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We consider the scattering of two spin waves in a uniaxial (easy axis) Heisenberg ferro-
magnet with single-ion anisotropy. The two-spin-deviation problem is solved exactly at zero
temperature. We find (for S & 2), in addition to the usual two-spin-wave bound states, a new

"single-ion bound state, " in which at the zone corner the two spin deviations are on the same
site. When the magnitude of the anisotropy is comparable to the exchange interaction, the
single-ion bound state becoines the dominant feature of the bound-state spectrum. For arbi-
trary spin there is a critical anisotropy strength above which the single-ion bound state exists
throughout the Brillouin zone. We conclude that the presence of single-ion anisotropy en-
hances the possibility of experimental observation of the bound states.

I. INTRODUCTION

The Heisenberg model of ferromagnetism has
been extensively studied. The elementary exci-
tations of this model are the spin waves, which con-
sist of single spin deviations propagating through

the lattice. Considering only the Ising part

-JQ S;S)
&i, f&

of the Heisenberg Hamiltonian, one finds that the

excitation energy of two adjacent spin deviations is

lower by J than that of two nonadjacent ones, giving
rise to an effective attractive interaction between

spin waves. Although the transverse terms in the

Heisenberg Hamiltonian tend to weaken this attrac-
tion, it has been shown by Wortis and Hanus that

the attractive interaction results in the formation
of bound states of two spin waves for a sufficiently
large total wave vector q. Physically, these "ex-
change bound states" correspond to two spin devia-
tions close together in space and propagating
through the lattice in a correlated fashion with to-
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tal wave vector q. At the zone corner qa = (v, v, v)
the two spin deviations are in fact on adjacent sites,
as would be the case for the Ising model.

We consider a uniaxial Heisenberg ferromagnet
with single-ion anisotropy DP-, (S;), with D & 0.
This term causes the excitation energy of two spin
deviations on the same site to be lower by 2D than
that of deviations on two different sites. Thus, the
single-ion anisotropy also gives rise to an effective
attractive interaction between spin waves. In this
paper, we show that for S & ~ an additional bound

state of two spin waves results, in which at qa
= (v, v, v) the two spin deviations are on the same site.
We find that for D & J this "single-ion bound state"
is the dominant feature of the bound-state spectrum.
As the ratio of D to J is increased, the single-ion
bound state exists over an increasing volume of q
space. For sufficiently large D/J, the sin'gle-ion
bound state is found to exist throughout the Brillouin
zone.

II. PROBLEM FORMULATION

We consider a uniaxial Heisenberg ferromagnet
described by the Hamiltonian

J'Q Si S~ -DQ, (S;) +k Z;S;
&i,g&

where &i, j & denotes a sum over nearest-neighbor
pairs. Both the exchange interaction J and the sin-
gle-ion anisotropy strength D are assumed to be

positive. The magnetic field h aligns the spins
along the negative-z direction in the ground state.
Since g S; commutes with H, the states of the sys-
tem can be classified according to the number of

spin deviations n. Here n= 0 corresponds to the
ground state, and the n= 1 space is diagonalized by
the simple spin waves. We shall enumerate the
n= 2 states of the Hamiltonian [Eq. (1)].

We employ the Dyson-Maleev boson representa-
tion for the spin operators and solve the two-spin-
deviation problem exactly by calculating the zero-
temperature two-boson t matrix. The singularities
of this t matrix occur at the true two-spin-wave
energies. The same method has been used by
Peletminskii and Baryakhtar, who treated the pres-
ent case with q =0, and by Silberglitt and Harris,
who calculated the t matrix for all q, but with D = 0.
The Dyson-Maleev representation is defined by

&nM=&0+Zii&i, a„a +(2N) ' Q V(k,kzq)
01020

e~ = J'zS ( 1 - y~ ) + 2D (S ——,') + k (4)

and V(k&k2q) is the full spin-wave interaction, given
for a lattice with inversion symmetry by

V(k&kaq) =-2JZ cos(k, .5)
6&0

x [cos(k2 5 ) —cos( —,
'

q 5 )]- 2D (5)

