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Cooperative Dynamic Jahn-Teller Effect.
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A theory of cubic-to-tetragonal transformations occurring in spinels containing octahedral-
ly coordinated (B site) de and d4 transition-metal ions in high concentration is developed. The
problem is treated in the spirit of the molecular field approximation. For each Jahn-Teller
(JT) susceptible ion in the unit cell, a Schrodinger equation is solved, in which the variables
of the octahedra (the occupancies of the degenerate states or the distortion from cubic sym-
metry) appear as temperature-dependent unknown averages. These are then determined self-
consistently, utilizing the solution of the Schrodinger equation. The present treatment intro-
duces two improvements on the previous theories given by Wojtowicz and Kanamori. The
first is to take into account the dynamic JT effect, thus covering a much wider experimental
range, including moderate or even weak anisotropic (nonlinear) JT couplings. The other in-
novation is the inclusion of the excited vibronic states. Five characteristic regions of solu-
tion are distinguished; (a) the static limit, to which previously studied cases belong; (b)
the three-state region, which differs from the previous one in that it allows the splitting be-
tween the lowest doublet and singlet to become comparable to the molecular field energy;
(c) the general regime: the anisotropic energy, the kinetic energy, and the molecular field
are of the same order of magnitude (all the excited vibronic states must be taken into ac-
count); (d) the strong molecular field limit; (e) the Ising-model limit of weak molecular
field, in which case the ground vibronic doublet alone needs to be considered. Thermody-
namic quantities such as the specific heat and entropy of transition, as well as bulk distortion
at different temperatures and concentrations, are computed and compared with those obtained
from previous theories. The phase transition is of first order, but in regimes (d) and {e) the
transition entropy is very small. The first-order transition temperature reduces, as a re-
sult of introducing dynamic effects, to about half the value obtained by Wojtowicz. A digest
of the experimental data is given in an Appendix.

I. INTRODUCTION

The spinel structure (Fig. 1) represents proba-
bly the most frequent example of oxides in which
a low-temperature low-symmetry phase occurs
because of the collective operation of the Jahn-
Teller (JT) effect. The existence of a transition
to this phase has been established in a consider-
able number of compounds and by a variety of
techniques, including x-ray crystallography, neu-
tron scattering, electrical conductivity, infrared
spectroscopy, calorimetric measurements, and
the quadrupole splitting in the Mossbauer spectra.
A (possibly incomplete) list of compounds and ref-
erences, as well as some additional information,
canbe found in Tables II-IV of this work. Inthe com-
pounds covered by the list the low-temperature
distortion is due to paramagnetic cations, notably
Mn ' and Cu ', in a doubly degenerate electronic
state (E) situated at octahedrally coordinated sites
of the spinel. It appears from perusal of the list
and of the literature quoted that, while the very
fact of macroscopic distortion associated with
JT ions in finite concentration has been known for
some time, more recent work has added details

to our knowledge, especially through the employ-
ment of a greater variety of techniques and the
more precise establishment of the distribution of
competing cations at the various sites (e.g. ,
through taking data after quenching the spinel).
Still, wishing to be honest, we should admit that
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FIG. 1. Unit cell of a normal spinel A.J3204. Ions
situated in two octants are shown, the ions drawn by
broken circles belong to other octants. Large circles
are oxygen ions; small shaded circles are metal ions
8 at octahedral sites; small open circles are metal ions
A at tetrahedral sites. IFrom E. W. Gorter, Philips
Res. Hept. 9, 295 (1954).]
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the motivation for this investigation is not the dy-
namics of the experimental situation, but the sta-
tics of the theoretical front.

Following the recognition by Dunitz and Orgel'
and by McClure' of the connection between the low-
ering of symmetry in transition-metal oxides
and the JT effect, later elaborated by Goodenough
in his book, ' theories for the mechanism of the ob-
served phase transition were put forward by Finch,
Sinha, and Sinha, by %'ojtowicz, ' and by Kanamori6
in terms of an order parameter, which was in fact
the occupancy of one of the degenerate states. In
the first formulation' a two-fold degeneracy was
assumed, while in the later improved versions,
a threefold orientational degeneracy was considered
for each paramagnetic center. It will be shown
that in this conception of the problem the interac-
tion between the centers leads to a highly aniso-
tropic Heisenberg model. The molecular field ap-
proximation was used by the preceding authors,
as well as in two more recent works, to solve
the cooperative problem. In this work we also
use this approximation, leaving more efficient
techniques to a forthcoming work. These tech-
niques should incorporate short-range correlation,
which is neglected in the molecular field approach,
and which should thereby provide the key to the low-
symmetry fields, observed, ' e.g. , in Moss-
bauer experiments. The origin of these fields
is the local distortion which is present also in the
disordered phase, " although in some magnetic
crystals an alternative interpretation'~ is also pos-
sible due to magnetostriction.

If the molecular field approximation is unreli-
able as regards local effects, it should, neverthe-
less, be sufficient to explain such macroscopic ef-
fects as the change at the transition point of the
crystallographical axial ratio c/a and its variation
with temperature. However, even here we find
some discrepancies, such as the existence of a
minimal critical concentration of JT ions which is
not predicted by the pr esent theory. This sub ject
is also postponed for later consideration.

In the present work we introduce two major
changes compared to previous theories, and a
few minor ones. First, we shall treat the coop-
erative distortion as arising from a dynamic,
rather than a static, JT effect. In the relatively
high-temperature region (& 100 'K), with which
we are mainly concerned here, the static JT ef-
fect is exceptional in molecular or quasimolecular
complexes; in cooperative manifestations of the
effect where a given amount of distortion is shared
out among a great number of modes (of the lattice),
this finding is likely to apply even more forcefully.
This justifies, in our view, the reconsideration of
the problem through a dynamic treatment.

The other essential innovation is the inclusion
of the excited vibronic states. In the cited works'~
only the three lowest vibronic states were con-
sidered: These states coalesce in the static limit
to three equivalent distortions, one along each of
the cubic axes. In the higher-lying states the sys-
tem tends to resonate between the distortions.
Raising the temperature so as to populate these
states will have a disordering effect. This effect
is additional to that acting within the ground trip-
let, which achieves disorder through increase of
the entropy. The inclusion of the excited states
leads then to a reduction of the transition tem-
peratur e.

The minor novelties which emerge enroute are
the derivation of a Heisenberg-like coupling model
appropriate to the static limit, the development of
a microscopic quantitative model for the pairwise
interaction' between adjacent octahedra in Sec. II,
and the solution of the vibronic problem in a re-
duced tetragonal symmetry (D, in our case) in
Sec. III.

The arrangement of the work is as follows: In
Sec. II we explain the operation of the JT effect
in a somewhat simplified model of the spinel struc-
ture and treat the cooperative problem in the
static limit, which will be tackled from an angle
different from those of Refs. 5 and 6. We next
introduce the Schrodinger equation for the vibron-
ic problem (Sec. III) first for a complex in undis-
torted octahedral, then in distorted tetragonal
surroundings. The macroscopic aspects of the
phase transitions are found in Sec. IV. In Sec. V
we introduce the five categories in which the prob-
lem falls, that is, depending on the values of the
parameters, and we present our results, many
of these in graphical form, referring these cate-
gories to experimental information as far as pos-
sible. Unfortunately, the experimental data are
insufficiently detailed to allow us to make quanti-
tative comparisons, such as would produce, for
example, significantly better agreement than that
contained already in Ref, 5 or that would enable
us to determine the parameters of the systems un-
ambiguously. It is hoped, however, that the large
variety of behavior which the dynamic effects in-
troduce will prompt further experimental explora-
tions.

