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We compute in this paper the exact coefficients, in a magnetic field, of the first eight powers
of x= JfwT for the spin —

2 Heisenberg ferromagnetic model for five lattices. We use this re-
sult to obtain the magnetic equation of state in the form tanh(H/tf. 'T) =-Mg(x, M ); again we ob-
tain the exact coefficients for the first eight powers of g. From this equation, we are able to
extrapolate and determine the magnetic phase boundary with reasonable accuracy for M& 0,8.
We have investigated the critical exponents g, P, and 6. We are unable to determine &; we
find an effective P over a range of M of P=0.35+0.05, and we estimate 6=5.0+0.2.

r. 1NTRODUn'ION

In a previous paper, ' to which we shall refer
subse(luently as I, the free energy E(H, T) of the
nearest-neighbor spin- —,

' Heisenberg model was
expanded as a double power series in the magnetic
field H and inverse temperature 1/T. More pre-
cisely, starting with the Hamiltonian

P(i&. P(i& HQ o (I&

the associated free energy, given by

E(H, T) = —&(Tln Tr exp(- K/((T) (2)

where H is the number of lattice sites (surface
effects being ignored), the function Eo(x) was
found as a power series in x through x' for the
three cubic lattices; face centered cubic (fcc),
body centered cubic (bcc), and simple cubic (sc);

was expanded as a double power series in the var-
iables x =8/&(T and y -=pH/&(T. In (1), (I'" is the
Pauli spin vector at site i of a given crystal lat-
tice, 0, is the component of 0 in the direction of
the external magnetic field H, LU, is the associated
magnetic moment, and J is the exchange coupling
COIIS'tallt (posl'tlVe f01' fel'1'OIIlagIletlC lllteractlonS)'
the first summation runs over each pair of neigh-
boring sites on the lattice. In (2), &( is
Boltzmann's cons~ant.

Noting that, in the absence of spontaneous mag-
netization, Il is necessarily an even function of
Bp and wl lting

E/HxT=E, (x)+Z f(2-s)!]-'y"E,(x), (3)

EI{x)was found through x for the close-packed
fcc lattice, and through x' for the open lattices,
bcc and sc; and for all three lattices E~(x), E,(x),
and E4(x) were found through x .

Analysis of these series, exhibited in detail in
I, showed that, for any particular cubic lattice,
the series E,(x)' ' E,(x) all diverged at x=x„
corresponding, for positive Z, to a ferromagnetic
Curie point. The nature of this divergence was
examined in detail, the susceptibility critical in-
dex y being found from the series E,(x) and the
existence of a constant high-temperature gap
parameter 26 being deduced from the sets E{x),
s = 1, .. . , 4. Explicitly, we found' x,(fcc) = 0. 249&,

x,(bcc) = 0.397„x,(sc) = 0. 596„y= l. 43 + 0.01
(all lattices), and 2n = 3. 63 + 0. 03 (all, lattices).
%e had hoped that we could determine, from the
double power series, the degree of the critical
isotherm 5 and the order of the magnetic phase
boundary P (for notation, see I, or below); but
we did not succeed in this explicitly and had to
appeal to the high-temperature scaling laws to
infer 4.46&5 + 5.00 and 0.36 ~P &0.4j.. Nor
did we determine the magnetic phase boundary, or
saturation magnetization at subcritical tempera-
tures. Essentially, this was because we had not
found E,(x) for sufficiently many values of s, and
so were not able to discuss E(H, T) as a function
of II.

In the present paper we shall show that, although
there remain difficulties in an explicit calculation
of P or 5, we can in fact determine the magnetic
phase boundary M(T) in the limit H-0, for this
spin-& Heisenberg model by a suitable modifica-
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tion, and extension, of our previous work. Two
things have led us to this new approach. First,
it has been shown that for an Ising lattice gas a
double power series expansion of the free energy
in terms of p (the density) and a high-temperature
variable can be used to find the boundary of the
two-phase region (which, in this case, was known
already from low-temperature series work'~ ),
and, second, we have realized that by using t
-=tanhy instead of y as the second expansion vari-
able, the coefficient in (8) of a given power of x
becomes a finite polynomial in t, and can be
found in its entirety. This latter fact is stated ex-
plicitly, though not fully proven, in the early work
of Opechowski. While not absolutely essential to
the derivation of a phase boundary„ it has pro-
vided a major motivation for the present work.

u. COMPUTAnoN OF COEFFKrEm'S

~n Emj2j

Z„,(H, r)=g,„', 5 T.(r„")
n=O ~ ~ k=O

m-k

xQ expl(m —2pbjI,
p=k

where [r] is now short for [m, l, r], gives

!InZ«&(H, T) = m ln(2coshy) + ln I+K„)2"nt

fm/2 ]
x Q p„,(n, j)t"

&=0

(4)

where
Em 2j y

I mJ2l

p„,(n, j)P' = —,. 2' »(F,")(I-f')'
j-0 k=o

2g+ 1

Writing
Em(2j

PL'v)n—= + P«j (n~j)f '
j=o

Eq. (5) can be written

Xn
InZr q(H T)=m In(2coshy)+Z

t kr i (5)
fI:1

Since our present approach is only a modifica-
tion of the previous one, and again uses the finite-
cluster method, we shall adopt the same notation
(which was fully defined in I). Basically, we have
to find the partition functions of finite clusters, the
latter being specified a,s [m, I, 7] where m is the
number of sites (spins), / is the number of nea, r-
est-neighbor bonds, and v distinguishes between
diff erent topological types. Our fundamental
equation, (12) of I,

where
kg„„=-g a«)(n,j )t"

j=o
(9)