In the above, z is the number of nearest neighbors
of a given spin, 6 is a vector from a spin to one of
its nearest neighbors, k1 and k2 represent, respec-
tively, the incoming and outgoing relative wave
vectors of an interacting spin-wave pair, and q is
the total wave vector of the pair. (For simplicity,
vector notation is suppressed in subscripts and

arguments. ) The function y~ is defined in the usual
way:

&-1+ &it ' 6

We note from Eq. (5) that at q 5= v for all 5, the
potential V is just that which would be obtained
from the Ising model. Thus, the Ising wave func-
tions and energies are the exact solutions at the
Brillouin zone corner, as was anticipated earlier.
This result is quite useful in that it gives a simple
way of estimating the bound-state energies and

their dependence on S and D/J. '

At zero temperature, the t matrix obeys the
integral equation '

t(k&kaqid) = V(kik2q)

1 p V(kik3q) t (k3kmq(o), (7)
N 34) —E&/2+~ —Eq/2 y + fg

where g O'. Equation (7) may be solved by the
substitution (all sums are over positive 5 only)

t (k~k~q&u) = —2Dto (kzq&u) —2O'Z, cos(k& 5) tii(kzq&d)

(s)
yielding

X /2+0 /2- 0 /2+0 /2- 0
2 2 1 1 (3)

where the ground-state energy E0= ——,
' J¹S-DNS

-hNS, &~ is the simple spin-wave energy, given by

S;=(2S)' ait(1 aita, ), S, =-(2S)' a.
S';= -S+a~iai

(2)

Z M ii(q, (u) tii(ki, qid) =K (kaq)
8=0, 6

Here K~ (kaq) = 1

where ai and a~i destroy and create, respectively,
bosons at lattice site i. Using the Fourier trans-
formation ai, = (N)'I g. e'" *ia, we write the Hamil-

i
tonian [Eq. (1)] in terms of bosons and obtain '

= cos(k~'5;) —cos(—,q 5,) n = 5i
(10)

and the matrix M may be written in terms of the

lattice sums
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I,(q, cu) =X-'p, cos(k. 6,)[-,'z(~ -1)

+Z, cos(k 5) cos(-', j 6)]-', (11b)

I, (q, (o) =II 'Z, [-,'z(ru- 1)+Z, cos(k 5)cos(-,'q. 5)]',
(11a)

(q, &)=N 'Z cos(k 5 )cos(k 6 )

x[2 z(2-1) + Z6 cos(k' 5) cos(~g g '6)]
(11c)

where (o —= [(u —4D(8- ,') ——2h]/(2J'zS).

We obtain for the matrix M

M(q, &u) =

1+(D/2zS)I. (q, Id)

(D/2ZS)[I, (q, (u) -cos(—,'q 5;)I, (q, (o)]

(28) '[I~(q, ~)l

6o + (28) '
[I;~ (q, (u) - cos(-,' q. 5,)I (q, &)]

where 6o is the Kronecker 6. The solution of Eq.
(V) will have singularities within the usual two-spin-
wave continuum ' ' '9 and at the solutions of I M

x(q, ar) [ = 0. The latter solutions are the bound
states. From Eq. (12), we see that for D=0 this
condition gives

I

Eq. (11)may be found from an elementary integral
We find with z = 2 and the definitions o.'= cos(—,

' qa)
and y = (9-1)/o' [see the definition of 2 after Eq.
(11c)]and for (y[ &1 (outside the band)

(q ~) ~ ~-l(ya 1)-1/2 (15a

~
5;q+ (28) ~ [I,q (q, (e ) -cos (—,

'
q 5,)I~ (q, (o)]

~

= 0, (12)
I; (q, &) = o' 'y I, (q, &u)-

Iw(q~ +)= -yfg (S &)

(15b)

(15c)
in agreement with all of the previously referenced
calculations.

