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An examination of the nonlocal exchange-enhanced susceptibility of disordered alloys such
as Cu-Ni leads to the development of criteria for the formation of localized extended mag-
netic moments. A simplified model is developed for Cu-Ni, in which the nonlocal suscepti-
bility without exchange enhancement I'~& is assumed to be finite only'if i and j are nickel
sites. Using the random-phase approximation for the exchange enhancement, and assuming
that I';, extends only to nearest neighbors, the instability criterion is examined by a vari-
ational method, and conditions for formation of both localized and extended moments are ob-
tained. The results are consistent with the neutron diffraction findings that, near the criti-
cal concentration for ferromagnetism, giant moments or polarization clouds occur. These
are nucleated by small nickel clusters which are due to statistical Quctuations in the nickel
concentration. The number of these centers is enhanced by short-range-order effects. The
disappearance of all the effects above the nickel Curie temperature is discussed.

INTRODUCTION

Recent neutron diffraction results obtained by
Hicks et al. ' have given strong evidence that the
magnetization of Cu-Ni alloys near the critical
concentration is carried by giant polarization
clouds. It has been suggested by Kouvel and
Comly that the clouds are nucleated by statis-
tical fluctuations in the concentration of nickel
atoms. Thus, a localized region which is more
nickel rich than the average would form a local
moment and then polarize the surrounding medium
to form the extended structure deduced from the
neutron results.

In this article a rather oversimplified model of
the exchange-enhanced susceptibility will be de-
veloped and a criterion obtained for instability
toward spontaneous magnetic polarization. This
polarization can be extended throughout the crys-
tal, or it can be localized in a cloud about a
nickel cluster. By means of a variational method,
we shall examine several examples of each case.
Thus for the extended case, we shall look at a
uniform polarization and a nonuniform polariza-
tion in which the distribution of nickel moments
depends only on the immediate environment. For
the localized case, we shall examine the polariza-
tion clouds around both spherical and flat clusters.

FORMULATION OF MODEL

Lederer and Mills and Doniach and Wohlfarth
have made extensive use of a nonlocal exchange-
enhanced susceptibility for a uniform system such
as Pd. If we consider a d band in which ~;, -m;,
=m; is the polarization on the ith Wannier site,
we write

m; =g, r;, (gpH,'")

with f(er) the Fermi function for energy er, . The
effective magnetic field is the sum of the applied
field and a term due to the interaction. Using the
constant-I model, ' let us assume that the effec-
tive field due to the interaction is

gPH,'" =Im, (4)
We are thus working in the random-phase approxi-
mation and neglecting correlation except insofar
as it modifies I. Equation (l) therefore becomes

m,. =g,. r, , (fm, +gPH, ). . . (5)

Thus far we have been dealing with a uniform
system. Let us now assume that an equation like
Eq. (5) holds in unpolarized NiCu, except that it
holds only on the nickel. We introduce a quantity

¹ which is 0 or 1:

N; =1 for Ni

=0 for Cu

Then our assumption is

m, N; =X;g, r;,N, (rm, +gpss, .) .

(5)

Let us note that had we assumed a direct-exchange
interaction in addition to the constant I term, then
the effective field on the jth site would include the
term g, J;,N, m, /gP. This is of the same general

where H,' is the effective magnetic field on the
jth site. I';; is the nonenhanced susceptibility,
which is given by

r;, =~re* x(q, o), (2)

where the wave-number-dependent susceptibility
is given by
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form as that in Eq. (7), except for the factor N,
which would give an additional concentration de-
pendence.

Equation (7) can be obtained with some approxi-
mation by the use of the coherent-potential theory
of alloys, ' together with the constant-I Hartree-
Fock interaction term, which led to Eq. (4). Al-
ternatively, Kim has found a similar equation
using the Anderson model of magnetic impurities.
It would seem that Eq. (7) is more general than
either of the derivations, and also it is very likely
that both s-d interactions and d-d interactions are
important. We expect to publish a derivation of
Eq. (7) in the future, but for the present we shall
adopt the result phenomenologically.

