
SUSCEPTIBILITY AND FLUCTUATION. II

of the inelastic scattering for momentum transfer
equal to kp can be used. An analysis of such measure-
ments in terms of a Lorentzian shape with energy
half-width I' has been reported' for T & T„. As re-
marked in Sec. II, this approximation to the line
shape does not yield a convergent integral for 0
in Eq. (11). If the measurement at T T„=-8K is
used with a Lorentzian cutoff at energy transfer
5I', the result is 0=7.2& 10 '. If the cutoff is at
10K', the result is 0 = 1.6 ~ 10 . Even with the
larger cutoff, the maximum possible difference
here between yr and PS' ' is only 0. 14%%uo. The ex-

perimental width I' decreases on further approach
to T„, and the possible deviation between X~ and
PS' ' also decreases.

A more precise application of such measure-
ments to this topic and to the determination of the
second moment I" ' ' will depend on improved mea-
surements of the spectral shape function at large
energy transfers.
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A general lattice-statistical model which includes all soluble two-dimensional model of
phase transitions is proposed. Besides the well-known Ising and "ice" models, other soluble
cases are also considered. After discussing some general symmetry properties of this mod-
el, we consider in detail a particular class of the soluble cases, the "free-fermion" model.
The explicit expressions for all thermodynamic functions with the inclusion of an external
electric field are obtained. It is shown that both the specific heat and the polarizability of
the free-fermion model exhibit in general a logarithmic singularity. An inverse-square-root
singularity results, however, if the free-fermion model also satisfies the ice condition. The
results are illustrated with a specific example.

I. INTRODUCTION

Considerations of the phenomena of phase tran-
sitions have been, to a large extent, centered
around the study of lattice systems. Besides the
intrinsic interest surrounding the lattice systems

as models of real physical situations, one is fur-
ther attra, cted to their consideration by the possi-
bility of obtaining exact nontrivial solutions. But
the soluble problems are very few in number. The
Ising model' of magnetism, first proposed some
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40 years ago, still stands at the very frontiers of
present knowledge. The only other nontrivialmod-
els of phase transitions possessing rigorous so-
lutions are the recently solved models of hydrogen-
bonded ferroelectrics and antiferroelectrics. 3

It is perhaps not too surprising to find that, while
the physical mechanisms responsible for the phase
changes associated with the Ising and the ferro-
electric models are quite distinct, the mathemat-
ical descriptions of these models are not too dif-
ferent. The central mathematical problem involved
in all these models is to evaluate a certain gen-
erating function in the language of linear graphs.
In an effort to search for further soluble prob-
lems, we have previously extended these consider-
ations by proposing a general lattice-statistical
problem. While on the one hand this problem ap-
pears as a general model of ferroelectrics, in-
cluding all the previously solved models, on the
other, it also includes a number of yet unsolved
statistical problems. In Ref. 9, we considered
an approximate treatment of one aspect of the un-
solved problems, namely, the next-neighbor Ising
problem. However, there exist other soluble
cases of this general problem which do not corre-
spond to any of the known solutions that have been
hitherto discussed. In the present paper we return
to the study of these situations. The problem un-
der consideration is first defined in Sec. II. Some
general symmetry properties of the model are
considered in Sec. III where the soluble models
are categorized. The thermodynamic properties
of one such category, the free-fermion model, are
discussed in detail in Sec. IV. The results are
illustrated by a specific example in Sec. V.

II. DEFINITION OF PROBLEM

Consider a periodic square lattice composed of
N lattice sites (or vertices) and of 2%lattice edges.
An edge can be either covered by a bond or empty.
A definite covering of the lattice edges is called
a bond complection G. Clearly there are a total
of 2' distinct bond complections. The number of
bonds incident to a vertex in a given bond com-
plection is the degree of the vertex. A bond com-
plection will in gene."~l consist of vertices of de-
grees ranging from 0 to q, where q is the coordi-
nation number of the lattice (@=4 for square lat-
tice). We shall confine ourselves to considerations
of bond complections G' consisting of vertices of
even degrees only. There are then eight different

types of bond configurations which may appear at
a.vertex. These are numbered from 1 to 8 as
shown in Fig. 1. An empty lattice edge will be
called a hole. Two bond configurations (or com-
plections) are conjugate to ea,ch other if they a,re
related through the interchange of all holes and
bonds. Thus, for instance, the vertex types (1)
and (2) of Fig. 1 are mutually conjugate N. ext, a
weight factor v($) is associated with each vertex
configuration of type $(= 1, 2, . . . , 8). The weight

W~ of a bond complection G is then taken to be the
product of all N vertex weights. The mathematical
problem we face is to evaluate the partition sum
or the generating function

Z = Q Wo. = Z g (u ($;) .

