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are assumed small and have been neglected. For
the data presented the major axis was always very
close to the sample plate normal, so that much of
the structure in the R;; curves occurs for angles
considerably less than 12°. A three-dimensional

solution to the boundary-value problem would clarify

the effects of tipping.

This paper presents the most complete study
thus far of resistivity tensor elements using the
helicon technique. The helicon method offers sev-

eral advantages over conventional dc techniques.
No leads need be attached to the sample, and the
instrumentation is relatively inexpensive and
straightforward to use. High resolution is possible
in dc experiments as shown by the work of Klauder
et al.? in copper. Comparable results are possible
with the helicon method in metals of comparable
purity. The helicon method has the disadvantage
of requiring the solution of a boundary-value
problem.
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Electronic Structure Effects in the Drude and Interband Absorption of Aluminum*
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Using Ashcroft’s potential, the interband and Drude absorption in aluminum have been calcu-
lated. Two large peaks occur in the interband part of €,(w) at 0.5 and 1.6 eV. In addition, the
interband absorption continues as zw— 0, The optical effective mass is calculated with the
result that m) =1.45 m,. Comparison with experiment is excellent. It is concluded that the
optical spectrum of aluminum is completely understood in terms of the band structure. It is
also pointed out that the optical peaks can be used to help determine the Fermi surface.

INTRODUCTION

Among the simple metals, aluminum is one of
the most interesting from the point of view of
electronic theory. This is due, in large part, to
the success of the nearly free-electron (NFE)
model in interpreting Fermi-surface experi-
ments. ! 2 In this regard, Ashcroft?® has shown
that a simple two-parameter pseudopotential will
account very nicely for the small departure from
a completely free-electron picture.

Since the band structure of aluminum is ex-
pected to be well described by NFE model, one
would hope to be in a position to account for its
optical properties. The picture, however, is
somewhat unclear. On the experimental side,
optical response functions have been studied in the
infrared and optical regimes by many investiga-
tors over the past few years.3 2 Using the data
available to them, Ehrenreich et al.!® constructed
the real and imaginary parts of the dielectric
function. Using the infrared portion of the curves,
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they found an effective mass m} and lifetime 7
which account for the Drude contribution. Sub-
tracting the Drude term, they also deduced the
interband part of €,(w). Their subsequent analy-
sis based on Segall’s band calculations resulted
in two puzzles. First of all, the empirical value
of m* was found ~ 1.50 m,. The band-theoretic
value, on the other hand, was found = 1,15 m,,
quite close to the free-electron value. Second,
they found an experimental peak in €,(w) near

1.6 eV. This was related to interband transi-
tions, but the computed intensity was too small
by a factor of at least 3. In that paper, the authors
pointed out that one might explain both discrep-
ancies by a transfer of oscillator strength from
the intraband modes to the interband modes.
Electron-electron interactions were suggested as
a possible source for the spectral weight shift.

The present investigation was undertaken for
the express purpose of determining whether the
NFE model is quantitatively capable of reproduc-
ing the optical response functions of aluminum.
If the model is to be meaningful, it must repro-
duce simultaneously the Fermi-surface data.
The latter demand is met by choosing Ashcroft’s
potential.

Having settled on the potential, the Brillouin
zone is studied so that the interband absorption
may be accurately determined. Surprisingly, it
proves to require a more detailed calculation to
get the interband contribution for a NFE poly-
valent metal than for an insulator. This is due,
in part, to the rapid variation of the dipole matrix
element with crystal momentum and in part to the

additional reasons discussed below.

The calculation of the Drude term hinges on an
accurate evaluation of m}. Since the effective
mass depends only on the band-structure proper-
ties at the Fermi surface, it would be surprising
indeed if the Ashcroft potential failed to give this
quantity correctly. Any discrepancy between the
empirical value and the band-theoretic value
would have to be attributed to many-particle ef-
fects. One would hope, however, that quasipar-
ticle screening is sufficiently good in aluminum
to keep these corrections small vis-a-vis the op-
tical response functions. Fortunately, our pres-
ent calculation gives a value of m}=1.45 m,.
The large deviation from the free-electron value
is caused by contact of the Fermi sea with the
zone boundaries. The accurate determination of
mY¥ is done by a simple method outlined in the
body of this paper.