II. EFFECTIVE COUPLING IN SPINELS

We refer to Fig. 1 in the Introduction to show the
spinel structure. We now confine our attention to
normal spinels. The framework of 8-site ions is
then situai;ed on four fcc sublattices whose lattice
points lie, respectively, on [000], [110], [101],
and [011]. We suppose the 8 cations to be doubly
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degenerate JT ions. The A cations, if in nonde-

generate states, do not cause directly any distor-
tions, and therefore we shall disregard them in
the following. Through this procedure we reduce
the unit cell to one-quarter of its original size:
It now contains four 8 cations (labeled I-IV) and

eight anions (labeled 1-8), as shown in the Fig. 2.
Had we included the A-type ions, we would have
found that their packing pressure affects different
anions in the original unit cell by different amounts.

In Fig. 2(b) the oxygen octahedra round the 8
ions situated in a unit cell are completed by bor-
rowing anions from the neighboring unit cells. If
we recall that each of the I-IV cation types forms
a fcc lattice and agree to label the unit-cell posi-
tion by a vector, which is in fact, the radius vec-
tor of the position of one of the cations (e.g. , I)
then we realize that for the octahedra of the nth

cell, eight anions are borrowed from eight neigh-
boring unit cells.

In Fig. 2(b) the labeling of the anions includes
the unit cell to which they belong.

We assume for the purpose of the discussion of
the static limit of the JT effect, "that the octa-
hedra surrounding each B cation undergo a tetrag-
onal distortion along an X, Y, or Z direction.

We shall next construct the Hamiltonian, in-
cluding the elastic energy due to interactions be-
tween nearest neighbors and more distant ions and

the vibronic coupling terms, but excluding the
kinetic energy, since we shall first treat the stat-
ic limit. By minimizing the energy we shall be
able to eliminate the ionic coordinates and shaB
derive a Heisenberg-like Hamiltonian which ex-
hibits the interaction between the occupancies of

[Ee) or [E, ) states on neighboring cations. This
Hamiltonian can then form the basis of the statis™
tical mechanical problem, in the static limit, as
in the work of %'ojtowicz.

The JT term expressing the linear coupling
between the electronic states of the cation and the
coordinates of the anions' is —,'1(M&ojh)' times

(12) "' o, (n, I)[2[Z(n, 3)

—Z(n —ag —a2, 7)]—[X(n, 5) —X(n, 1)]
—[r(n, 2) —F(n+ aX —a~, 6)]]
+-,'~, (n, i)[[X(n, 5) - X(n, 1)]
—[F(n, 2) —Y(n+ al —a2, 6)]}

and analogous terms involving o~(n, 11 ), . . . , o,
(n, IV).

The small Cartesian displacements of the ith
anion (i = 1, . . . , 8) in the n th unit cell are denoted

by X( ni), etc. v, (n, j), (r, (n, j) (j=I, . . . , IV) are
the Pauli matrices

(-I o) (o li

operating in the function space of the doubly de-
generate one-electron orbitals E~, E, of the jth
cation in the nth cell. In the factor multiplying
the previous explesslon M ls the effective mass
and (d is the frequency characterizing the cation-
anion stretching. These quantities arise from
the elastic term, which takes the form

2M(o'([X(n, 5) —X(n, I)]'+ [F(n+ aR —ag, 6)

—F(n, I)] +similar terms),

(one term for each nearest-neighbor cation-anion
bond). The coefficient t. will be discussed later.

It is necessary to include, in addition to these
central forces between nearest neighbors, also
forces which are noncentral or which act between
nonnearest neighbors. In the absence of these
forces the distortions of different octahedra do

(n - ax+ az, 5) O
A A(n- Qx - Qy, 7)

A A
QX+ QZ, 6)

(4)

A A
(f1+ Qf - Qg ) 6) 0„

Qy

p (&)

Q(7)

.Q.
(A —QX+ Qg, 5)

FIG. 2. Structure of the reduced
tmit cell in spine1s without A cations;
(a) showing the labeling of the ions
in the reduced nth unit cell; (b) show-
ing also the anion borrowed from the
neighboring reduced unit cells so as
to complete the octahedra.

A A
(fl — GP - Qz, 7)

(B)
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not interfere with one another and cooperative
phenomena are not possible. Analytically, the
simplest farther neighbor force which will pro-
vide coupling between octahedra is a central force
opposing the displacement of the (1) anion and act-
ing in the direction of the III cation, i.e. , along
the body diagonal [see Fig. 2(a) for labeling], with

14
analogous forces for the rest of the anions. In

symbols, this force contributes to the Hamiltonian
terms of the type

H,„,= —,
'

XM&u [X(n, 1) + Y(n, 1) + Z(n, 1)

—X(n, III) —F(n, III) —Z(n, III)]

and similar terms for other body diagonals within
the unit cell. X is a number which compares the
strength of this force to that of nearest-neighbor
forces. It is a measure of cooperative forces.

We shall now extremize the potential energy
with respect to nuclear displacements of the anions,
assuming at the same time that the cations are
fixed. This assumption may be viewed in one of
the two ways. It can be regarded as an extreme
formulation of the physical fact that the cationic
geometry in spinels depends not only on the near-
est-neighbor anionic configuration, but also on
the positions of next-neighbor cations as well
as those of farther ions. Alternatively, the fol-
lowing treatment of the phase transition may be
viewed as exact, but subject to a microscopic
constraint on each cation. The true physical sit-
uation is then that obtained by relaxing the con-
straint. However, in the ordered phase the con-
straint due to stretching forces is zero to the first
order, since then anion 1 is displaced perpendicu-
larly to the line connecting it to cation III. Also,
in the disordered phase the average constraint is
zero. Thus one can hopefully expect that the im-
position of an artificial constraint will only have

a modest quantitative significance, similar in
amount perhaps to the neglect of anharmonic cou-
pling between different modes.

The extremization yields expressions for anion-
ic displacements in terms of the Pauli matrices
of the three neighboring cations. When these ex-
pressions are substituted back into the Hamil-
tonian, one obtains the following coupling terms
(as multiples of [&/(I+ W.)]L /48'&u]'

Coupling between I—II: ~ oe(I)oe(II)

——,
' o,(1)o,(11);

Coupling between I-IV: ——,'o ~(I)o ~(IV)

+ (I//~2) [o,(1)o,(IV) + o,(IV)o,(i)];

Coupling' between II-III: ——,
'

o ~(II)o ~(III)

+ (I/v'l2 )[o,(II)o,(III) + o,(III)o,(II)];

Coupling between II-IV: ——,
' o, (II)oe(IV)

—(I//12 ) [o,(II)oz(IV) + o,(IV)oz(II)] .

(2)

Here Oe„and 0@, are the transformed o~ matrices
with the x and y axes chosen as axis of quantiza-
tion. Coupling expressions between other pairs
of ions can be got by appropriate transformations
from the I-II coupling.