Here, the summation is extended over all bond
complections G' consisting of vertices of even de-
grees; the symbol (; refers to the type of config-
uration at the ith vertex for a given bond complec-
tion G'.

For problems of physical interest, energies are
assigned to the different vertex configurations and
the weights &u($) are simply the Boltzmann factors

w(() = exp(-P8, ), (2)

where e& is the energy assigned to the /th type of
vertex configuration, T = (kP) ' is the temperature,
and k is the Boltzmann constant. In such cases,
Z is the partition function of the system and the
thermodynamic functions can be deduced from the
free energy per vertex

f= —P
' lim —lnZ.

The previous models of phase transitions are re-
covered for special choices of the vertex energies.
For easy reference, a collection of these special-
izations is included in Table I.

One physical quantity of interest in the consider-
ation of the ferroelectric and antiferroelectric
models is the polarization. In these models, each
lattice edge is considered to carry a (unit) dipole
moment. %e now make the correspondence that
an edge covered by a bond means a dipole pointing
toward the left (for horizontal bonds) or in the up-
ward direction (for vertical bonds). Then, in the
presence of an external field g= (k, v), the dipole
energies —d 8 are included by redefining the ver-
tex energies

(2) (5) (6) (7)

0
e »e \ 0

FIG. l. The eight different
kinds of vertex configurations.
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TABLE I. Reduction of the general problem to soluble models.

e2 e3
I

e4 es e6 e7 e8

Singularity
in specific

heat

KDP

Modified
KDP

Modified
~e

Rectangular
Ising

Tri-
angular
Ising g

—(J, +J) J(+J2

(Ji +J2+ J3) J1 + J2 J3 J1 J2 J3

E'4

oo

0 0 oo

—Jg+ J2

0 0 26

0 0 0

—J1+J2+ J3 J3 J3:—J3 —J3

(T T )-1/2

none
(T —T) 'i2

lnf T-T, f

lnf T-T, f

lnfT-T t

lnf T-T, f"e$+ e2 = e7+ e8,Free-fermion e3+ e4= e5+ e6
Models"

Conjugate ln} T —T, I

Models'

Reference 3.
Reference 3.
A limiting situation of X transitions, see Ref. 8.
Reference 6, restricted to &3+&4——e&+e6.

'Reference 7. This is a special case of the conjugate model.
fReference 9.
The vertex energies are obtained by putting J'= 0 in Eq. (Al) of Ref. V. The resulting critical condition (34) for the

triangular lattice now has a compact form and applies to both ferromagnetic and antiferromagnetic interactions.
"This becomes the modified KDP model if e& =~.
See description in text. Here we have taken gfg2 g3g4 1.

e, =e5,

es= es,

ev= ez,

e, =e, -(b+v),

e, = e, + (b+ v),

e, =e, -(b-v),
e4= e, + (b —v), es= es .

Consequently, the polarization P is given by the
expressions

P„=-QT Bf

(4)

(5)

symmetry then leads to the symmetry relation

Z(a, b) = Z(b, a) . (6)

We shall now temporarily disregard the weights
a and b and write Z =Z1234 where each numerical
$(= 1, 2, 3, 4) stands for the vertex weight ~($).
Since it is immaterial whether to call the bonds
holes or bonds, Z is invariant under the inter-
change of bonds and holes in a given (vertical or
horizontal) direction or in both directions simul-
taneously. We then have the symmetry relation'

Z1234 Z2143 Z 4321 Z3412 ' (7a)

where f is the free energy (3) evaluated with the
energies e& in the place of e;.