It is shown that the theory gives a good account
of the experiment if an empirical lifetime param-
eter is introduced into the calculation. Good
agreement is found in the far-infrared range where

the Drude absorption dominates. A novel feature
of our study is the demonstration that interband
absorption continues as Zw- 0. It is negligible in
comparison with the free-electron part below
~0.4 eV, except in the limit 7~ «, where it grad-
ually dominates at all frequencies (other than 7w
=0).

In the middle and near infrared, two peaks are
found. The two peaks are related to interband-
absorption effects which are understood by con-
sideration of the free-electron-like energy bands.
A result of particular interest to Fermi-surface
studies is that the positions of the two peaks are
nearly exactly equal to 2/ V(3)| and 2/V(4)], re-
spectively. Thus a knowledge of the position of
these two peaks is sufficient to work backward to
the Fermi surface.

The tail region of the curve which extends
through the visible range is in perfect accord
with experiment. This portion of the curve is al-
most entirely due to interband effects.

ENERGY BANDS
Computational Procedures

Ashcroft? originally constructed his potential to
give an optimum fit to the Fermi-surface data in
aluminum. It is adopted here to compute the en-
tire band structure. Thus, the potential coeffi-
cients are V(3)=0.0179 Ry, V(4)=0.0562 Ry, and
all other V(X)=0.0. Actually, small energy-de-
pendent corrections are required if one wishes to
compute the entire band structure over an energy
range ~ 20 eV. Direct comparison with first-
principles augmented-plane-wave (APW) studies'®
shows these corrections to be less than 5%. The
comparison suggests that a reasonable approxi-
mation to the energy-dependent terms is achieved
by increasing the free-electron mass ~4% where
it appears on the diagonal of the secular equation.
This is equivalent to increasing the lattice con-
stant by 2% in calculating the band structure.
Inclusion of this weak energy dependence has a
rather small effect on the results of our present
study. This is especially true as we are primar-
ily interested in states within 3—4 eV of the
Fermi surface.

The next consideration is the secular equation
dimension. Examination of the free-electron
bands suggests that either four, nine, or thirteen
plane waves be used in the 5th irreducible
volume of the Brillouin zone. A glance at Table
I indicates that one can expect convergence er-
rors up to 0.3 eV with the 4X4 secular equation
size. This was judged to be intolerable. The
9X9, however, appears to give convergence
~0.1 eV and was used for the calculation. One
should bear in mind that using a fixed number of
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TABLE I. The energy shifts (in eV) relative to the
Fermi level of several eigenvalues as a function of the
number of plane waves in the expansion.

Number of plane waves

Level 4 9 13 ~1252
AX, -0.09 —-0.05 -0.04 0.0
AX, +0.12 +0.07 +0.06 0.0
AW, —-0.08 -0.05 -0.05 0.0
AW,y +0.01 +0.01 +0.01 0.0
AW, +0.30 +0.12 +0.06 0.0
AK, -0.08 -0.05 -0.04 0.0
AK, -0.02 +0.01 +0.01 0.0
AK, +0.19 +0.06 +0.01 0.0

2The last column includes a number of states through
the use of the perturbation theory and is taken as the
convergence limit.

plane waves results in symmetry breaking of the
band structure. This is negligible, however,
with the 9X9 secular equation. In addition, ex-
periments were performed with the effect of
higher potential coefficients on the band struc-
ture, guided, in this respect, by the Animalu-
Heine'® model potential for the tail part of V(X).
The effect of these coefficients on the band struc-
ture is also negligible, being less than the con-
vergence errors. The complete band diagram
for the symmetry directions is drawn in Fig. 1.
It is quite similar to those of other calcula-
tions. 1 14, 15, 17

Density of States and Fermi Level

Establishment of a band structure was followed
by the derivation of the concomitant density of
states. In order to do this, energy eigenvalues
were computed about 2000 inequivalent points in
the f5th portion of the zone. Then additional
eigenvalues were computed by quadrically in-
terpolating between these points. In all, eigen-
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FIG. 1. Energy bands of aluminum using Ashcroft’s

potential.
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FIG. 2. Aluminum density of states in arbitrary units.

values were computed at an additional 1 100 000
inequivalent points this way. This large sample
was generated by a Monte Carlo procedure.
Figure 2 shows the density of states. The lower-
energy portion of the curve is quite parabolic.

As the energy at the first zone boundary is ap-
proached, the deviations from free-electron be-
havior become noticeable. The L point, however,
produces only a very slight distortion in the den-
sity of states. We note that the Fermi level is
lower than the free-electron Fermi energy value
by about 3 eV. This is due mainly to the energy
dependence of the potential.