To interpret the coupling we note, following
Wojtowicz, ' that there are four possible types of
interactions between a pair of octahedra which
have two corners in common. These interactions
may be described by reference to the previous
figure, Fig. 2(b), as follows. Let the octahedron
about the I cation be elongated along the Z axis.
Then we find the following interaction energies
between this octahedron and another one elongated
as shown in Table I.

In Ref. 5 the following interaction energy rela-
tions were conjectured V»& V» & Vzz& Vz„where-
as we have derived from our model V»& Vpy& Vgy

& Vu
¹te added in manuscript. In a recent work

[P. Novak, J. Phys. Chem. Solids 30, 2357 (1969)]
two more sets of inequalities between V&& were
postulated, different from either inequality writ-
ten out above. However, Novak's work is not
based on a quantitative model and it was taken for
granted in it that, in our expression [Eq. (2)] for

TABLE I. Pair interaction energies.

Interaction energy
in units of Wojtowicz's

Octahedron Long axis A,L /4(1+ 3X)S~ symbol

The symbol n denoting the unit cell has been
omitted at this juncture from the designation of
the Pauli matrices o, (n, I), since the same coupling
exists between any pair of similarly oriented
nearest-neighbor cations whether or not they are
in the same unit cell.

It is interesting to find that the coupling terms
between I and II are simply proportional to

o (r)o„(rl)+o„(i)o„(lr).

Coupling between III-IV: ~ oe(III)o~(IV)

——,
' o,(111)o,(IV);

Coupling between I-III: ——,
'

o~(I)cr~(III)

—(I/v"12 )[o,(I)o~(III) + o,(III)oe(I)];
IV

1
3

'L2

6

5

12

Vi2

Vi(



COOPERATIVE DYNAMIC JAHN- TELLER EFFECT

coupling between I and II, both terms are neces-
sarily negative.

It is possible to regard the coupling tern1s in
Eq. (2) as an anisotropic Heisenberg-Hamiltonian
coupling the "spins" on various cations. The
usual treatments of statistical mechanics can then

be accorded to this Hamiltonian, e.g. , as was
done by Wojtowicz, through the adaptation of the
molecular field method. This amounts to deriv-
ing a pair of self-consistent equations for the
averages oe, o, of the Pauli matrices of one of the
cations, say of (n, I):

—exp[-&a, ] +-,' exp[- &(- —,
' a, + -,'rSaq)] + -,' exp[- &(- —,'a, ——,'WSa, )]

exp[- A(r', ]+exy[- A(- —,'a, + —,'v'Sa, )] + exp[- &(- g(r( ——,'&3(r,)]
—MS exp[- A.(- —,'a, + —,'v'So, )]+—,'v 3 exp[- A(- —,'(r, ——,'43o, )]

exp[- Ao, ]+exp[- A(- —,'a, + —,'43a, )]+exp[- A(—,'(r, ——,'&—Sa, )]
where A =-[X/(I+SR)]L /4II(akT

In these equations, the exyressions for the
coupling energies [Eq. (2)] have been utilized, in
which, however, the matrices of all cations, ex-
cept of (n, I), have been replaced by the average
values o~, o,.

The equations represent thermal averages of
(r~, a, in three possible electronic states of (n, I)
associated with the three distortions of its octa-
hedron. %hen extending our treatment to include
dynamic effects (as in Sec. III and thereafter) one
of our main endeavors was to generalize in an ap-
yropriate way the above self-consistent equations.
As will appear in Eq. (9), the proper long-range
order parameters to replace o~, i, are the mean
distortional coordinates. Discussion of the solu-
tion of Eq. (3) will be given later (in the end of
Sec. III) as limiting cases of the more general
treatment,

III. INCLUSION OF DYNAMIC EFFECTS

In the dynamic (or vibronic) approach to the JT
effect the kinetic energy is included and the ionic
displacements are regarded as quantum-mechani-
cal dynamic variables. A major simplification in
the kinetic-energy expression results if we now
also make the assumption, introduced and briefly
discussed in Sec. II, that the cations are held
rigidly. Further, we can refer each cation-anion
stretching uniquely to one octahedral complex
(we ignore at the present the transverse force con-
stants due to their being small compared to the
radial ones), and we can pass on to the next step,
which wi11 pave the way for the molecular field
approximation.

We lift out of the total Hamiltonian of the crystal
the term H(n, I) which contains the normal coordi-
nates of the cation I in the n unit cell. H(n, I) con-
sists of three parts: The first part contains those
stl etching motions With 1espect to a cation %'hich
do not enter the JT effect (e.g. , an odd vibrational

motion or a perfectly symmetric one, with ref-
erence to a single cation). This part will be ir-
relevant to the treatment which follows and we
shall not consider it. Then there is a part Ho(n,
I), including the kinetic, elastic, and JT coupling,
which arises from the stretching motion of the
anions (with respect to a single cation) that gets
coupled to the electronic state of the cation. This
part is identical to the Hamiltonian of an isolated
octahedral complex and will indeed be written in a
notation appropriate to the normal modes of such
a complex.

Finally, we have the farther neighbor term Il„„
Eq. (1), which couples different JT distortions
around different cations. We have found there
that such a term is necessary to cause any co-
operative effect at all. Here we shall rewrite
it in the normal coordinates of each octahedron
around its cation.

For the second part considered earlier we write

Z,(n, I) = —,'a~

x —,, - -, —,,-
)

+q, (n, q)+q, (n, q))Bq~jn, Ij 8q, |,n, I

+ —,'L[q,(n, I)(r,(n, I) + q, (n, I)a, (n. , I)]
+ —,'A( [q', (n, I) —q', (n, I)]a, (n, I)

+Sq, (n, I)q, (n, I)a,(n, I)}

+-,'v'2Ã[Sq, (n, I)q', (n, I) —q', (n, I)] . (4)

Hamiltonians of this type have been extensively
discussed in original papers on the JT effect" 33

or in the reviews. Here & is the frequency
of the vibrational modes whose coordinates q()(n,
I), q, (n, I) (or q(), q, for short) have been written
in reduced dimensionless form in units of the
zero-point motion amplitude (0/M(a) "2, where M
is the effective mass of the vibration. The coef-
ficients L (for linear), K (for quadratic), and N
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(for cubic) have all the same dimension (energy)
and are given in terms of the derivatives of the
electronic potential V by

I — g — E + g — — E

E

z -q q'q=((z,i, , i
z,) + (z, i,', iz,))

Here )E()) and )Eq) are the one elec-tron doublet
kets which transform as (2z —x -y )/&)6 and (x
—y')/x)'2, respectively.

The introduction of a new set of coefficients calls
foI' some comment 1n view of the pl'ollferRtlon of
existing symbols. When the invariant coupling
terms in the Hamiltonian Eq. {4) are built up in
a standard manner by the use of the V coefficients,
then the coefficients of the invariants in Eq. (4)
are given uniquely. They are as shown Above.
The method of constructing the invariants will be
published elsewhere.