A point a't which a trivial evaluation of Eg. (12)
may be made is at the zone corner g 5= v(all 5).
There I; (q, &o) = 0, and we have one solution of

iM(q, &u) i
= 0 at'

where the plus sign is used above the band (y &+ 1.)
and the minus sign is used below (y & - 1). Using
Egs. (12) and (15), one finds that the condition
I M(q, ~) I = 0 yields

a (y) o."+6 (y) n + c (y) = 0, (16

& = 4D (8- ~) + 2h + 2 J'zS - 2D

and d solutions at

(u =4D(8-—)+~2k+ 2ZzS-8

(14a)
where a (y) =1-(28) '[l-yD, (y)], (1Va)

5 (y) = (D/2~8) D, (y) (y/28) [1 y-D, (y)],(1-Vb)

c (y) = -(D/«8') [l-yD, (y)], (1Vc)

and Do(y)-=~(y'-1)'" .where d is the dimensionality of the lattice. Equa-
tion (14b) represents the usual (exchange) bound
states, and Eq. (14a) the single-ion bound state.
Since the two-spin-wave continuum (&u = e,&2, ~
+e,&z «) narrows to a single energy ~ =4D(8- ,')+2k-
+ 2ZzS at the zone corner, these are just the (Ising)
bound states alluded to above. In the following, we
will evaluate the bound-state condition IM(q, u) [ = 0
for various values of 8 and D/J in one and three
dimensions. The two-dimensional case is omitted
for simplicity only, and in the three-dimensional
case we will treat a simple cubic lattice for the
purposes of numerical evaluation. We present our
results for one dimension in Sec. IIl and those for
three dimensions in Sec. IV. Section V is devoted
to conclusions and the relation of the present work
to experiment.

III. BOUND STATES IN ONE DIMENSION

In the one-dimensional case the lattice sums in

Equation (16) has two solutions with positive o
for any y& -1, one corresponding to the exchange
bound state, the other to the single-ion bound
state; the lower bound state always exists at q = 0
(o.'= 1)." For large negative y both solutions ap-
proach & = 0 or q = &, with binding energies J and
2D, respectively, as predicted by Eq. (14) and the
Ising model. A numerical evaluation of Eg. (16)
for 8=I, D=I, and h. =0 is shown in Fig. j.. The
single-ion bound state is seen to be present at q = 0,
while the exchange bound state does not appear un-
til about Q' = cpm~„~

IV. BOUND STATES IN THREE DIMENSIONS

In the three-dimensional case M(q, ~) is a 4 &&4

matrix. However, for q along the [111]direction of
a simple cubic lattice there are only five distinct
elements, M», M22, M&3, M~~, and M33. More-
over, from Eq. (12) we see that, for D=0, M&&=1
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2.0

a (X) a.~+ h (X) u + c (X) = 0 (21)

where a(&)=1 —(3/2$)D, (X), (22a)

f (~) = (D/2IS)D, (~) —(~/2S) D, (~), (22b)

c (~) = —(D/4~S')D (~) [» (~)+3D (~)],
(22c)

with u =cos(-,"q, a)

A. = 3 (Cu - 1,)/u

D, (X) = u I, (q, (o)

D&(~)=uI;(q, ~) .

(23a)

(23b)

(23c)

(23d)

1.0

SINGLE-ION BOUND STATE

EXCHANGE BOUND STATE

I I I I I I

0 20 40 60 80 I 00 120 I 40 I 60 I 80
q (DEGREES)

FIG. 1. ManifoM of two-spin-wave states in one di-
mension with 8=1 and D= J.

The functions I, (q, &u) and I; (q, +) have been com-
puted numerically using summation formulas out-
side the band (IX I & 3) and Bessel-function repre-
sentations inside the band (I& I & 3). ' We have used
these results to evaluate Eq. (21) for several val-
ues of S and D/J, in order to explicitly display the
behavior of the bound states. For simplicity, we
have taken the external magnetic field h to be zero.