INTERBAND CONTRIBUTIONS TO DIELECTRIC CONSTANT
7=0

For a metal, a complete discussion of the fre-
quency-dependent dielectric functions requires
an analysis of both intraband and interband con-
tributions. In this section the latter is discussed.
The imaginary part of €(w) within the random-
phase approximation neglects the lifetime broad-
ening!®:
1 4me? >
3 my s 2w

X[Ep = EJ®)]fos®6[w —w, ()] . (1)

In Eq. (1), the superscript b stands for “the in-
terband contribution of,” H(X) is defined accord-

ing to the usual convention
HX)=1if X>0
=0if X<0 . (2)

H(X) is simply the T=0° Jlimit of the Fermi-Dirac
function. In Eq. (1), f,(k) is the standard oscil-

H[E,(K) - E,| H

€2w)=
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lator -strength function
Fos®) = 2| By B2 /i, ®) &)

In Eq. (3), P,L,(l;) is an appropriate dipole ma-
trix element, and

w(K) = [E,(}) - E,(®))/7 . @)

The quantity €,(w), of course, is a scalar for
cubic crystals.

As previously set out, the energy integration is
done with a Monte Carlo method in conjunction
with a quadratic interpolation. The momentum
matrix element can vary quite rapidly with k for
a NFE metal in contrast with the slow variation
characteristic of insulators. It is thus important
to account for this in the calculation. Therefore,
the 2000-point mesh is used for a quadratic in-
terpolation of the matrix element. The result of
using 1 100 000 points in the Zth part of the zone
is shown in Fig. 3.

The two peaks near 1.6 and 0.5 eV are striking.
Since they are so prominent, it is extremely im-
portant to look for their origin in the band struc-
ture. It is apparent in the following discussion
that they are a necessary by-product of the NFE
picture for aluminum. The peak positions are
sensitive to the potential, and the amplitudes are
sensitive to Ej, but the existence of the struc-
ture is virtually guaranteed. Other workers have
also noted the presence of these peaks.'? %
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FIG. 3. Interband contribution €§(w) to the imaginary
part of the dielectric function, neglecting lifetime
broadening.
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FIG. 4. Energy bands in the TXWK reflection plane
of the Brillouin zone. The solid line refers to the locus
(0.96, %, 0.0) and the dotted line to (0.93, &, 0.0). A
plus sign indicates even parity vis-3-vis reflection in
the plane, whereas a minus sign indicates odd parity.
Some transitions contributing to the 1.6 eV in €3 (w) are
shown by arrows.

The origin of the 1.6-eV peak can be understood
from an examination of Fig. 4. Some energy con-
tours near the Fermi level are drawn for parallel
lines in the 'XWK reflection plane. Transitions
contributing to the peak are sketched in. Not
surprisingly, the bands are quite parallel near
the Fermi level. This is quite simple to under-
stand. In the completely free-electron picture,
the plane waves (T, T, T) and (1, T, 1) are degener-
ate over the entire reflection plane (that is, the
portion lying in the f—eth part of the zone under
study). These two states are split by the V(4)
component of the potential. Thus, the band gap
separating the resulting parallel bands is ~ 2
X |V(4)|=1.54 eV, and a sizable portion of the
reflection plane contributes to the optical peak.
Since we have strong mixing of states, a large
dipole matrix element couples the initial and final
states. (This is often called umklapp enhance-
ment.) It is interesting to note in connection with
this piece of structure that the transitions at the
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W point are not particularly close to 7w (peak) in
the present calculation. In particular, W3- W,
=1.95 eV and W, — W;=0.89 eV with Wy >Ep.
These transitions, therefore, are not related to
the large optical peak.

The peak near 0.5 eV is understood in a simi-
lar fashion. One expects ~ and indeed finds - a
peak in €}(w) near 2/V(3)! =0.49 eV. Both this
peak and the preceding one are related to zone-
boundary effects in an extended zone picture.

To conclude this section, it is appropriate to
make some remarks concerning the limit Zw— 0
Inspection of Fig. 5 makes it clear that interband
transitions are expected for all frequencies as
w=~0. There is, therefore, no threshold frequen-
cy for the onset of interband transitions.