The point-group classification will be accord-
ing to the molecular symmetry group O. Actually,
Rs we shall be deRling with octRhedl'Rlly cooldl-
nated B-site cations in spinels, we ought to add

g or u subscripts appropriate to the (approximate)
O„symmetry. However, we shall forgo this en-
cumbrance for the sake of simplicity,

We note that in the static limit, "which is at-
tained by letting the mass M -~ and by neglecting
the kinetic energy, the equilibrium condition is
given by q= qo

—=L/2', and the stabilization energy

by Ezr = I. /85u&. Under conditions of strong linear
coupling L/S(d» 1 the Hamiltonian of Eq, (4) can
be approximately diagonalized by transforming to
a, new set

~
P ) = cos-,'q) ~E(&) —sin —,'q) ~E,)

(r& ) =sin-,'y E(&)+cos-,'q& E,)
Here p is the angle in the polar form of the vibra-
tional coordinates

q~=q coscp and q, = q sing

Whether )(C) ) or )()),) appears in the low-lying states
depends on the sign of the linear coupling coef-
ficient. It is usually accepted that the coefficient
L, of the one-electron matrix is positive, I.& P.
Then the low-lying vibronic states take the form

~=q "'x., (q —qo)x(q)IP ),
where )t„,is the n, 'th oscillator wave function [en-
ergy E,= (n, + ,')h(d —L /Bh&u j repr-esenting oscilla-
tion across the potential trough which lies on a
circle of radius q~. The )(((/&) is the angular factor
whose Schrodinger equation Ieads in the strong
linear coupling limit

+ iq, (n, z)+ /-q, (n, xx) —~ q, (n, rv})

+five similar terms

As indicated in Sec. II, the method of the mo-
lecular field theory is applied by replacing all
normal coordinates in H(n, I) other than qe(n, I)
and q, (n, I) by the averages qe and q, . This step
leads to

H«, = —,'&ihar [qe(n, I) + q, (n, I) —2q(){n, I)q,
—2q, (n, I)q, +q,'+q', ] . (6)

Tr[q (n~ I) e- H( Fq&&/&qr]/ 'Tre//(ii i&/)qrq

These definitions introduce a self-consistency
in the formalism. However, the Hamiltonian is
now dependent on the temperature T through the
presence of the averages q& in it. The state of
the system at any tempera, ture is given by the
solution of the Schrodinger equation whose Hamil-
tonian is H(n, I) but which now also contains the
averages defined above. We shall see that above
a certain temperature, which we shall denote by
&g, the averages qe and q, vanish, corresponding
to the nondistorted configuration representing the
thermodynamically stable state of the system. Be-
low T„nonzero values of q represent the stable
states.

Before presenting the thermodynamics of the
situation we point out a practical simplification
which can be made so as to let the equations be

qo = L/M(d» 1,
~
q —

qo~ /qo « I,
(

82
—z, ;——pcomqq+z )x(q) zx=(q) .

Here n = 5u/2qo

P= —(,'Kq',-,'A—X—q',)

= —[I /I 6(k(d)'] (h(dK ——,'&2XL) .
In the limit of strong nonlinear coupling, where

J3/o. » 1, the system performs small oscillations
about the minima of the potential —Pcos3//&. For
Mn3 in the configuration d, calculations analo-
gous to those by Opik and Pryce" for Cu2'(d') in-
dicate that P &0. Then the minima are at q) =0,
~-m.

We return now to the term H„,of Eq. (1) de-
scribing the interference between JT distortions
on different octahedra. We let the cationic coor-
dinates X(n, HI), etc. , take the value 0:

H„,= —'XIl(x& ——'q, (n, I) + ~q~(n, I)



manageable. The cubic symmetry of the problem
may be utilized to put q, = 0 in the Schrodinger
equation. The solutions with q&WO then describe
states with z-oriented tetragonal distortions.
Solutions mith q, WO are completely equivalent to
these, except thai they describe x- and y-oriented
distortions and they are much harder to come by
since not only the Hamiltonian is more involved,
but there are now two self-consistency equations,
Eq. (9), to solve.

The Schrodinger equation for the vibrational
factor X(y), which is written in Eq. (5) for 0
symmetry, takes the following form for the z-
or iented solutions:

8
2

—pcos3y —ye cosy+8, + ~
2

~

X(y)
Bp 2XR(d

q(~)

=Ex(q) .
The definition of o. was given following Eq. (5),

P is shown in Eq. (6), and we have already noted
that for Mn" at octahedral sites p &0. The y, is
related to the thermal average of cosy(-=qJq, ) by
the relation

rg —=XA(oqoqe —&cos p&XRMqo .
The eigenvalue equation, Eq. (10), was solved

by numerical matrix diagonalization using the set
of orthogonal states

cos-,'(2m —1)y, sin-,'(2m —1)y

The eigenenergies are shown in Figs. 3(a), 3(b),
and 3(c) as function of the tetragonal field strengths
and for three values P/o. = 0.4, 4.0, and 20.0.

Interpreting the curves, e.g. , positive yz, and
referring to the drawings which follow (Fig. 4),
we can say that the upward or downward slope of
each curve in Fig. 3 at any value of the abscissa
gives an estimate of the relative percentage for
the system being, for that state and that y~/n, in
the wells at y = 0 and at p =+ &m. Consider, fox
example, the level indicated in Fig. 4. ; for zero
or low tetragonal field strengths this level has
negligible slope. This conforms to the situation
in Fig. 4 (a) where the state is approximately
equally shared by the three wells. As the tetrag-
onal field strength grows to the situation shown
in Fig. 4(b), and the asymmetry of the potential
wells becomes perceptible, the indicated level will
become localized in either of the two wells, acquir-
ing thereby a non-negligible slope. Subsequently,
as in Fig. 4(c) the level sinks down into the well
at y =0 and the curve bends over to a steady down-
ward slope. In this last region the downward-
sloping levels are uniformly spaced harmonic os-
cillator levels of the cp = 0 mell.

Some progress is possible in analytical terms
in the three-state approximation, i.e. , if one re-
tains only the three lomest vibronic states. For
nonlinear and strong linear coupling the following
matrix has been obtained"' ' fox these states:

= qy~ 0 eye

0 qy, 0 (12)

l
4'„) ry~ 0 3I'

Here q and x are the reduction factors introduced
by Ham. ' (See also Refs. 29-35. ) His definitions
refer to the lowest-lying vibronic doublet (@~,4', )
and the singlet O~ immediately above them

1

3I" is the energy difference between the lowest vi-
bronic doublet and the next singlet in the three-
state approximation. For extremely strong linear
coupling q and x can be redefined in terms of the
vlblatlonal faetol g as follows:

q=&xelcosqlxe&, ~=-&xA, lcosqlxe& .
In mhat me have just called "the three-state ap-
proximation, "one finds that

q = le '"'"'(1+2r)/(1+r),
~ = (- 1/&2).-"""'(1—y)/[(1+y)(1 —»)] '",

where v=(9P/6n)'" and y=e '"'".
Computed values of q and x obtained from nu-

merical solution of the Schrodinger equation, Eq.
(5), are shown in Figs. 5 and 6. These are com-
pared mith the analytical expressions shown above
which, me recall, are based on the three-state ap-
proximation.

In the same approximation, the vibronic eigen-
energies of Eq. (5) are found to be

E@ @q 4v 7 y 8v 9(ep 12 2 2
= —+V- + 8

9 1+y 9 1+y

for the doublet, and for the next singlet

n 9 1 —2y 9 1 —2y

The energy difference 3I'between these is

3I'=-E„,—E =3Pyfv —,'(1+y) —2e ™8"]

This expression is dominated by the first positive
term showing that the doublet is lower.