III. GENERAL CONSIDERATIONS

The partition function (1) has not been evalu-
ated in a closed form for its most general expres-
sion with arbitrary vertex energies. The general
partition function possesses, however, a number
of symmetry properties that can be obtained
through the following considerations. '

First, it is easy to see that pairs of vertices (5)
and (6) or (7) and (8) occur together. Therefore,
without loss of generality, we may take &u(5) = ~(6)
= a, ~(7) =&a(8) = b Consequentl. y, Z is invariant
~~der the change of sign of a or b. The left-right

Z1243 2134 Z4312 Z3421 (7b)

Relations (6) and (7) tell us that the partition func-
tion is invariant with respect to interchanges be-
tween conjugate pairs provided that no changes be-
tween the vertices 1, 2, 3, 4 and 5, 6, 7, 8 occur.

If the conjugate pairs have the same weights,
further symmetry relations exist which permit
permutations between the vertices 1, 2, 3, 4 and
5, 6, 7, 8. Let us denote the weights by

(u(1) =(u(2) =u„ (o(3) =(u(4) =u„

Furthermore, a 90 rotation of the lattice inter-
changes only the indices 3 and 4 (and also the sym-
metric weights a and b); hence we have
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(u(5) =(u(6) =u„ (u(7) =(o(8) = u„
and write Z = Z(u„u„.u„u4) .
Equations (6) and (7) now read

Z(u2y ups u3& u4) Z(ups upy u4) u3) ~ (9)

We now interchange the bonds and holes along the
zigzag paths shown in Fig. 2. Decomposing the
lattice into two interconnecting sublattices A. and

8, it is then easy to see that if on sublattice A we
have the following vertex interchanges:

(1) —(6), (2) —(5),

(3) —(7), (4) —(8),
(loa. )

then on sublattice 8 we have the interchanges

(10b)

Using (8), we see that (10a) and (10b) are identical
and we are led to the further relation

Z = Z(ug, u2,
'

u3y u4) = Z(up~ u4l uy, up) . (11)

In both (9) and (11), it should be remembered that
Z is also invariant under the replacement of any

u& by -u&.
Another useful relation can be obtained by ap-

plying to the partition function a rearrangement
procedure, known as the Inethod of weak-graph
expansion. " The discussion of the method and its
application to the present problem have been pre-

viously given by one of us. ' We write here only
the resulting relation'

Z(up~ up( u3) u4)

1 1= Z(p(up + up+ u3+u4)y 2(up +u2 u3 u4)

2 (uf up + u3 u4)p 2 (ug u2 u3+ u4)) . (12)

Further iterations of (12) yield no new relations
except those specified by (9) and (11) and the re-
placement of u& by —u&.

The reduction of this general problem into spe-
cific models has been given in Table I. For some
of these special cases, a closed form of the free
energy can be obtained. We classify these soluble
cases into the following categories.

a. Th.e ice mope)~ Included in this cate-
gory are the models with the ice-condition con-
straint &u(7) =v(8) =0 or equivalently e, =ee=~.
These include the potassium dihydrogen phosphate
KDP model of ferroelectrics and the F model of
antiferroelectrics considered by Lieb. ' The exact
solution of the ice models can be obtained by a
method which explicitly uses the fact that the ver-
tices (7) and (8) a,re excluded. " The readers are
referred to Refs. 3 and 4 for detailed discussions
of these solutions. The specific heat exhibits in
general a I T —T, 1

" singularity in the ice mod-
els. "

b. The conjugate models. Included in this
category are the models specified by (8) 'but with
the further constraint

u)up = u3 u4 . (13)

It has been shown" that this model is equivalent to
an Ising model of a rectangular lattice with the in-
teractions J'= —', (e, —e,) and d'=2(ep —e,). Hence,
the specific hea. exhibits a ln I 7 —T, I singularity.
The free energy has the following closed expres-
sion':

(2r 2

Pf= —,I de dyin[(u, +u, )'+(u, —u, )'
8m

FIG. 2. The zig-zag paths along which the bonds and
holes are interchanged to obtain the symmetry relation
(xx).