OPTICAL EFFECTIVE MASS

Although the pseudopotential is weak, there can
still be considerable correction to the free-elec-
tron optical mass owing to the close proximity of
the Fermi surface and the zone boundaries. The
expression for the optical effective mass is, ac-
cording to Cohen, 2

1
v .
m¥ 3N ;72 ,,Z;k iEe®) ®)
where the sum is over all occupied levels, and N
is the number of electrons per unit volume. In
Eq. (5), m}is the quantity that appears in the
plasma frequency

—_—

FIG. 5. Sketch of the energy bands along some direc-
tions in the I'XWK plane similar to Fig. 4. Note that
the crossing of bands occurs above the Fermi surface
for the dotted lines, whereas it occurs below in the case
of the solid lines. Therefore, these will be an inter-
mediate line along which the bands cross at the Fermi
level. This indicates an interband transition for which
Fw=0.0 eV.
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wi=4nNe?/m¥ . (6)

For the filled bands pertaining to the core states,
the contribution to the summation in Eq. (5) van-
ishes. This then leaves us with three electrons
per atom, and the electron density (N) in Eq. (5)
refers to the valence electrons only.

One could attempt a direct evaluation of the
second derivatives in Eq. (5), but this could be
quite difficult for a NFE model. To see why
consider the one-dimensional band structure in
Figu 6. Assuming the lower band to be full,

d’E
Z’* a? ="
1 4&?E 1
Yet, F 7 =n—,'l—0

over nearly the whole zone. There is a large
negative curvature at the zone boundary that pre-
cisely cancels the positive contribution over the
remainder of the zone. The negative part, being
very large and localized to a small part of %
space, would be hard to evaluate by a direct sam-
pling procedure. [In the limit that V(K)-0, the
negative spike becomes a delta function.] Simi-
lar difficulties are expected in the three-dimen-
sional zone when there are occupied levels near
zone boundaries.

To get m}¥ the following result is derived. Re-
writing Eq. (1) slightly,

2 -
%.‘ %; 'd)l"ftz' (k)8(w ~wp0) , (7)

where now it is understood that I’ runs over only
occupied levels and ! over unoccupied levels.
Then using the well-known theorem, 22

2 aSur ® =3 =(my/n? VE, &) ®)

where @ runs over all values of the band index
except I'. Then it follows that

LY vE.@-t T B-Zr.@®, O
14 mo 1

where /I’ has the meaning appropriate to Eq. (7).
To establish Eq. (9), note that

faB= _fBaz °

Therefore,
—2' 2 VEz'(k) _—[3N E fll'(k)] H (10)

where N is the number of electrons per unit of
crystal volume and hence, the total number of oc-
cupied valence levels where due allowance has
been made for the spin degeneracy.

From Eq. (7), we have

3 2” Cal z frr () (11)

o

f (wywdw=

0
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g kg FIG. 6. (a) Nearly
free-electron bands in
one dimension; (b) the

 — second derivative of the
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(12)
Finally,

mo/m¥=1-mg fow (w)wdw/2mNe? . (13)

This result is also known to follow from the sum
rules.®® It was necessary, however, to establish
it as a result inherent in the band calculation be-
fore using it. Performing the calculation sug-
gested by Eq. (13) gives m }=1.45 mgy. This ap-
pears to be in excellent agreement with the experi-
mental value of 1.50 . %

Actually, Eq. (8) is only rigorously true for a
local potential operator. Since we have a weak
nonlocal term in the Hamiltonian, one should in-
clude this in the derivation of Eq. (13). From
the form and magnitude of the nonlocal correc-
tion, one would expect about a 4% increase in
m¥. This correction brings experiment and the-
ory into exact agreement.

COMPARISON OF THEORY AND EXPERIMENT

In order to make contact with experiment, it is
necessary to incorporate lifetime broadening.
The interband contribution was calculated with
several values of %/7= iT. The approximation to
the lifetime broadening function discussed else-
where was used.® A constant value for the life-
time broadening is equivalent to taking the imagi-
nary part of the self-energy function as indepen-
dent of both energy and wave number. This may
not be a bad approximation provided the scattering
is phonon or impurity dominated rather than
primarily due to electron-electron scattering.
Since initial and final states are close tothe Fermi
surface, the density of states varies by less than
a factor of 2 over the entire energy range.
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The Drude contribution €(w) is included by use
of the equation®®

w2/T

=G

Taking the same value of 7 in both the interband
and intraband terms, and noting that €,(w) = €5(w)
+€}(w), we have the results shown in Fig. 7. The
1.5-eV peak is apparent in all of the curves. The
low-energy peak disappears into the free-electron
background quickly when the lifetime is decreased.
In Fig. 8, comparison is made between theory
and experiment. The amplitude of our peak is a
bit larger than experiment. Recent work?® indi-
cates, however, that our peak height is nearly
correct for #/7=0.132 eV. In addition, it would
appear that careful subtraction of the free-elec-
tron part of the dielectric function® discloses the
presence of the 0.5 eV, which apparently also
has the correct amplitude. In Fig. 9, we com-
pare our results for o,(w) with some recent low-
temperature data.?*