In Fig. 3, we show the two-spin-wave states for
D = —,

' J and S = 1. Figure 3 (as well as Fig. 4 to
follow) represents the blown-up region of the Bril-
louin zone which is enclosed by the dashed lines in
Fig. 2. This is done to emphasize the bound-state

andM2&=0, sothatinthis limit the bound state con-
dition IMt =0 yields

(M22 ™83)(M22+ 2M28) 0s D 0 ' (19)

These are the bound states found by previous au-
thors, ' and are plotted for the purpose of later
comparisons in Fig. 2 for S = 1. The lower curve
represents the singly degenerate (s-wave) state,
while the upper curve represents the doubly degen-
erate (d-wave) state. The dashed line represents a
resonant d-wave state [solution of the real part of
Eq. (19)]within the two-spin-wave band. The pres-
ence of the resonant state, whose damping increases
as it pcnetrates into the band, was first demon-
strated in Ref. 9 and was shown in Ref. 8 to lead
to an anomalous single spin-wave self -energy. This
resonant d-wave state is not included in the rest of
the figures.

For arbitrary D the bound-state condition )M)
= 0 gives

(Mqq-Mga) [(Map+ 2Mg3) M$$ 3M)3Mpg]= 0 . (20)

(A
M

CU

3

2.0

I.O

z=6
D/J =0

S- I

From Eq. (20) we see that the d-wave bound state,
whose energy is determined by M2~= M23, is unaf-
fected by the single-ion anisotropy. The other
bound-state condition ([ ]= 0) obtained from Eq.
(20), which displays a, mixing between the s-wave
and single-ion bound states, may be written as

0 20 40 60 80 I 00 120 I 40 I 60 I 80
q(DEGREES)

FIG. 2, Manifold of two-spin-wave states for a simple
cubic lattice with S=1 and D=O. Bound states are
found only in the dashed box near the zone corner. Here
"q=d degrees" means q~=q~a=q, a=d~/180.
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FIG. 3. Two-spin-wave states for S =1 and D/J= 4.
Note that this is an enlargement of the dashed box in

Fig. 2. The single-ion bound state is shown as a heavy
dashed line, while the exchange bound states are the
heavy solid lines.

FIG. 4. Two-spin-wave states for S =1 and D =J,
showing the same region of the Brillouin zone as in Fig. 3.

structure which, for the parameters used in these
figures, occurs relatively near the zone corner.
For D =-,' J the single-ion bound state, which is de-
noted in all the figures by a heavy dashed line, is
higher in energy than the exchange bound states and

has little effect on the s-wave state (recall that
there is no coupling to the d-wave state). However,
for D= J and S= 1 (Fig. 4), the single-ion bound

state has already become the lowest bound state and

has a threshold somewhat smaller than that of the
s-wave state for D= 0 (Fig. 2).

As the ratio of D to J is increased further the
single-ion bound state becomes more tightlybound
and eventually appears at q = 0. This behavior is
illustrated for the S = 1 case by Figs. 5 and 6, where
it is no longer necessary to enlarge the scale as
was done in Figs. 3 and 4 in order to clearly see
the single-ion bound state. In Fig. 5 the lighter
dashed line within the band represents a resonant
single-ion state similar to the resonant d-wave
state mentioned earlier. It represents a solution
of the real part of Eq. (20) within the two-spin-
wave band, whose damping increases as it pene-
trates deeper into the band and as the imaginary
parts of I, (q, e) and I; (q, m) build up. We note here
that for D = 0 the s-wave exchange bound state does

2.0

CA
N

OJ

3

1.0

I I I 1 1

0 20 40 60 80 100 120 140 160 180

q (DEGREES)

FIG. 5. Two-spin-wave states for S = 1 and D/J = 3,
with notation as in Fig. 3, but showing all q. The
lighter dashed line within the band represents a resonant
single-ion state.
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V)
N

OJ

3
2.0

z=6
D/J = Ip

S=l
h=0

cribed by a pseudospin S' = ~.
In the final figure, Fig. 7, wehave chosen D= 3J

and S = —,'. Comparison with Fig. 5 shows that the
interactions between spin waves become weaker
for larger spin, as expected. However, the single-
ion bound state is still significantly more bound

than the exchange bound states, and an increase in
D/8 would yield the same type of behavior as that
shown above for the S = 1 case. That is, even for
large spin, there is a single-ion bound state within
a significant volume of the Brillouin zone for suf-
ficiently large D/J.