+ 2(u, —u3)(up —u4) cos(8 —(f) )

+ 2(uy —u4)(up u3) cos(0+ Q)] . (14)

This expression can also be obtained by using (12)
to convert the model into the free-fermion model
considered in the following. An interesting ap-
plication is the modified F model of antiferroelec-
trics considered by one of us.

The free fep.mion model-s. Included in this
category are the models satisfying the relation'

(u(1)(u(2)+ &u(3)(u(4) = &u(5)a)(6)+(o(7)(u(8), (15)

which we refer to as the free-fermion condition.
This category includes the various planar Ising
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21l' 2fl'

Pf = — s d8 dgln[2a+ 2b cos8+ 2c cosP
8m

0 0

+ 2d cos(8 —Q ) + 2e cos(8 + Q )], (16)

models and the modified KDP model of ferro-
electrics. ' A closed expression for the free
energy, which is valid when (15) holds, has been
obtained in Ref. 9 using a method similar to the
8-matrix formulation for the many-body problem.
It was seen there that the imposition of the con-
dition (15) is equivalent to the consideration of a
system of noninteracting fermions. For com-
pleteness, we now give below the closed expres-
sion for the free energy f and include in the Ap-
pendix an alternative derivation using the method
of dimers:

(0 Q (03 and e4. W r itin g &o; —= v (i), w e have exp li c-
itly

g 2 ((4)] + (A)2 + (g3 + (lt)4/p y (lt)$~3 (I/2404
2 2 2%

(20)
C = COg(d4 —Q)2CtP3, d = co3m4 —e&(d2, e = 0.
One of the two integrations in (16) can be per-
formed. Here, we use the integration formula

J d8 ln(2A + 28 cos 8+ 2 C sin 8)

= 2vin[A+(A2 f12 C )
~

] (21)

where for our purposes

A = a+ c cos&f&, 8 = b+ d cosP, C = —d sing . (22)

Then, expressions (16) and (21) lead to the follow-
ing expression:

where

2a = [~(1)1'+[~(2)]'+[~(3)1'+[~(4)]',
2''

Pf = —— dQ 1n(A+ [Q(P)]'~s}. (23)

In this section we discuss the thermodynamic
properties of the free-fermion model defined by
(15). For the free-fermion condition (15) to hold
at all temperatures, we must have the identities

eq+e2, e3+e4 = e, +e6, e7+e6 (16)

b = (u(1)(u(3) —(u(2)(u(4),

c = (o(1)(o(4) —(u(2)(u(3),

d = (o (3)(u (4) —(u (7)(o(6),

e =(o(3)(u(4) —(o(5)(o(6) .
It is to be noted that the free-fermion condition
(15) remains as an identity when we replace e,
by e; as given by (4). Hence, it is possible to dis-
cuss the properties of the free-fermion model un-
der an external electric field. As seen from
Table I, special cases of the free-fermion model
include the various planar Ising models as well as
the modified KDP model whose thermodynamic
properties are well known. Besides these special
cases, however, discussions of the thermodynam-
ic properties of the free-fermion models in gen-
eral have not been given. " Such a study is es-
pecially useful in view of the different critical be-
haviors exhibited by the Ising and the modified
KDP models. For example, it would be illuminat-
ing to see how the change of critical behavior
comes about as the vertex energies are varied.
These discussions will be the subject of Sec. IV.

IV. FREE-FERMION MODEL

8 = C02C03+ (OyC04 . (25)

Clearly, in the discussion of the analytic proper-
ties of f, it is important to consider whether Q(Q)
is a complete square. We have the following
cases to consider.

Case (1): Q(&f&) is a complete square These.are
two possibilities.