CONCLUSIONS

The present work seems to indicate that, for a
simple polyvalent metal like aluminum, one can
adequately calculate the optical response func-
tions from the band structure. Furthermore, the
same pseudopotential gives the Fermi surface.

1t is pleasing that m}* is in good agreement
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FIG. 7. The imaginary part of the dielectric function
€,(w) = €}(w) +ef(w) for several values of #/7 is shown to
the left on the curves.
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FIG. 8. Comparison of theory 7%/7T=0.132 eV (solid
line) with the experimentally determined result of
Ehrenreich et al. for €} (w) (dashed line).

with experiment, particularly since Beeferman
and Ehrenreich?® have recently shown that the
many-particle effects give only a weak shift of
oscillator strength between the intraband and
interband absorption. With respect to the Drude
absorption, Powell®® has recently criticized the
use of frequency-independent parameters. Part
of the difficulty with the Drude term probably
arises from the presence of interband effects of
greater intensity than expected.

Finally, we note that it might be interesting to
examine the optical spectrum as a function of
strain. A study of differential optical line shapes
would, however, require a high resolution study
such as has been done for semiconductors. %
Nevertheless, given the optical peak positions,
determination of the coefficients V(3) and V(4),
is possible, and this information can be used in
delineating the Fermi surface both at zero strain

| ™

5
10 T

T TT

hw (eV)

FIG. 9. Comparison of oy(w) in (£ cm)-1 with the low-
temperature data of Lynch (Ref. 24). The open circles
were taken from the experiment, and the solid line is
theory with %Z/7=0,02 eV,

and at high pressure.

Note added in proof. It has previously been noted
both by Harrison?® and by Golovashkin ef al.? that
there should be interband peaks associated with
the Fourier coefficients of the pseudopotential
in Al.
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The gravitationally induced electric field in a metal is calculated through the electron-
phonon interaction. The field is of magnitude ~ 10~ V/m and is directed upward, in agree-

ment with the results of Dessler et. al.

The electric field also exists inside superconducting

materials, since once the field is decoupled, the electron-phonon interaction is essentially
unchanged. This implies, of course, that other electron-phonon effects (e.g., resistivity)
are unaffected by either the gravitational field or the induced electric field.

I. INTRODUCTION

Recently, there has been interest in an electric
field in metals induced by a gravitational field.
This interest divides between the related problems
of a gravitationally induced electric field inside a
metal and an induced field outside the surface of
a metal. The situation is complicated, however,
by the fact that the internal electric field is easier
to calculate than the external field, which depends
on the behavior of the surface dipole moment. On
the other hand, measurement of the externalfield,
although difficult, is easier than measurement of
the internal field which is not readily accessible.
This work is a calculation of the internal gravita-
tionally induced electric field.

Attempts have been made to calculate the field
outside a metal'™ and a inside metal.** Measure-
ments of the field outside a metal have been at-
tempted. 5" Schiff and Barnhill! obtained mg/e
=~10"* V/m directed downward for the field outside
the metal, which is just the field required toscreen
out the gravitational force. In their analysis, how-

ever, they neglected the gravitational compression
of the lattice. Dessler, Michel, Rorschach, and
Trammel? recalculated the electric field including
the elastic compression of the solid under its own
weight, and related the change in density of the
electron gas to the resulting density gradient of
the ions. By requiring that the electrochemical
potential of the electrons be constant, they derived
the internal electric field necessary to balance the
pressure gradient due to the inhomogeneous elec-
tron density. This is of strength ~107® V/m and
oppositely directed to the Schiff-Barnhill result.
For the field outside the metal they obtained a
similar result. Herring® considered the gravita-
tionally induced electric field outside a body by
carefully treating the surface stresses. He con-
cluded that the larger Dessler et al. (DMRT) field
exists outside a metal.

Still another, even simpler method, using the
Fermi-Thomas model, has been suggested by
Peshkin, ® and leads to the DMRT field inside a
metal.

In this analysis, a different method is used to