The energy eigenvalues and expectation values
of cosp from matrix (12) are
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20--

II
A

I

"e
a

a =20

~e

a

FIG. 3. Vibronic energy levels versus tetragonal
field strength. Energies in units of n are plotted as
function of the parameter p8/o. introduced in Eq. (11),
for three values of the nonlinear coupling strength (a)
P/n:0. 4; (b) P/n: 4.0; (c) P/a:20. 0. On the right of the

figure one potential well (that at y =0) is depressed and

two are raised, on the left two are lowered and one is
raised. The states are classified in D4 symmetry, for
a single e electron. FAr classification of the many-elec-
tron state ('E in Mn+ and E in Cu ') exchange A~B.
When more than one state belongs to the same species,
a roman numeral superscript is added for distinction.
Results of the three-state approximation are shown by
broken lines.
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FIG. 4. Behavior of a moder-
ately hi, gh-lying state as the te-
tragonal field strength increases.
Figure shows a section of the po-
tential on the circle q= qo.

0,50

0,48

FIG. 5. q versus P/0, . Diagonal
reduction factor q is defined in the
text. Exact computed values are
shown by full lines and the results of
the three-state approximation by
broken lines down to P /ot = 1 at which
value the approximation is not ex-
pected to be valid any longer.

0 10 20
I

30
t

40 50
I

60

-0.50

FIG. 6. r versus P/n. The x is
the off-diagonal reduction factor de-
fined in the text, The exact values,
and those obtained in the three-state
approximation of x, are shown.

10 20
I

30
I

40 50 60
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1 E+yeQ

=E, +-,(3r-y, q)

v = (e"—e " )/(e" + 2e "
)

with the abbreviations

u = ye/ItT and v = y~/Xjfurqo .

(13)

It will be seen by referring to Eq. (3) in the static
treatment that it is the same as Eq. (13) (if o~
= —v and o, = 0), except that the coupling param-
eter there differs from the present one by a fac-
tor (I+3K) '. This arises because in the dynamic
treatment, Il„,was treated perturbationally, cor-
rect to-A. , while in Sec. II this was done correct
to all orders in X. Since very likely X «1, there
is no essential disagreement.

Equation (13) yields the axial distortion and

pressure, both of which are proportional to y~,
when the tetragonal axis is z. Two equivalent
sets of equations, with q, t 0 and y, W 0, could be
written for tetragonal distortions along x or y.

As the discussion of Sec. IV shows, the transi-
tion temperature T, is determined from F(ye, )

= F(0). (At T, all temperature-dependent param-
eters will bear the subscript t. ) It can be shown

that this equation, whose two sides are the definite
integrals of the two sides of Eq. (9) from 0 to

y~ „becomes m, v, = ln ( 3~ se +"&") The simul. -

taneous solution of this with Eq. (13) yields

u& ——-ln24 1
2

The quantity

ft T,/M&uqo = v, /u, = 3/8 ln2 = 0.54

is the "reduced transition temperature" featuring
in Wojtowicz's paper. ' (See also the same quan-

+ —,'[y,'(q'+ 4r') + 2(31')y, q + (3I")']'"
(0 pl cosp ! 'kg) = —q

/&+el cosy
!

((+3 1
cosy I

4'3)j
(3r)q + y, (q'+ 4r')

2[y~~(q' + 4r') + 2(3r)yg q + (3r)'] "'
Here E~ is the energy of the ground-state doublet.

While the explicit analytical formulation of Eq.
(9) in the three-state limit can have its uses, e.g. ,
for demonstrating the first-order nature of the
transition (for this see Sec. IV), we prefer not to
encumber these pages by long expressions. Bath-
er, we quote the results for the extremely strong
nonlinear coupling limit, which was also treated
in Refs. 5 and 6, namely, when 3I'-0. Then Eq.
(9), for t=8 and ,q, =0, becomes

tity called "normalized transition temperature"
in Fig. 9. )

IV. THERMODYNAMICS

The phase transition is best discussed by start-
ing with the Helmholtz free-energy function I de-
fined for the assembly of octahedra by

As defined earlier in Eq. (4), H(n, I) is the
I'amiltonian for the octahedron for the I cation
in the n unit cell (see Fig. 2); the Hamiltonian
of any other octahedron would, of course, be sim-
ilar. This construction of H(n, I) was achieved
in Sec. III at the cost of considering the cations
fixed and of disregarding the normal modes not
relevant to the JT effect. The interference due to
neighboring octahedra appears in H(n, I) through
the presence of the individual normal displace-
ments of the neighbors as in Eq. (7), or of the
mean normal displacements, q~ and q„asin Eq.
(8). As regards each octahedron this displace-
ment is felt by it as a constraint externally im-
posed on it. No other constraint is applied on the
shapes of the octa.hedra (there is, though, the con-
dition fixing the cations), so the thermodynamical
variables conjugate to qe and q, are zero, or

(i4)
Bg& Bqe

These are also the equations defining thermal
equilibrium. However, it can be seen from the
form of the Hamiltonian, Eqs. (4) and (8), that
these two equations are in fact identical to the
Eq. (9) defining q~ and q„our so-called self-con-
sistency equations. This is very gratifying.

It will be shown presently that the transition
from the cubic to the low-temperature tetragonal
phase is of the first order as required by the
Landau theory of phase transitions. ' ' The
transition occurs at that temperature T, at which
the free energies of the cubic phase (when q~=q,
= 0) and of the tetragonal phase (q~ 10) become
equal:

F(q, =o) =F(q, ~o) . (i5)
This equation is additional to Eq. (9), the self-

consistency conditions which hold at any tempera-
ture. The connection between the equations may
be understood by reference to Fig. 7. Here the
S-shaped curves are the right-hand side of Eq.
(9) plotted as function of the tetragonal field pa-
rameter y e for three temperatures. Intersec-
tions of these curves with the left-hand side of
Eq. (9) occur at nonzero values of y, as well as
y&=0. The former values represent the stable
thermodynamic state only at a temperature T= T,
such that the two areas bounded by the two curves
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FIG. 7. Graphical
solutxog. of Eq. {9) {for
explanation see text) .

become equal to each other, here &(q~) =F(0), or
at temperatures below this. For T & T„y~00
can at best represent a metastable state.

In order that an 8-shaped curve be obtained,
it is necessary that in the expansion of the right-
hand side of Eq. (9) near y~= 0, the coefficient of
the quadratic term in y~ should be positive.

Making use of the analytical expressions for
the eigenvalues and expectation values obtained
earlier in the three-state approximation, we have
for the right-hand side of Eq. (9) up to second
order in y&

1 1 —e~(- 31/~ r)&

2+ exp(- 31/k T) e (3I')

2 exp(- 31'/kT)+31'/kT-1
~

( )' )'"'
Q(7) Q(7)

phase when the cations are assumed to be held
fixed to their position in the cubic phase. A

planar cross section at X= 0 of Fig. 2 is shown.
It is apparent that the effect of the constraint is
to bend the Mn-O-Mn angles to less than a right
angle. If the bending force constants are zero
(as has been assumed provisionally above), then
this situation is innocent; however, in reality, the
angles will become right angles as shown in the
figure on the right [Fig. 8(b)]. Under the latter
condition, we have c/a & 1 in the crystal.

The expr ession in the last large parentheses is
necessarily positive; the above discussion shows
the transition to be of the first order.