(a) x = z': This is equivalent to the condition
(0 ] (J02M 3(t) 4 0. Without loss of generality, w e may
take &u, =0. Then, the free-fermion condition (19)
also implies +7~6= 0 and the problem reduces to
a special case of the ice models, i. e. , the modi-
fied KDP model considered in Ref. 6. More ex-
plicitly, (23) becomes

1
Pf = —— dP ln —,'(vz+ u&3+(04 2~za3 cosljl

4m

+ IN2+(d3 QP4 —2(u2(u3COSQ ~)
2 2 2 (26)

which is precisely Eq. (7) of Ref. 6. The impor-
tant thermodynamic properties of this model are
summarized as follows. A second-order phase
transition occurs at a temperature T, determined
by

Here

Q(Q) =A' 8 —C -=y'+z —x' —2yzcosg+x cos~Q

= x'(costP —yz/x')'+ (1/x')(x' —y')(z' —x'),
(24)

and x —(0~(Og —COg(d4, y = 2gQ)y —Q7~ —(de+(d4),
jr 2 2 2

Because of the symmetry relation (6), we may
take, without loss of generality, (d, + M, + M, = 2 m ax [Q3„(d„&d,}. (27)

1+e2 7+ 8 3 e4 5 6 (19)

Then, thefree energy is given onlyin terms of (d„

The specific heat c vanishes for T & T, and behaves
as (T —T,) '~3 near and above T,. We note that we
have obtained here the (T —T,) " singularity of
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the ice models.
(b) x =y '. This i.s equivalent to the condition

E =' Co+ C~ I( + C2Iz + C3I3 p

where

(s8)

((01+ (02 —(03 —(04)((01 —(da —(03+ (d4)

X~((01 (da+(03 (04) = 0. (28)

We then have two alternatives if (28) is to hold at
all temperatures. (i) (e„ea}=fe„e4}. It is easy
to see that (23) reduces to

b'
if b &da or sgn(e1 —e4) =sgn(ea —ea),

2b

pf = ——,
' ln(2((0', + (0',)) . (29)

2if b &d or sgn(e( —e4) =sgn(ea —e3)
2d

(ii) (e„ea}=(ea, e4}. Again we have the simple
expression

pf = —2 111(2((d1+ (da+(01(03)) . (so)

Q(o) =(y-z)', Q(1/) =(y+z)',

Q((t (&)
= (I/x')(x' —y')(z'- x') &0,

(32)

where cos(t&a=yz/x for ]yz) ~x, and Q((t&3) is
positive because z —z, and hence x —y . There-
fore, the only possibilities are to set Q(0) or Q(1/)

equal to zero. This is equivalent to z =y and

hence to the critical condition

~1+~2+ ~3+ +4)(+1 ~2+ +3 +4)

((01+ (02 (03 +(04) ((01 + (02 + (03 (04) 0 ' (33)

Equivalently, (33) can be rewritten as

(0(+(02+(03+(04=-2max((d„(d„(0„(04}. (34)

It is now straightforward, although tedious, to
compute the energy E through direct differentia-
tion of (23): We find

IBB'+CC'"lB"CE= (Pf)=-——1

8P 4m

where the primes denote derivatives with respect
to P. We now introduce (22) and after some re-
duction we arrive at the expression

In either case, the model exhibits no phase transi-
tion, a fact which can also be seen from the fact
that the ground state is macroscopically degen-
erate.

Case (2): Q(P) is not a complete square One o.b-
serves from (23) that f is analytic in T except at
the points given by Q(Q) =0, where some deriva-
tives of f diverge. Now we find Q(P) —0 by (24).
Therefore, the critical condition is obtained by
setting the absolute minimum of Q((t&) equal to
zero. Since

Q'((t& ) = 2x' sin(&t& (yz/x —cosP ), (sl)

there are three possible extreme values for Q((t&),

a b' d' c b' d'
C = —a'+ — —+ —+ ———(b' —d'),

2 b d 4bd b d

C3=
2 b

—
d

b —.d

(37)

and I» I» and I3 are definite integrals given by

I, = (4 )1/' f, [Q((t&)] "'d(t/,

I, = (44()
'

fa cos(t&[Q((t&)]
' ' d(b,

(38)

I, =(41/) 'f (I+(dcos(t) '[Q((t)] "ad(t&,

z & x & y & 0, cos 0(= (z cosP —y)/(z —y cosp),

z &y & x &0, sin(a = (z cos(b —y)/(z —y cosP), (39)

y & z &x &0, sin(a = (y cos(t& —z)/(y —z cos&t&) .

