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Using the solution of the near-neighbor hopping Hubbard model in one dimension by Leib and
Wu, it is shown that in the limit of interaction energy much greater than hopping energy, this
system has the temperature dependence of magnetization of a free-spin system even for tem-
peratures much less than the bandwidth, for nearly all occupancies of the band.

Lieb and Wu' have solved the one-dimensional
near -neighbor hopping Hubbard-Hamiltonian model
with periodic boundary conditions. Let us find the
magnetization for their solution in the limit v/U
-0 [r and U are the hopping and intera, ction param-
eters of Eq. (1) in Ref. 1] for a mean number of
electrons per site n &1. The magnetic suscepti-
bility for the case of n &1 will be the same by elec-
tron-hole equivalence. It can easily be shown that
in this limit for n & 1, an electron cannot hop onto
a site containing a second electron because that
part of the hopping term causing such hops can be
removed by a canonical transformation.
Throughout this discussion, when we say that a
site is occupied by a hole, we mean that the Wan-
nier function on that site is not occupied by an
electron of either spin. The energies of the one-
dimensional system described by the Hamiltonian

(3a)

NO(2X„) = 2m'~ —Z 8(X~ —&g) (3b)

where 8(p) = —2arctan(2p/U), N, is the number of
atoms, N the total number of electrons, and M the
number of spin-up electrons. I& is an integer
(half-odd integer) for M even (odd), and J is an
integer (half-odd integer) for N-M odd (even).
Combining (3a) and (3b) to eliminate the X 's, we
find

k)= 2nLq/N, + 2mm'/N, N,
where L,. and rn are integers.

There are

N, !/N! (Ng —N)!

where j= i + 1, were found in Ref. 1 to be given by

N

E= —2vQ cosh;

where (k&j is a set of unequal real numbers &2v.
In the limit v/U-O, Eqs. (9) and (10) in Ref. 1
reduce to

sets fL,) of N integers less than N, . Then looking
at Eq. (4), since there are N values of M which
give a new set of k&'s for each set (L,j, there are
a total of

N, !/(N 1)!(N, -N)!-
sets of I j'v&). The total number of eigenstates is
equal to the total number of basis functions in
which they are expanded, which is equal to the
number of ways of placing the N electrons, M of
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which have spin up, on a ring having N, lattice
sites, which is

N, !/(Ng —N)! (N —M)!M!

Once the electron spins are placed on the ring, for
the case r/U 0-, the Hamiltonian [E&I. (1)]will
not change their spin ordering around the ring.
Consequently, the secular determinant which de
termines the eigenvalues of E&I. (1) will break up
into blocks, not connected by the Hamiltonian, one
block for each spin ordering. The number of such
blocks in the secular determinant is equal to the
number of ordering of the spins around the ring.
There are

This is «1 for large N. Neglecting these high-sym-
metry orderings compared to all the other order-
ings, the number of cyclic permutations of the
spins is =N, and hence, the total number of spin
orderings is

(N-1)!/M!(N-M)! .

From E&ls. (6), (7), and (11), we see that for
each ordering of the spins, we get all of the eigen-
values given by E&I. (2) (i. e. , all allowed sets
{k,)). Then, in the presence of a. weak magnetic
field,

N!/M! (N-M)! (6) N ~M!&N —M! fn )

(N/11) t

(M/n)! (N M)/n!-
where the summation is only taken over those val-
ues of n for which N/n and M/n are integers. It
will now be shown that for large N such orderings
are a very small fraction of the total number of
orderings. Since the number of such states will
clearly be maximum when M = —,'N, let us consider
this case. Then, E&I. (9) becomes for large N,
using Sterling's approximation,

(N/n) !
„, (M/n)! (N-M)/n!