Each of the equal areas referred to above is a
measure of the heat of transition. In our results
this turns out to be small, when compared with
the energy of alignment of the distortion in the
direction of the molecular field. [This energy is
of the order of the area of a triangle which has a
dotted line for one of its sides (Fig. f). ]

It is of interest to digress in order to see graph-
ically (Fig. 8) the shape of the low-symmetry

tel

{a)

FIG. 8. Distorted arrangement of anions when the
cations are fixed. Positions of the ions in a plane sec-
tion containing the ions I, 3, III, 7, etc. , are shown
{refer to Fig. 2 for the meaning of labeling) {a) when
the cations are in the cubic positions; {b) after the re-
laxation of the cations.
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Returning now to the thermodynamics of the
phase transition, we note that the specific heat C,
defined by C = T(BS/BT), where S is the entropy,
will behave discontinuously across the transition.
It will possess a 5 function about T = T, of such
magnitude as to provide a finite heat of transition,
given by T,AS, where 4$ is the entropy change.

It should be remarked that the syecific heat is at
constant volume since the distortion leaves the
volume of the octahedra constant. More impor-
tantly, the specific heat is under conditions of a
constraint so imposed as to keep the cations at
the yositions occupied by them in the cubic phase.
When this constraint is relieved, the specific heat
changes by an amount given by

2(a —c)l Be,
~

B W

c+2a
~ BT) Be 3

The specific heats on the left-hand side are,
respectively, in the relaxed tetragonal state of the
lattice, when the applied axial stress 03 is zero,
and in the state in the ordered phase, which is so
obtained as to be macroscopically cubic. This lat-
ter state is achieved by letting the strains take
the values

e, = —2e, = —2e2=2(a —c)/(c+2a) .

The Voigt notation is used for the strains e, and

stress o&. On the right, 8" is the elastic energy.
The above relation is analogous to and is sim-

ilarly derivable as the well-known result for C~
—C„. In terms of the Lame elastic constant p. ,
which refers to the same volume as the syecific
heats,

(c —c)/(c+ ma()
'

C, —C,,=4Tp.

V. RESULTS AND DISCUSSION

Before presenting the results of the calculations,
we should describe in general terms the different
ranges of physical parameters (corresponding to
diverse physical situations) which lead to differ-
ent types of solutions and may even require differ-
ent methods for solution. Assuming strong linear
coupling L/Ko»1, we are left essentially with

three independent energy parameters: n, the ro-
tational energy [see E(I. (5)]; P, the nonlinear
coupling energy, being a measure of the depth of
the angular minima in the q, , q, plane [see E(I.
(6)]; &hurqo, the molecular field strength or,
more accurately, its temperature-independent
factor [see E(I. (11)]. However, the physical sit-
uation is not necessarily best described by these
parameters, but rather by combinations of them.
Thus for strong linear coupling we have the com-
puted energy 4E, the separation between the

lowest cubic singlet and doublet. This reduces in
the three-state limit to

3r -=3P y [-,'m3(1+ y) —2 exp(- 9/8v)]

(for v and y see Sec. III).
For strong nonlinear coupling we have the pa-

rameter 3(2o,p)', the separation between the sets
of threefold nearly degenerate levels of E(I. (5).
In terms of the preceding parameters we mark out
the following regimes:

(a) Static limit. This is characterized by P
»o. and ~-31'«&Kuqo«3(2o. p)'/'. To this re-
gion belongs Wojtowicz's treatment of the cooper-
ative problem, in which a was taken as zero, lead-
ing to a completely degenerate vibronic triplet
(31"=0). For comparison between his molecular
field parameter z 1/" and ours, we can write 9 zV
=Xkoqo. In this regime this is the only significant
energy parameter, and k T,/XK&uqo = 0.54. '

(I() Three state regi-on.

P 'n, ~E-3r- ~e~q', «3(2o.P)"'

Here the kinetic energy n may become comparable
to P, so the treatment must be dynamic throughout,
the splitting between the lowest doublet and singlet
may be of a similar order of magnitude to that of
the molecular field, but the latter is still much
smaller than the spacing between the threefold
nearly degenerate levels. This last fact allows
us to remain in the three lowest vibronic levels,
neglecting the contribution from the excited vibron-
ic states.

Another physically important energy parameter
enters in this region, the tunneling energy 3X'.

This lowers the transition temperature.
(c) General regime The m.olecular field ener-

gy Xhvqo is sufficiently large to cause excitation
into several high-lying states. This comprises
P»o. , provided Xh+q203(2aP)'/, and P~o. , pro-
vided Ahurqo ~ ~ (including cases where n, P, and

AS+qso are of similar magnitude). kT, is now no

longer linear with X@uqo.

(d) Strong molecular field limit; It is possible
to treat this limit analytically as in the Appendix.
The molecular field energy is the only significant
energy here and k T~//A@oqo = 0.5, which is numer-
ically similar to A, yet physically very different.

(e) Ising model limit. -t(,E- o( P and Ahvq~~

«n. The lowest doublet E is alone populated.
Here the transition heat tends to zero and the
transition to second-order type. k T,/Xh~qo- q',
where q is the reduction factor (q~ —,) defined in
Sec. III. The q represents in this limit an addi-
tional parameter of the system.

Rigorously speaking, the transition is of the
first order in all five regimes (a)-(e) in accor-
dance with the Landau theory. "'" However, under
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conditions of P small compared either to o, [which
case may belong to (c)] or to the molecular field
[as in (d)] the latent heat will be very small and

the transition will appear experimentally as of the
second order. Additionally, for P not small but

Xh+qo small enough, a similar situation may ob-
tain, as already remarked under (e). Empirically,
in all systems studied so far (see Tables II-IV)
the latent heat was found sizable. The case p=0
is that instance of the Landau theory when there
is no third-order invariant in y~, in which case a
second-order transition is possible.

Prom the experimental transition temperatures
(see Tables II-1V) one estimates XRoqo =1000 cm '.
Taking as typical values P= 500 cm ', & =10
cm '" leads then to Mvqll/3(2np)' =3; this
casts doubt on the applicability of our three-state
approximation as well as on %ojtowicz's treat-
ment. 5 The considered experimental systems be-
long to our general regime (c), with kT, /Mldq~~
—0.5.

The graphical results are of three types. First
the computed transition temperature is plotted
against the Paranzeters of the physical situation
(Figs. 9 and 10). Then the temperature depen
dence of the specific heat (Fig. 11) and of the
axial distortion (Fig. 12) is shown. Lastly, the
behavior of the axial distortion as function of the
I3-site concentration of the JT ions is displayed.

Figure 9 exhibits the behavior of the normalized
transition temperature (this is T, divided by the
molecular field strength A. Kdq2o) as function of the
ratio of the molecular field to (o.p)'~ (the meaning
of which has already been discussed). The curves
are plotted for constant values of P/n and are the
results of many energy-levels calculations.

In the extreme right of the figure, one can iden-
tify the strong molecular field limit [case (d)],
which is characterized by k T,/AKuq~~= —,', as de-.
duced analytically in the Appendix.

As the ratio ASldq2o/(o. P)u2 decreases, a wide re-
gion of values for the normalized transition tem-
perature is reached, from somewhat above 0.5,
down to about 0.25, covering what we have called
the general regime [case (c)].

A further decrease of this ratio allows one to
restrict the considerations to the lowest two

ground states only, as long as P-n, coming to
what we have called "the Ising-model limit"
[case (e)], in which the normalized transition tem-
perature approaches the values of 0.25, for very
small values of P/n.