It is then elementary to find

(i) z &x&y &0:

1
I a a 1/2 &(la)&

v(z —y )

I2 2 2 1/2 [I~(b) 11(41 ia )]
myjz —y &

(0=2bd/(b +d') .

In all these formulas, Q((t&) is given by (24) and (2,

b, c, d given by (20). The integrals I1, Ia, and Ia
can be expressed in terms of the complete ellip-
tical integrals of the first and the third kinds. In

evaluating these integrals, it is sufficient to con-
sider positive x, y, and s only. For with negative

x, y, or z, we may use the simple relations

I,(x, y, z)=I,(+x, +y, +z),

Ia(x, —y, z)= —Ia(x, y, z),

Ia(x, —y, z, (0)= Ia(x, y, z, —(0), etc.

For positive x, y, g, the following definitions of
a new variable a are useful:
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1

m(y+ (dz)(z —y')' eee ~ ((ee+ e„)—(e„+e, )]I
1

cos ' e6 cosh e8 e &1

where k = (x —y )/(z2 —y'),

n = y'/(z' —y'),

m = ((d y+ z)'/(1 —a)') (z 2 —y') .
(40)

(ii) z &y&x&0:

1
I,=~( 2 ~ H(g)e

where q'= (y' —x')/(z' —x'),
r = —y'/z,2

s = —((dz+ y) /(z+ (dy)

(41)

(jji) y & z & x & 0: Same as case (ii) only with y and

z interchanged. In these expressions, K and II

are, respectively, the complete elliptical inte-
grals of the first and the third kinds defined by

ff (k) i'e/2 (1 —k2 sin2~ )-1/2 d(2
Jp

(42)
11(n, k) = 1' '/2 (1+n sin o. ) '(1- k sin /2) " de/.

0

The phase transition occurs at ly I
=

I z I or q
=1, x=-1. While K and II diverge as lnIT —T I

when q -1, it can be seen from (36) and (37) that

E C, + I T- T, llnlT- T, l .
Hence, E is continuous at T, and the specific heat
diverges logarithmically near T, .

A specialfeature is thatthe energy E has differ-
ent expressions for I x I & I y I and I x I & I y I, although

Is I
= ly l is not a singular point. Since for the

quartic Ising model only one expression is needed
for E, it is of interest to investigate the condition
under which I x I

=
I y I may occur. To obtain such a

criterion, let us arrange the energy values e„e2,
e3, and e4 according to their magnitudes such that

eo & e~& e~& e, .
Then, x = y corresponds to

CO++ (d6= ('d~+ CO& &
(43)

where (d, = exp(- e /kT), etc. Equation (43) can
be rewritten as

1
f2=

(
2,)„, [z'&(g)+ (y'-z') 11(r, k)],

1 (
2 ?)

re . =. . . , „, ez(e)+ rr(e, ))).
]? (y+ (dz) (z -x Z+ COy

(dgHV+(d2(HV) '+(d,HV '+(d, H 'V

= 2max ((d]HV, (d2(HV), (d2HV, (d4H p'J (44)

where H -=e~", V' —= e~".

The polarizations P = (P„, P,) for the free-fermion
model can be obtained from (5) and (23). The ex-
pression for P„ is given below in (45) and (46),
while the expression for I', is the same except for
the interchange of (d3 and v4:

P„=—
(

2 z)»2[II(n, k) —K(k)], T& T,

2 y —z („
(45)

Near T„we have asymptotically2,x x(z'- y')
'e-'(e*- a) ")

Z
2 2 4 l4+

( 2 2)~/21n —,+ O(k ),

z 2 „y x y —z2 2

x 7T y 2 7t'Q

(46)

Hence, (43) has a solution, and thus it is possible
to have x'=y' only for

eg + ey & e~+ e6 ~

Lt is not difficult to show that, in fact, Ixl & Iyl at
all temperatures if e~+ e„&e + e, . An example is
the quartic Ising model for which the equality holds
(cf. Table I), and the energy is given by the same
single expression both above and below the tran-
sition temperature T, . For a triangular Ising lat-
tice with the corresponding vertex energies given
in Table I, it is possible to satisfy (43) whenever
the interactions are antiferromagnetic. The tem-
perature thus determined is the disorder temper-
ature" at which the spin correlations undergo a
remarkable change. "