In general, we expect I"ij to depend on concen-
tration, and probably local environment, and the
same is true for I. We shall neglect the environ-
ment dependence of I', but bear in mind the pos-
sible concentration dependence, although we do
not have a detailed theory for it.

If we now suppose I to be variable, we can look
for the condition for the instability toward forma-
tion of a local or extended moment by seeking so-
lutions of the homogeneous form of Eq. (7), i. e. ,
by setting H; = 0. If Ip is the critical value of I,
then we have

We see that we have an eigenvalue equation for
Ip . Since we are seeking the smallest value of

I2, we look for the largest eigenvalue of Eq. (8).
This can be approached by a variational method.
Multiplying by m; and summing, we have

I2'- Q N, m; I';,N, m, Q m, N,
ij, nn i

Treating I";j as a parameter, let us consider the
case in which we neglect all but the i=j and the
nearest-neighbor terms (r2 and r&). Then we
have

r, '= rp+ r, Z„. (14)

If the parameters Ip, I', , and I'0 were fixed and
the concentration were varied, this would give a
condition for instability in terms of a critical num-
ber of nickel neighbors for a given nickel to have
in order for a polarization to appear. We can de-
fine

z, = (1 —r, f,)/r, f,
which is the critical neighbor number, in general
dependent upon concentration. We then do notneed
to worry further about the parameters I'0, I", , and
&0 but can simply think in terms of the critical
neighbor number.

Nonuniform Polarization

We have also made a calculation using a trial
solution in which the whole crystal is polarized,
but the moment on each Ni depends on its local
environment. Such a dependence was studied by
Marshall in connection with neutron scattering.
In our case, we assume that m; is a function m(n)
of the number n of nickel neighbors surrounding
the site i. Then Z,«becomes

alloys exhibit a chemical clustering' on an atomic
scale, we include short-range order. Let x be the
fraction of Ni, and g be the probability that a neigh-
bor of a nickel atom will be nickel. If we include
a nearest-neighbor short-range-order parameter
&1, we have

g=x+(1-x) o.,
Then calling Z,«= Z„ for this case

Z„= Z N;N; gN;=gz
i j, nn

where z =12 is the nearest-neighbor number for
the fcc lattice. Thus the criterion for instabili. ty
toward the formation of a uniform polarization is

I,'=r, +r, g N, m, N,.m, gm', N, . (1O)
i j)nn i

Z,«=zgg P(n, n ') m(n)m(n
'

P(n) m'(n), (16)

We can then find the largest eigenvalue of the co-
efficient of I'1,

where the sum is now over neighbor number dis-
tributions. P(n) is the probability of there being
v nickel neighbors

Z„,= Z N, m, N,.m,. &m2N, .
i j, nn P(n) =g"(1-g)""18- 12

(17)

In the case of the pure crystal, Z,«reduces to the
number of nearest neighbors, so that we regard
it as an effective neighbor number in the alloy case.

INSTABILITY TOWARD EXTENDED POLARIZATION

Uniform Polarization

We consider first a trial function for Eq. (11)
consisting of a uniform polarization so that m; is
independent of i. Since it is known that Ni-Cu

and P(nn ) is the joint probability that a pair of
nickel neighbors will have e and n neighboring
nickels:

g g n+ n'-2-s (1 g) 20 ~s-n-n'

s=p

n —1 —s n' —1 —s s

The variation of Eq. (16) with respect to m(n)
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yields a 12&&12 system of equations whose secular
equation is

det fgp(nn ') —5„„.Xp(n) j= 0

We have found the eigenvalues of this equation,
and Z,« is somewhat increased over the uniform
polarization case as we expect. The two can be
compared in Figs. 1 and 2, which give Z,« for
various cases with and without inclusion of short-
range order. An interesting feature of the curves
in Fig. 1 is that as x approaches 0, the nonuniform
Z, ff approaches 1. This therefore describes, in
this limit, a cluster of two. For the results in
Fig. 2, we should ignore the region near x = 0 as
&, should go to 0 with x. We discuss the compari-
son with localized solutions below.