More generally the expectation values of cosy
in the degenerate ground-state components are
+ q, yielding a limiting self-consistent equation of
the form: y~ X/he q=otqgh(y ll q/Tk). This equa-
tion yields a second-order phase transition at a
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FIG. 11. Specific
heat versus reduced
temperature for val-
ues of the physical
paranleters Shown in
the first two columns
in the inset. Last
five columns contain
results obtained from
the solution of Eqs,
(9) and E~5).

0.6 0.8
Reduced temperature T/T&

temperature defined by

0 T,/Aha&q02 =q, (0. 484 & q & —,')

%'hen the concentrations of the JT ions at I3-
sites is less than unity (0 & x & 1), the molecular
field strength defined for full concentration, i.e.,
for the spinel 28~04, by Ah+go gets multiplied by
x. Agreeing to a redefinition of X which is pro-
portional to x, we see in Fig. 9 how the transition
temperature T, changes with concentration. Re-
gions in which T, depends on x linearly, superlin-
early, and sublinearly are noticed. (Note that T,/
Xh&uqo is plotted. ) Experimentally a linear rela-
tion was observed in the mixed system of Co,O&-

Mn, 04 (Ref. 40, Fig. 11), in Cu2 z„Mn„z„04(Ref.
41, Sec. III), and in the mixed oxides of the
composition Mg, Mn, ,O, (Ref. 41, Sec. 3.3). The
concentration parameter z, 0 & z & 1, is not iden-
tical with x defined in the previous paragraph,
and specifies, partly, also the tetrahedral A-site
ion concentration. The change in T, here (or in

Zn, Mn3, 04) is rather slower than in the previous
cases. On the other hand, a sublinear relation
was observed in Znz. „Mn„„O4(Ref. 41, Sec. 3.2).
A superlinear T, -x curve and the inadequacy of
the theory of Ref. 5 to explain this were noted by
Aoki for the mixed Co and Mn spinels.

In order to clearly display the influence of the
dynamic effect on the normalized transition tem-
perature, we have plotted the latter in Fig. 10

against the ratio of ~E (the energy splitting be-
tween lowest doublet and singlet) to the molecular
field Xh'&oqo for constant XKoq', /(op)'~2.

The figure includes results of calculations vrith

many levels as &veil as three-level calculations
(denoted by broken lines).

When ~(=3I")becomes negligible, one ob-
tains the static limit [case (u)], in which the nor-

l ~ l & l

0.08—
I

n)e
0.06-

j I I I l I I I I I

0.2 0.4 0.6 0.8 I,Q I.R

Reduced temperaTure TlTt

FIG. 12. Axial ratio as function of the reduced tem-
perature. Parameters of the curves I, II, and III are
as ln Flgo 11
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malized transition temperature approaches 0.54,
as was first obtained by Wojtowicz' and has al-
ready been discussed earlier in this work (see end
of Sec. III). One can see from the figure that the
smaller the ratio Xh&oq'o/(nP)', the faster the
static limit is approached.

An increase in the energy splitting 4E-3I'
brings us to the three-state region [case (b)], for
which somewhat lower values than 0.54 for the
normalized 7.', are obtained.

As dynamic effects get enhanced, hE/Xh&oqaoin-
creases further and the normalized transition tem-
perature diminishes, ultimately to q~, a value
which characterizes the Ising-model limit [case
(8)].

Figure 11 shows the temperature dependence of
the specific heat for three different systems, de-
noted by I, II, and IG, which are characterized
by a small, medium, and high value of the nonlin-
ear coupling P/n, respectively

The datum in the inset gives also for each sys-
tem the values of the foBowing: Xka&qo (the molec-
ular field coupling coefficient), the transition pa-
rameter y I,

„

the temperature kT„and AH (latent
heat), all in units of n (the rotational energy), as
well as the entropy change 48, and the specific-
heat discontinuity b C in cal/mole 'K.

As was already stated, the X-type curves pos-
sess a 5 function about the transition point in or-
der to provide a finite latent heat. This 5 function
is not shown in the figure.

Attention is directed to the rathex abrupt X shape
of the specific-heat curve for small P/n (system
I). It is as though for small P/n, most of the or-
der-to-disorder transition (which is accompanied
by negligible latent heat, thus experimentally sim-
ulating a second-order transition) occurs just in
the vicinity of T, .

For temperatures above T, , the specific heat
of systems with high P/n (system III) will reach
the value of lk (per site), as one expects for a
one-dimensional harmonic oscillator. Further
increase of the temperature will result in the pop-
ulation of higher-lying energy states, much above
the potential barrier, thus enhancing the contribu-
tions from free-particle states and finally leading
to a value of —,'k for the specific heat. For small
values of P/n, the shallow potential wells cause
the specific heat to become somewhat above that
of a free particle, as long as the temperature is
not too high. At higher temperatures the limit of
—,'k per site will be reached here, too. %e recall
that in Ref. 5 where the system constantly resides
at the bottom of the potential well, the specific
heat ls zero.

The specific-heat-at-constant-pressure curve
and a heat of transition of 0.25 kcal/mole mea-

sured for CuFe30443 are not in conflict with the
theoretical values shown on Fig. 11; however,
there is not sufficient information to determine
the parameters of CuFe304 by comparing the ex-
periment with our theory.

In order to obtain the temperature dependence
of the lattice parameters we shall assume, follow-
ing Vfojtowicz, that the c and the a parameters
of the tetragonal average unit cell are, respective-
ly, pI'opol'tlollR1 to 't118 1118RII lellgtlls of tl18 dis-
torted octahedron's axes along and perpendicular
to the z direction. Let Io be the length of the (un-
distorted) octRlledI'Rl Rxis; tlleII tile above Rssllnlp-
tion means that

0 ~ lp+Z3 —Zey 0 ~ lp+Xg —X4 —lp+ Fa- F5 .
Replacing the anionic displacements X&, F&, and
ZI by the normal coordinates Q~ and Q„averag-
ing over different sites and putting Q, = 0, one ob-
tains for the axial distortion

c/a —1=&3 Q',/(I, —Q',/13) .
We recall the relation q~= (MI0/)I)' Q~.

Figure 12 showa the axial ratio c/a —1 as a
function of the reduced temperature for the same
three systems as before.

The ratio qo/l 0 was taken to be O.OV5 in our cal-
culations which is thought to be a reasonable esti-
mate for Mn" in spinels. The "saturation value"
of (c/a) —1 at absolute zero, which can be read off
from the ordinate, differs quite considerably from
one system to another, depending on the ground-
state expectation values of coscp. In fact, the
tetragonal distortion at 0 'K is completely deter-
mined by the integral q defined earlier in Sec. III;
now, however, the state C~ is an eigenstate of a
Hamiltonian containing also a tetragonal field. The
strength of this field, as well as the value of P/n
differ in the systems I, II, and III. %hen the val-
ue of & cosy & approaches unity, we obtain a maxi-
mum value at 0 'K of 0.136 for c/a - 1, which is
the maximum attainable value of the axial distor-
tloll 111 our nlodel [iII WIIlcll (qo/fo) = O, OV5],

The experimental curves of Qhnishi, Teranishi,
and Miyahara' for CuFe, &Crp 304 CuFeg ~ SCrp, p04,
and CuFe304 are similar to those in Fig. 12. In
contrast, the (c/a —1) curves for mixed cobalt and
copper oxides and for Mn304, MgMn204, ZnMnz04,
and CoMnz04' are essentially flat for most of the
region T & T& and exhibit a drop to zero, only a few
tens of degrees before T,. The possibility that
this behavior is due to short-range correlations
will be investigated in a future work.