Using Sterling's approximation on E&I. (8), we find
that the ratio of the number of these orderings to
the total number of ways of placing spins on the
rings is less than or equal to

g ~(l)N&1-1/n)
(10a)

which is less than

N(1)Ã/2 (10b)

permutations of the spins on the ring for fixed
hole positions. To find the number of orderings,
we must divide by the number of cyclic permuta-
tions of the spins. Included among the various
spin orderings will be those orderings such that
when the spins are cyclica. lly permuted I/nth of
the way around the ring (keeping the holes on fixed
sites), where n is an integer, the ring will not be
changed. The number of such "high-symmetry"
spin orderings is simply the number of ways of
placing M/n up spins and (N M)/n dow-n spine on

N/n sites, and thus the total number of high-sym-
metry spin orderings is given by

1 -Bff,NH~=—e '"""(I+e"'")"Z exp 2p7Zcosr, , (12)

neglecting high- symmetry spin orderings. Then,
the magnetization is given by

(2M N) = -=NtanhPy, H
~lnZ

s (PpH
(13)

which is just the magnetization of N free spins in
a magnetic field. The high-symmetry spin order-
ings which we have neglected have eigenvalues
given by E&I. (2) but have fewer sets (k,j, since
for these orderings the integer nz in E&I. (4) is
restricted to be a multiple of n. Since there are
low-symmetry orderings which have states with
the same energies as the states of the high-sym-
metry orderings, there is no danger of any high-
symmetry states dominating at some temperature.
Hence, it is saf e to include only the more numer-
ous low-symmetry spin orderings in the calcula-
tion of Z for N»1.

Thus it has been shown in this paper that an
electronic system can exhibit both metallic elec-
trical conduction (because the band is partially
filled and the electrons in the band are free to
hop) and at the same time magnetic properties
characteristic of a localized spin system, for KT
much smaller than the bandwidth. This is just
the behavior observed by Jarrett et&). ' The proof
in one dimension is dependent on the fact that in
one dimension, in the limit U/r-~, no reordering
of electron spins can occur by near-neighbor hop-
ping. The three-dimensional Hubbard model,
which may be applicable to the experimental sys-
tems reported by Jarrett etal. ,

' will be the sub-
ject of a future publication.

I would like to thank F. Y. Wu for useful dis-
cussions of his work during the course of the
work reported here.
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ERRATA

Alpha-Particle Stopping Cross Section in Solids
from 400keV to 2 MeV, Ã. K. Chu and D. Powers
[Phys. Rev. 187, 478 (1969)]. The authors are
grateful to A'. D. Mackintosh for kindly pointing
out an error in the empirical formula given on

p. 490, left column, second line from the bottom.
The formula should read

e„=e „(E,Z, ) = 1.66(A'/E) in(B'E),
instead of the constant 1.66 being omitted. The
correct form was used in the calculation for gen-
erating the curves appearing in Figs. 4-7.

Linear Chain Atltiferroniagnetisi» in CsMnC),
ZH ~ 0 T. Smith and S. A. Friedberg [Phys. Rev.

176, 660 (1968)]. The labels of the a and b axes
have been inadvertently interchanged in Figs. 2, 3,
and 4 of this paper and, consequently, also in the
discussion of the results (Sec. IV) and in the ab-
stract. This was kindly pointed out to us by Pro-
fessor J. A. Cowen and verified independently in
this laboratory by Dr. H. Kobayashi. As a result,

the anisotropy axis above -9 'K (taken as the z axis
in the calculation on p. 663) is the a axis. The
preferred axis of antiferromagnetic spin alignment
in the three-dimensionally ordered phase (T
&4. 8 'K) should be the b axis. Dr. Kobayashi's
measurements also establish the anomalous sus-
ceptibility near 1'K to be an impurity effect.

Equation (9) should read

Ag'u, e'S(S+1) 1+u 1-u"'
(n+ 1)3k 7 1 —u (1 —u)'

~'I;~gnetic Susceptibility of FeC). 4H, O fron& 0.35
to 4.2 'k. J. T. Schriempf and S. A. Friedberg
[Phys. Rev. 136, A518 (1964)]. To be consistent
with the sign convention for D and E employed in
Eg. (1) and elsewhere in this paper, Eqs. (14a)-
(14c) should read g„, =g —(2f)/3X)+ (2E/X), g, , =g
—(2D/3X) —(2E/A. ), g,, = g+ (4D/3X), respectively.
The splitting factors given on p. A524 should thus
read g„, = 2. 18, g,.= 2. 17, g,, = 2. 22.