LOCALIZED TRIAL FUNCTIONS

Spherical Clusters

The extended polarization solutions do not nec-
essarily give the largest value of Z,«. We can
ask the question as to whether a localized trial
function could give a larger value. That is, we
look for a solution in the form of a polarization
cloud. We assume that this is based on a small
cluster of Ni atoms, and initially we choose a
particularly simple kind of cluster, namely, a
nickel atom surrounded by N nickel nearest neigh-

l2

0 0.2 0.4 0.6 0.8 I.O

FIG. 2. Same as Fig. 1 but with short-range-order
parameter n& =0. l.

bors where N= 10, 11, or 12. The next-neighbor
shell is assumed to have a distribution of nickel
atoms characteristic of the crystal. We call this
a spherical cluster.

As a trial function we choose the following:

IO

central Ni: rn,. = m, ,

nearest-neighbor shell: m, = m, ,

outside cluster: m;=m2e 0 '/Hi

(20)

The moment distribution assumed outside the clus-
ter is of the form we expect to find in an enhanced
medium. Using these trial functions we have for
the denominator of Eq. (11)

Qm(N;=mo+Nm, +Zg~m2(e "o ~/H';)x, (21)

where x is the nickel concentration, and the prime
on the summation excludes the nickel cluster. The
numerator is

Q m; N; m, N, = 2m 0m, N+m~H(N)

00 0.2 0.4 0.6 0.8 I.O

+ 2mgm2Nxg e 0 ~~0+ & / IRgyo+p& I

+m', gree-'o'""~ /IR, ([R, + p, l, (22)

FIG. l. Effective neighbor number Z,ff versus Ni
concentration x for various trial polarizations: spheri-
cal clusters with N neighbors, infinite plate, uniform
and nonuniform extended solutions. No short-range
ordering assumed.

where, in the sums, p goes over nearest neigh-
bors. Here II is the part of the sum in the near-
est-neighbor shell: H(12) =48, H(11) =40, H(10)
=32 or 34, the latter if the two Cu atoms arethem-
selves neighbors.
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Varying this equation with respect to mp, m, ,
and mz yields the determinental equation

N 0

det N H —XN NxR(qo) =0, (23)

0 NxR(a, ) gas q), ) —I *T)q,))
where 8, 8, and T are lattice sums. The largest
solution of this equation can be calculated for a
range of qp, and then the maximum found by in-
spection. This calculation has been carried out
by machine, and the resulting values of N,«versus
nickel concentration are plotted in Fig. 1 for &&

= 0 and Fig. 2 for &, =0. 1. These are to be com-
pared with the extended solutions. We have also
done the calculation for a cluster with 12 nickels
surrounding a copper atom instead of a nickel.
The lack of the central nickel reduces Z,«con-
siderably. We see that the localized solutions
have larger values of Z,« than the uniform solu-
tion for sufficiently small concentration. Thus
the model predicts that the instability toward
giant localized moments will occur before the
instability toward formation of an extended polari-
zation. For x in the vicinity of & the two are be-
coming comparable.

While the magnitude of the moment is not ob-
tained by the present considerations, we can look
at the distribution of the moment. In Fig. 3, we
show the moments on various neighbors for a
typical case, namely, the 11 neighbors n, =0. 1
case. Also in Fig. 4(a) we plot the parameter
Q'p for this case for &, = 0 and 0. 1 ~ It is interest-
ing to note that for slowly varying m~, Eq. (7)
gives a solution of exponential form with qpa
= [Z, /g —zj" with Z, defined by Eq. (15). The
result in Fig. 4 is close to this result for Z, ff
= Z, . In Fig. 4(b), we show the distribution of
the moment between the atoms on the actual clus-
ter and that of the surrounding region. This is
valid, of course, just at the formation point of
the moment. We see that for the vicinity of the

60 l.2
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FIG. 4. Total moment and moment on cluster re]a-
tive to mo, and (on the right) qo, versus Ni concentra-
tion g for the 11-neighbor case.