In Fig. 13 the effect of reduction of the JT-ion
concentration x on the axial distortion is dis-
played for constant temperature. Curves are re-
lated to system IH (whose parameters are given in
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Fig. 11) and are drawn for two values of T/T, (x
=1), where T,(x=1) denotes the transition tem-
perature of the pure system III.

For a fixed value of the temperature a character-
istic critical concentration x, exists, below which
the tetragonal phase becomes unstable. This cri-
tical concentration is well established experimen-
tally. ' ' 4' It, as well as the associated axial
distortion c/a —1, decreases with decrease of
temperature, as one can see from the figure.

There is also experimental evidence"'" for
the existence of a minimal critical concentration,
below which the system remains cubic no matter
how low the temperature may be. This behavior
may be due to a clustering effect" "or to the
correlation between distortions. Since the pres-
ent theory deals with a homogeneous crystal and

does not include short-range correlation, it does
not predict a minimal critical concentration.

Qualitatively, simila, r behavior of the axial ra-
tio to that shown in Fig. 13 was observed in

MgA1204 mixed with either Mn, 04 or MgMnz04, '
in (ZnMn20, )„(CuzGe 04), „"and in

Cup Zn, Cr~04. ' On the other hand, the singular
depression of c/a near x, is missing in the mixed
cobalt and manganese spinels, ' or in

Mg, Mn, 04. '

VI. CONCLUSION

We have shown how the cooperative manifesta-
tion of the JT effect can be treated in a molecular
field type approximation scheme, retaining the
dynamic character of the ionic motion. In this
work the phase transition in the spinel structure
has been studied; the application of the present
method to the perovskite structure will be given
in a later work.

The salient approximations or assumptions on
which the theory of this paper is based are: First,
the reliance on the molecular field approximation.

We intend to improve the method by including
short-range correlations. Second, we assumed
the cations to be locked in their positions and the
A-type ions to be absent. We discussed the im-
port of these assumptions in the paper. Third,
the extremely strong linear coupling case was
treated. This amounted to forcing the radial co-
ordinate q of the doubly degenerate vibrational
mode of each octahedron to take the value q =qo
=L/2@@. If this restriction is removed, one
would not expect the process of the phase transi-
tion, which is primarily an orientational phenom-
enon, to change essentially, except insofar that
the quantity qo [or the related parameter y~, see
Eq. (11)]appearing in the expression will not have
the value as above. Instead qo will in fact depend
in a complicated way on most other parameters
of the problem, e.g. , P (the nonlinear coupling
constant), A, (the molecular field strength param-
eter), and most importantly, on the temperature
T. It is not evident, without the development of
a specific model for the interionic interactions,
which way the value of qo will vary with T, and
we do not expect this variation to be much larger
than that due to anharmonicity, which was neglect-
ed here. Without question, the change of, for
example, the axial ratio with temperature (see
Fig. 12) near T, will be dominated by cooperative
orientational effects and not by the temperature
variation of qo.

Fourth, we have used localized vibrational
modes instead of phonons. It seems that, in the
present case where the cooperative phenomenon
is due to displacements, the proper use of the lat-
ter is tantamount to a rigorous solution of the prob-
lem, whereas the employment of the former fits
in well with the molecular field approximation.
True, Kanamori studied the cooperative problem
through the k =0 phonon. However, the other pho-
nons (2 &0) were not included, so that the fluctuat-
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ing aspects of the phenomena were absent.
We have neglected spin-orbit coupling on the cat-

ions. This would split the Mn'+ ground-state
term into five states (spaced less than 10 cm '
apart) and for Cu" would invoke a coupling of the
I"8 state with triply degenerate vibrations. Both
effects are much weaker (except very near T,)

than the tetragonal molecular field, which being
between twice and four times k T, (Fig. 9), is
characteristically several 100 cm '. For low con-
centrations of the JT ions the situation may alter,
however.

Concluding, there is a great need for more ex-
periments, especially thermal data, to confirm the
theory here outlined. It is strongly felt that the
property of the homogeneous crystal must be clear-
ly understood, before further effects, e.g. , clus-
tering, important in themselves or for applications,
can be treated.
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APPENDIX: STRONG MOLECULAR FIELD LIMIT

&1 1 0 0

1
2yg

1 010
0101

2~@+~00010

where the sign in the (1, 1) position is positive
(negative) in the cosine (sine) representation.
Consider for a moment the above matrix to be of
size NxN. If N is large, the effect of the (1, 1)
term is negligible (cf. the eigenfrequencies of a
large, finite, harmonic linear chain) and the ei-
genvalues become

E„=—

ye

cos�(2vn/N)
+ye/2XS&oqo (n = 1, 2, . . .N).

The partition function is

e ' = 2 exp[- yg2zkooq'ok Tj

xp„exp[y,cos( m2n/N) /kT]

j.= —2yq, m =n+1,
j.Sgo=Sog=+ eP

The Hamiltonian matrix is the direct sum of the
two matrices. For large molecular fields, re-
gion d in Sec. V, ye» n and ye» p, one finds ma-
trices of the form

C = —,'n(2m —1)o+ye'/aha&qoo, (m 41, 2)

&yy = ~o' —
2 ye+ ye/2~I&qo

&»=~o - op+ye/»@& qo,
1

Cm~—

1
2 yj9 )

1C,3=C3, ——2P )

vl =n+3

m=n~1,

and in sine representation:

S = 4n(2m —1) +ye/2XA&uqo, (m w1, 2)

S gg
= 4Q + o ye+ ye/2ilk Qpq

'

S» =g n+ .'P+ye/2zk-(uq'„

The matrix elements of the Hamiltonian on the
left-hand side of Eq. (10), but without the constant
term E, , are denoted in the representations cos-,'
x (2m —1)p and sin —,'(2m —1)p for m = 1, 2, . . . by
C „and S „,respectively, where the nonvanish-
ing matrix elements are in the cosine representa-
tion:

= (N/v) exp(- ye/2Xk&uqok T)

x f exp(- yecosn/kT)dy
0

= 2Nexp(- yae/2X)fu&qook T)Io(ye/k T),

where I, is the modified Bessel function of order
zero. ' The self-consistency equation, 8E/Bye
=0, Eq. (9) or (14), can be written

k T I,(y,/k T)
XKuqoo(ye/k T)Io(ye /k T)

(Al)

On the other hand, the equation [Eq. (15)], E(ye)
=E(0) which holds at the transition temperature
T, yields

Io(ye, ~/kT, ) = exp(ye, ,/2&)leqo kT, ),
where ye, is the value of y~ at T= T, . The last
equation has real solutions only when the argu-
ments of both the Bessel function and the expo-
nential vanish. Taking the limit of the right-hand
side of (Al) for ye, /k T,- 0, we obtain for the
left-hand side kT, /M&uqeo=-,'. This is the asymp-
totic value, for Xkuqo/(pep)'~o- ~, which appears
on the right-hand edge of Fig. 9.
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