Ap(F) = [f Ve B)(e¥ [T -8 )o@ Jx(F) .
(6)

The summation includes all occupied states k with
spin parallel to that of ¢(¥). We insert (3) into

(6), eliminate V with the help of (4), and obtain off-
diagonal matrix elements in the pure-momentum
representation

k+q|A|K)Y= - pE /3¢

4me® 4me?
2 (n? TRIR,E) R _ﬁ_ale_(E'>)- @
In contrast with (5) this depends markedly on both
Kk and d.
The ratio of (7) to (5) is shown (as a function of
q) in Fig. 1 for several points in k space. The
striking (logarithmic) singularity at q = 2k tor the
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FIG. 1. Matrix elements of the exchange operator
A for an electron gas with a small density modulation
p cosq- ¥. The ratio of the exact to the Slater values
are shown for Kk at the center C, the equator E, and the
poles P and @ of the Fermi sphere. The curves remain
the same if the sign of § is reversed, except that P and
@ are interchanged. Matrix elements of A and A are
in the pure-momentum representation. All curves for
kK on the Fermi surface between P and the equator will
have a singularity at g=0. All curves for Kk on the Fermi
surface between @ and the equator will have two singu-
larities: at ¢g=0 and at ¢g=21k,|. From Eq. (7) it is
easy to show analytically that all singularities are
logarithmic.

point @ is the mathematical origin of the spin-den-
sity wave-instability theorem.? The extreme vari-
ation of (7) with k and § indicates that, for wave-
function calculations pertaining to real materials,
approximate exchange potentials should be judged
empirically.

The average of (7) over k within the Fermi
sphere is not particularly relevant. However, in
Fig. 1 it would fall monotonically from the value
2atqg=0to 1.5 as g -, This latter limit contra-
dicts a previous calculation due to Payne, 2 who
concluded that the exchange potential falls rapidly
to zero for g > 2k;. The oversight in Payne’s work
is subtle. He optimized (by a variational calcula-
tion) the admixture of k+§ components in{yg
caused by an applied sinusoidal perturbation w(T).
The resulting modulation in electron density was
misinterpreted by failing to isolate (off-diagonal)
exchange contributions from a renormalization of
the w(¥) contributions caused by (diagonal) exchange
corrections to the energy differences A, and A_. 4

The foregoing remarks are relevant to an ex-
planation why the exchange potentials for the points
E, P, and Q in Fig. 1 diverge like In(1/q) as ¢ -~ 0.
(One might have expected them to approach the
Kohn and Sham value £.) It is well known that the
spin susceptibility x(d) is enhanced relative to the
Pauli value at ¢=0. However, if one were to com-
pute x(q) for small (but finite) ¢ by perturbation
theory, taking into account only the exchange cor-
rections to E(k), x(q) would approach 0 as [In(1/’
q)]‘l. An exchange potential which diverges as
In(1/q) must be present to compensate this effect.
Otherwise the exact (Hartree-Fock) x(q) could not
be continuous at g =0.

We observe that the extreme nonlocality of A
calls into question the reliability of any local ap-
proximation to it, especially in a band calculation
where the k dependence of the electron wave func-
tion and energy is the major question. However,
if one insists on replacing A with a local operator,
the question arises: What is | the most appropriate
average (over k) of (K+§ 1A lk)? The answer de-
pends, of course, on what one ultimately intends
to calculate. However, a particularly appealing
choice is the following: What is the local operator
which, when acting in first-order perturbation,
gives rise to the same charge-density modulation
that A does? One can show that this 1s given by
the average of Eq. (7) (over occupied k states)
computed with a 1/A (k) weighting function. In
other words, it is the average of (7) weighted (al-
gebraically) in proportion to each electron’s con-
tribution to p. This weighted average shown in
Fig. 2 falls from In(«) at ¢ =0 to a minimum near
g =kp, goes through a sharp maximum near q = 2k p,
and approaches 1.5 for large g.
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FIG. 2. Weighted average of the exchange operator
for an electron gas with a small density modulation.

The weighting function employed was proportional to
each electron’s contribution to the modulation.

The physical consequences of the large exchange
potentials, illustrated in Figs. 1 and 2, will of

course be moderated by (compensating) correla-
tion potentials. The work of Kohn and Sham® has
shown that in the small-g limit the sum of the ex-
change and correlation potentials is slightly larger
than £ of the Slater potential. However, their
work seems to suggest that (for ¢ — 0) the exchange
potential is Z of Eq. (1) and that the correlation po-
tential is much smaller and of the same sign. The
present work indicates that (for g —0) the exchange
potential approaches In(~). We conclude, then,
that the correlation potential approaches — In(«)

in such a way that the sum of exchange and corre-
lation potentials equals the sum given by Kohn and
Sham. It is perhaps academic to argue how a sum
is divided into parts, if it is only the sum that mat-
ters. However, the physical mechanisms which
might enter a (future) microscopic theory of the
correlation potential may depend on whether the
result to be obtained is small and positive or

large and negative. A treatment of the nonlocal
properties of correlation is an outstanding theoret-
ical challenge.

Inspection of Figs. 1 and 2 shows thatAg severely
underestimates the off-diagonal action of the exact
exchange operator. The empirical success of the
Slater exchange approximation in energy band cal-
culations can be attributed to compensation of this
error by neglect of the correlation potential.
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