50-50 alloy, 75% of the moment is outside the
actual cluster.

where 5„O(xo-x)+x is the nickel concentration on

the nth plane. We are assuming n, =0 but will
later quote the result for a~ small. Varying with
respect to m„, we have to solve the set of equa-
tions

Platelike Clusters

Recent computer calculations of Cohen' show

that Cu-Ni alloys should contain flat platelike
clusters in (lllj planes. We have consequently
solved also for the case of an infinite platelike
cluster. We assume a (111)plane of nickel atoms,
and assume that the remainder of the crystal has
a random composition. A given ion has six neigh-
bors in the plane and three in the neighboring
planes on either side. If we assume that the mag-
netic moment is constant on a given plane, we
have

Z„,= 5K„(x'„m'„+x„x„,m m, )/g„x„m'„(24)

(Bx)) Zeff)m „+3(x„,m„, , +x„,m „,) = 0, (25)

E
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I I I
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't,
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FIG. 3. Calculated

moment distribution in

and about a spherical

cluster with 11 neighbors,

for @&=0.1 and Ni con-

centration x=0. 5.

which actually corresponds to a one-dimensional
version of Eq. (7). Equation (25) is a linear dif-
ference equation which can be solved exactly. We
make the ansatz

m„=m,.yI"I -', In i &0 (25)

Z,ff = 3x(1+y) /y (2'7)

Then we have from the n = 0 and n = 1 equations

where y is unknown. Substituting into Eq. (25) for
n &2 we have
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(6xp —Z„,) mo+ Gxmq ——0

3xom 0+ (6x + 3xy —Zetf) I) = 0
(28)

From the secular equation together with Eq. (26)
we find

y =x/(2xo- x)

Z„,= 2x(~)/(2xo —x)

(»)
(30)

This is plotted in Fig. 1 for the infinite case xQ=1.
For a finite plate we would approximate by taking
xQ slightly less than 1, say, an average fraction
for the cluster of Ni neighbors in the plane. The
result plotted is an upper limit to Z,« for finite-
sized flat clusters. It appears that the values of
Z,f f for platelike clusters are comparable to those
for spherical clusters.

For the finite &, case, the result has been worked
out assuming that the concentration x, in the first
row is x. There is some argument that it should
be g, because this plane neighbors the all-nickel
plane, but the way we do it is consistent with the
assumption we made in the spherical cluster case.
The equation corresponding to Eq. (25) can still
be solved exactly, and for small &&, the result is
the same a.s Eq. (30) with

l —~,(i —x)/x,
(3l)

This is plotted in Fig. 2, for n =0. 1, and there is
very little difference between this and the curve
in Fig. 1.

The total moment (for o., = 0) can be readily cal-
culated:

~ tot wLQxQ xQ x (32)

The model we have developed accounts in a gen-
eral way for the formation of polarization clouds
in a Cu-Ni alloy. Using the idea of the effective
neighbor number Z,«, we have found that when
the concentration of nickel is less than about 50/o,
a significantly higher number of nickel neighbors
can be gathered on the average by localizing an
assumed polarization than by spreading it out, at
least for the types of clusters considered. Let us
consider the cluster consistingof anickel andelev-
en nickel neighbors. The occurrence of this clus-
ter can be readily estimated, and it was found to
have a concentration roughly equal to that of the
polarization cloud& observed experimentally. There
are certainly other kinds of clusters, but for the
sake of argument we shall at this point concentrate

where mo is the moment on the plate. For the 50%
alloy, half the moment is outside the cluster.

DISCUSSION

Comparison with Experiment

on this typical one. Comparing Z,« for this clus-
ter with that for a uniform polarization (neglecting
the "nonuniform polarization" case for the moment)
we see that near the critical concentration we can
find a value of Z, such that the cluster is magne-
tized while the region as a whole is not.