Finally, we consider the inclusion of an external
field g. Earlier, we have shown that the inclusion
of a field amounts simply to redefining the vertex
energies. Since the new vertex energies (4) also
happen to satisfy the free-fermion condition, we
have already solved the problem. In fact, all anal-
yses of this section again go through provided that
we use the new vertex energies in all formulas.
In particular, the transition temperature T, now

depends on the external field and is determined by
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not be reproduced here. 0 The transition temper-
ature is given by kT, /e =In(v 2+1)= 1. 13489. . . .
We shall now consider the ferroelectric version
of the model by imposing an external electric
field. The transition temperature T, is now given
by

HV+ (HV) 'u +uHV '+uH 'V

=2max/HV, (HV) u, uHV, uH 'Vj,

where u=e ~'.

(48)

-4 -3 -Z 0
2 h/e

3 4

The entire kv plane is then divided into four re-
gions (see Fig. 3) depending on which vertex
1, 2, 3, or 4 has the lowest energy (or the largest
weight). We have plotted in Fig. 3 the constant
T, contours in the hv plane. The four regions de-
noted by I, II, III, and IV are, respectively, the
regions where the vertex 1, 2, 3, or 4 has lowest
energy. Relating the vertex energies —including
the external field (k, v) —to the interactions Z, and

Ja of a. rectangular Ising lattice (see Table I), it
can be seen that our model is equivalent to rec-
tangular Ising lattice with J,= &&+v, J2= 2&+k.
Hence (48) is equivalent to the well-known relation

FIG. 3. Constant T~ contours in the jgg plane. The
transition temperature T, is measured in units e/k.

&+ 2v . E+ 2IE
sinh sinh = l.

C C

(49)

Z —y 4,4
2 2

+
(

a ppya ln + O(k )

For v =0, T, as a function of k is plotted in Fig. 4.
Finally, we plot in Fig. 5 the polarization P„as a
function of T.

where k = (1 —k )'~ . The polarization is non-

vanishing and continuous at all temperatures. It
behaves near T, as C, + C, (T —T,) ln(T —T,).
Therefore, the polarizability SP/ae exhibits a
logarithmic singularity. Thus, we see that in the
ferroelectric version of the free-fermion model,
the phase transition is not marked by the appear-
ance or vanishing of the order-parameter polar-
ization. It is instead associated with the logarith-
mic divergence in the specific heat and the, polar-
izability. We also note that none of these thermo-
dynamic functions has a simple power-law depen-
dence on l T —T, l near T, .

V. NUMERICAL EXAMPLE

To illustrate the above results, we shall now

consider a specific example with vertex energies

e, =0, e2=2& &0,
e4 e5 e6 e7 e8 = ~

(47)

As seen from Table I, this specifies precisely the
regular Ising model with an interaction parameter
J, =J2= & E. A plot of the energy and the specific
heat of this model can be found in Ref. 7 and will

VI. CONCLUSIONS

We have defined a general lattice-statistical
problem and studied in detail the soluble situa-
tions. It is found that the specific heat behaves as
lT —T, l

' near T, for the ice models and pos-
sesses the lnl T —T, l singularity for all other sol-
uble cases. From these results and the study of
related models, ' it appears that the logarithmic
singularity is perhaps commonplace except in the
ice models, which happen to exhibit a l T —T, l

singularity in the specific heat.
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FIG. 4. The transition tempera-
ture T, as a function of h with v = 0.
T~ is in units e/k.

-IO 0
h/e

IO

APPENDIX

In this Appendix, we derive the partition function
(16) for the free-fermion models using the method
of dimers. ~' First, we construct a dimer lattice
by expanding each vertex of the square lattice into
a city of internally connected points. Provided
that the structure of the city and the edge weights
are chosen properly, the partition function is iden-
tical to the generating function for closely packed
dimer configurations on this expanded lattice. It
turns out that this trick can be accomplished by
choosing the Plazas dimer city of Fig. 6 with the
weights shown in the graph. ~~ In Fig. 7, we list
all possible dimer configurations for a dimer city.
It is then easy to see that the correct vertex

weights are indeed generated. For example, the
first row of Fig. 7 yields

x2x —+ —x~2 x 5 —+ 8 xv x 1
co, (d~

3

Q)5 —(d3 1
4x 1 = („,~,,„,„, „3„,)

QPp COg

The last equality follows from the free-fermion
condition (15). The other vertex weights can be
generated accordingly.