V. CONCLUSIONS

1.0

p I I I I I I I I

0 20 40 60 80 100 120 140 160 180

q (DEGREES)

Two-spin-wave states for S = 1, D!J= 10, and
h= 0, with single spin wave superimposed. The nota-
tion is as in Fig. 3.

We have shown above that single-ion anisotropy
gives rise to an additional two-magnon bound state.
The energy of this state has been calculated for
various values of S and D/J in one and three dimen-
sions. In all cases, the effect of the single-ion
anisotropy is to lower the energy of the lowest two-
spin-wave bound state. For sufficiently large D/8
the single-ion bound state is found to exist through-
out the Brillouin zone.

More generally, we would expect to find single-
ion bound states not only in ferromagnets, but also
in some anti- and ferrimagnetic systems, for ex-
ample, those with D»Z, where D(S') -is the dom-

not extend to smaller q within the band as a reso-
nant state, and that for small D/J, neither does the
single-ion solution of Eq. (20). However, forD/Z
large enough to separate the single-ion solution
from the s-wave solution, but too small to cause
it to exist at the center of the zone (q = 0), a reso-
nant state does exist at wave vectors smaller than
the threshold, as shown in Fig. 5.

The large-D/J' case is displayed in Fig. 6, where
S = 1 and D = 104. Here the single-ion bound state
is split considerably below the two-spin-wave band,
even at q=0, and appears to be almost dispersion-
less. The single-spin-wave state for zero magnet-
ic field is shown in the same figure, and we note
that it is higher in energy than the single-ionbound
state over most of the Brillouin zone. Note from
Fig. 6 that in this large D/J region -there is a
crossing of the single-spin-wave and single-ion
bound-state energies. The use of an external mag-
netic field would make experimental observation of
this crossover considerably simpler, since the
single-ion bound state shifts by 2h, while the sin-
gle-spin-wave state shifts by only h, so that one
may "tune" the levels. If D/J were somewhat
larger, the single-ion bound state would be the
lowest excitation for all q. In this limit, we have
effectively a two-level system, which is often des-

N

CU

3

z=6

2.0

1.0

I I I I I I I I

0 20 40 60 80 100 120 140 160 180
q (DEGREES)

FIG. V. Two-spin-wave states for S=2 and D/&=3.
The notation is as in Fig. 3.
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inant term in the Hamiltonian. In addition, for S &

& 1, single-ion bound states containing more than two
spin deviations may exist. ' For example, the state
with 28 spin deviations on the same site certainly
exists for D»J, and in fact becomes the lowest-
lying excitation. This is simply the usual single-
ion limit often described by a pseudospin S' = —,'.
In the case S = 1, there is only the two-magnon sin-
gle-ion bound state. We have calculated its energy
for arbitrary D/J, i. e. , from D = 0 continuously to
the pseudospin limit, where it becomes lower in
energy than the single-spin-wave state.

As a final point, we discuss the possible exper-
imental consequences of the above work. The most
significant result in this respect is that in a uniax-
ial ferromagnet with single-ion anisotropy, two-

magnon bound states exist over a larger volume of
the Brillouin zone than in the isotropic case, thus
improving the possibility of their observation. This
behavior was demonstrated by Wortis for the case
of exchange anisotropy, and exchange bound states
have in fact been observed~ at k = 0 in the linear
chains of CoCl2 2HzO which has strong exchange
anisotropy. In systems with strong single-ion an-
isotropy, we predict the presence of an additional
(single-ion) bound state which should also be ob-
servable at k =0 in an appropriate material. These
effects would be most dramatic in a S = 1 linear
chain system with D»J. One possible mechanism
for direct observation of the single-ion bound state
is photon absorption proceeding via transverse an-
isotropy which breaks the ~nz = 1 selection rule.
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