The general character of the moment distribu-
tion about this cluster is in fair agreement with
neutron diffraction results. Thus from Fig. 4 we
have qo=0. 284 A when o.', =0. 1 for the 50% alloy.
This is to be compared with 0. 41 which is the ob-
served value. ' The total moment for this cluster
would agree with experiment (8. 5 p, ~) if the cen-
tral ¹ihad a moment of 0. 2V p, & which is certain-
ly adequate. One apparent discrepancy is that ex-
perimentally q'Q increases with Ni concentration,
whereas Fig. 4 shows a decrease. This is prob-
ably related to the fact that the exchange enhance-
ment decreases when a medium is polarized. '
In the paramagnetic region there is no conclusive
experimental evidence, and we do expect qQ to de-
crease with concentration. It is interesting to note
that there should be a change in behavior at the
critical percolation concentration ' of about 20%
Ni, below which there are nonoverlapping Ni clus-
ters with copper between. We might expect a rath-
er abrupt decrease in q, and increase in Z,«, as
x increases past x~. This does not occur in the
approximation we have used thus far.

As the Ni concentration is increased, the Z, f f

curve for our cluster crosses that for uniform
polarization. We note also that it crosses the
nonuniform polarization first. We should point out
that the latter represents a better result for the
noncluster part of the material than we used in the
tail of the local moment solution so that the cross-
over point is at too low a concentration for this
case, and in fact a compromise is probably in or-
der. At any rate, beyond the crossover, the sit-
uation is not so clear cut as previously, although
it is happily consistent with the fact that the en-
tire system has magnetized by this concentration.
To treat this region correctly we should take into
account the overlapping of the local moments. It
is also desirable to extend the calculation beyond
the linear regime when there is finite polarization.
Toward much higher nickel concentration we ex-
pect that overlap between clusters will be so great
that the local moment picture will lose its mean-
ing altogether.

Two more remarks are in order. One is that
the short-range-order parameter has more effect
on the concentration of the local moments than it
does on Z,«and the shape of the moments. The
other is to emphasize the fact that the neutron
diffraction results for local moments are quite
different from what would be observed if the polar-
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ization were of the nonuniform extended variety,
in which the correlation was with the local environ-
ment. The analogous Marshall result was invoked
by Cable, Wollan, and Child' in interpreting high-
Ni-concentration alloys, but is inadequate to de-
scribe the lower- concentration alloys.

Let us now consider the fact that our "typical"
clusters are only some of many. We expect a
variety of different shaped clusters with a distri-
bution of values of Z,«, which goes up to 12. If
we sit at a given concentration, say, 50%, and turn
on the exchange interaction, this corresponds to
lowering Z„ the critical neighbor number. As
soon as Z, goes below 12, the largest clusters
begin to magnetize, and as Z, is lowered further,
more clusters magnetize until they begin to inter-
act, and the polarization clouds begin to overlap.
Eventually, the system becomes ferromagnetic.

It is interesting to note that, because the clus-
ter size distribution would fall off rapidly with
cluster size and hence with Z,«, most clusters
will have Z,«close to Z„and the variation in
local moment size would not be so great as might
be supposed.

Finite Temperature Considerations

It is interesting to speculate on what the results
would be for finite temperatures. Clearly as the
temperature is raised, it must become more diffi-
cult to magnetize a cluster and, in fact, for tem-
peratures approaching the Curie temperature for
pure Ni, the actual neighbor number Z, approaches
12. Above the nickel Curie temperature, no mo-
ments can form at all.

It has been observed by van Kist et al. ,
' and

confirmed recently by Kouvel and Comly, that
Cu-Ni alloys in the range of which we speak ex-
hibit a strong paramagnetism outside of the ferro-
magnetic region. This is understood to be a super-
paramagnetism due to the local moments. Re-
cently, Griffiths" has shown that a disordered
Ising model displays a nonanalytic temperature
dependence of the susceptibility between the Curie
temperature for the pure Ising model and the alloy
Curie temperature. While the present system is
an itinerant one, we find that the difference is not

very great —in our approximation which amounts
to a high-temperature molecular field approxima-
tion. For the Ising case, the unenhanced suscep-
tihility goes as 1/T, whereas we expect the same
quantity to go as Xo+X, T'.