The next step is to direct the edges of the dimer
lattice so that every closed polygon drawn on the
expanded dimer lattice containing an even number
of edges and enclosing an even number of points
has odd numbers of arrows pointing in each direc-

I.O

I. 13
I

I

I

I

I

Px
FIG 5 Horizontal polarization

as a function of temperature.

0'
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~ A % A p ~

FIG. 6. The dimer city and the edge weights.

tion. This ol lentation can be accomplished as
shown in Fig. 6. The dimer generating function,
which i.s equal to the partition function, can now be
written as a Pfaffian and evaluated accordingly. 2'

For a periodic lattice, the result obtained is FIG. V. The correspondences between the bond config-
urations and the dirner configurations.

2~
Pf= —lim N»&=, de dplnD,

+~oo Bm
0 0

where D is the determinant given by
Note added in proof. We now realize that case

(2) of the free-fermion model discussed in Sec. IV

is completely equivalent to the Ising model on an
anistotropic triangular lattice. This makes our
derivation of the logarithmic singularity in the
specific heat obsolete. The formulas (31)-(40)
are still useful, however, since none has been
given in detail in the literature for the triangular
Ising lattice.

606 —QP 4D= -8-'~ —1
COp

o ~ (A2)

-i,8—8 0 0

0 0

Substitution of (A2) into (Al) now yields (16). '
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The elastic properties of MnF2 have been investigated in the temperature range 4. 2 & T & 330 K
using a cw transmission technique. The measured values at T= 300 K of the six adiabatic elas-
tic constants in units of 10 dyn/cm are c$f 10.24, @33

——16.55, c44=3. 185, e66=7. 208, c~2
=7.95, and c&3

——7.07. The elastic Debye temperature calculated from the low-temperature
elastic-constant data is 8&(E) = 261.6 K. Using the force-constant model of Matossi for the
rutile structure and the published frequencies of the Raman-active vibrational modes, theoreti-
cal values of the elastic constants are calculated and found to be in fair agreement with experi-
ment. Each elastic constant [except c' =

& {e&&—c&2)j shows the expected linear decrease with
increasing temperature in the region T- 9&(E). On the other hand, c' has not yet reached this
limiting high-temperature behavior at T= 330 K. The effects on the elastic properties of vol-
ume magnetostrictive coupling to the spin fluctuations near the Noel temperature (T= TN) and
of linear magneto-elastic coupling to the magnetic modes in the antiferromagnetic state (T
& T&) are discussed. The elastic oonstant @44 is found to have a component at low temperatures
(T«T&) decreasing approximately as T . This striking phenomenon is discussed on the basis
of two possible processes, neither of which provides a completely satisfactory explanation.

I. INTRODUCTION

The study of thepropagation of ultrasonic waves
in antiferromagnetically ordered media has proven
to be a valuable tool for the investigation of avari-
ety'of phenomena. Velocity measurements are
used to measure the elastic' and magneto-elastic
coupling constants, ' attenuation and velocity
measurements are used to study dynamic critical
phenomena in the neighborhood of the Neel tern-
perature; anomalies in the elastic properties at
the spin-flop transition have been used to study
the magnetic phase diagram; and finally, it has

been shown that in certain systems resonant nu-
clear spin-phonon interactions can be studied. '

In this paper, a systematic study of the elastic
properties of MnF~ is reported. The adiabatic
elastic constants associated with longitudinal and
transverse ultrasonic propagation along each of
the symmetry directions [001], [110], and [100],
as well as the nonsymmetry direction perpendi-
cular to the (Oll} plane have been measured in
the temperature region from 4. 2 to 330 K. These
measurements provide a complete description of
the elastic properties of this material.

MnF2 is an attractive material in which to study