Therefore, the following reasoning would apply
roughly to the Ising case also. We have a critical
neighbor number which is going through 12 at Tc ..
Suppose

Z, =12- n(T', —T')

Near Tcwe expect only rather large clusters to
magnetize, for which we can take Z,«as

Z, gg
——12(1—PN i

)

(33)

(34)

where N is the number of nickel atoms in the clus-
ter. The reasoning is that a fraction of order
N"' of the Ni atoms in the cluster are in the sur-
face of the cluster and these have fewer nickel
neighbors. Then the size of cluster which is just
critical is, upon equating Z, to Z,«,

N = [12P /n(To —T )] (35)

The superparamagnetic contribution to the sus-
ceptibility depends on the number of clusters.
which goes as I". This should, in fact, be the
dominant temperature dependence, so that near
Tc

C/( TC T)
X super (36)

where C = (P/2nTo) in(1/x), This is thus the pre-
duction of our model for the nonanalytic behavior
of the susceptibility due to the disappearance of
the superparamagnetism.

Let us remark, however, that if most of the
clusters present are flat plates, then perhaps
there will be a temperature Tc at which these will
no longer be able to magnetize. We would then

D/(T' -T)~expect a component of y to go as e" ' c ', be-
cause the "surface-to-volume ratio" is nowN '

It would be interesting to observe this effect
experimentally.
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The spin-wave spectra in the antiferromagnetic, ferrimagnetic, and ferromagnetic phases
of FeC12 ' 2H20 have been examined at 2 and 6 'K. These spectra are well described by a spin-
wave calculation; it is shown that g,)=2.23+0.02, S=2, and that the exchange interactions are
isotropic. The (large) longitudinal anisotropy is included in the Hamiltonian as a single-ion
anisotropy (D=+9.58 +0.05 cm I), which is shown to make an anomolously large contribution
to the spin-wave energies. These results are discussed and interpreted from the point of view
of crystal-field theory. In all three metamagnetic phases, the magnetic resonance modes are
observed to interact with a field-independent excitationwith energy 31.5 cm, which is pre-
sumably an optical phonon. The measured value of the metamagnetic transition field He2
= 45.0 +0.5 kOe compares quite well with Narath's value of 45.6 kOe, but our value of H~I
=35.0 +0.5 kOe is in poor agreement with Narath's 39.2 kOe. Near Hc& (the antiferromagnetic-
to-ferrimagnetic transition field), the far-infrared spectrum appears to indicate that both
antiferromagnetic and ferrimagnetic "domains" coexist over a certain range of field. The
temperature dependence and hysteresis of these domains are also described and compared
with Tinkham's microscopic description of these transitions.

I. INTRODUCTION

Ferrous chloride dihydrate is one of a family of
crystals which exhibit strong exchange interactions
along one crystallographic axis and weak interac-
tions perpendicular to this axis. The initial mag-
netic measurements on FeC1, . 2H, O (or more
briefly FC2) were performed by Narath' and are
reviewed in this section. In Sec. II our experimen-
tal techniques and procedures are described. The
results of the far-infrared measurements in all
three metamagnetic regions are shown in Sec. III
to determine both the magnitude and anisotropy of
some of the exchange interactions. These results
are interpreted in terms of crystal-field theory
(Sec. IV) and compared to the results of Johnson
and of Inomata and Qguchi (which are in disagree-
ment). In Sec. V the observed coexistence of anti-
ferromagnetic and ferrimagnetic resonance modes
at the same field is described. The results of this
work are summarized and discussed in Sec. VI

and compared to the results on CoC12 2H,O (CC2). '
One of the most prominent features of the data is
a phonon which is observed to interact with the
magnon states. This interaction is only briefly
described in this paper, as it is discussed in more
detail elsewhere, ' together with the observation of
a similar level in CC2.

Ferrous chloride dihydrate (FC2) crystallizes
in linear chains of-FeC12 —whichrunalong the c
axis. The exchange interaction Jo between Fe"
spins within the same chain is ferromagnetic and
much stronger than the antiferromagnetic interac-
tions between chains. The chemical bonding with-
in a chain is similarly stronger than the weak
forces between chains; hence, the crystals cleave
easily parallel to the c-axis. The crystal sym-
metry is monoclinic with a twofold axis (b) and
a mirror plane (ac). Although the unit cell con-
tains two formula units, these are equivalent.
Narath' points out that magnetic canting effects
are not expected because the midpoints between