In as far as the finite-cluster formalism holds
for II expansions, it holds also for t expansions
(these expansions being related by linear equa-
tions with constant coefficients), so that (9) can be
written

'r
kf&3n ~T' lI E& jn+0 E&]n

OCT

where, regarding clusters as connected linear
graphs, r' ~ 7 implies that v' is a connected sub-
graph of r (containing at least one bond), r' & v,

and n', . is equal to the number of times v' (as a
free graph) can be located on v (as a labeled
graph). And we know (see I) that, for any 7,
vanishes when n &l, where l is the number of lines
in v'.

By direct calculation for the pair cluster rn = 2,
l =1, we find p, ,=t, i.e. , k, =t . Thus, for any
cluster 7

2kf,„-q= P f,&q
= lt (12)

Since k„ involves p, &, we expect k flag to include a
term in f ". The essence of (10) is that there are
no higher powers of t in kf, &„.

To prove (10), we note that, for given n, the
clusters [r] fall into two classes: clusters [v&] for
which [-', m] ~ n, and clusters [7,] for which [-', m] &n

For the clusters [r,], Eq. (7) shows that there is
nothing further to prove; the p, 's have the desired
property and thence, by the moment-cumulant
transformation, so also do the k's. Moreover,
this property, if true of the k's, is true also of
the y's; Eq. (11) shows that y&„ is a linear com-
bination of k's for clusters having no more sites
than has [r]. We now turn to the clusters [7'2],
and note that for each of these l &~, since for any
cluster of m sites, I runs from m —1 (trees) to
&m(m —1) (stars). Thus for the clusters [v,],
Eq. (11) reads

kET2&n= ~ &,~ O'ET'&n ~

and we can proceed inductively. For simplicity
of exposition, suppose n = 2. Then the clusters
[r&] are all connected graphs with five or fewer
sites. Consider next clusters with six sites: l
runs from 5 to 15. Start with I =5 (a tree); each
connected subcluster has fewer than six sites, so

and the k's are related to the p, 's as are cumulants
to moments. The n's, like the P's, are simply
numerical coefficients. Opechowski's theorem,
of which we outline a proof below, is that

X&8.



(13) establishes the theorem for m= 6, I= 5.
Proceed to E = 6; each subcluster either has fewer
than 6 sites or else is a tree, m=6, l=5; so
(13) now establishes the theorem for m = 6, I = 6,
and so on. For fixed m, me run through the pos-
sible values of I in ascending sequence, and for
each new graph the right-hand side of (13) involves
only subgraphs for which the theorem has already
been proved.

In summary, then, Eq. (9) reads

ktg)g Z nL'Q(nl J)f (14)j=0
Hence, by the moment-eumulant transformation,
(7) reads

mint, 'n f. m/Rl)

p «.= ~ P~.i(n»)f" .
j-0

The computation proceeds by first using Eq. (6)
to find the numbers P~,&(n, j). We then transform
to the numbers nt„(n, j) and then, by (11), to num-
bers yL, &(n, j), where

p Ev n j~+ 'p B'3(n~ j)f (16)

Finally, we have to form the scalar products

f(n, I) —=Z,N[',)'""'p),g(n, j)/&, (»)
where N&,'l"'"' denotes the number of times the
graph [r] ean be located on (i.e. , weakly embed-
ded in) the particular physical lattice under con-
sideration. Ignoring boundary effects, N~,",""'
is proportional to N, the number of lattice sites,
so that F(II, T) is properly an extensive thermo-
dynamic quantity.

For reasons discussed in I (p. 805), the calcu-
lation, which was performed on the KDF9 machine
at Newcastle, was confined to clusters (graphs)
with l ~8. There are 358 such graphs, all of
which occur on the fcc lattice. They are depicted
in Ref. 10, where the matrix elements g,' and the
lattice counts N,",, "'"' also are listed. The nec-
essary coefficients TrX'„had, of course, been
found in our previous calculation. Kith the re-
striction E ~ 8, we are working accurately through
terms in x', and so confine n in (5) to n «8.

In place of (3), we have thus obtained (for the
three cubic lattices, fcc, bce, and se, and the
two planar lattices, pt, and ps) the free-energy
expansions

-&(&, &)/NxT= In(2eoshy)+ 60(x)+ Z F, ( )t 'x2

where

6,.(x)=Z „,f(n, j),
Ã

and we know the coefficients f(n, j) for n «8 and

j «8. The series 6:0(x) is, of course, simply the

series Fo(x) of (3), and will not be discussed fur-
ther here. Nor shall we present explicitly the
coefficients f(n, j), 1 «j «8; for it is more useful
to give, instead, expressions derived from them
(see Sec. III). But it is appropriate to comment
here on the structure of these coefficients and the
checks to which the calculations have been sub-
mitted

To take the checking procedures first, the most
searching of these is to confirm that p ~„„=0 when

g &/, in all cases. A second check derives from
Eq. (6) when fa= l. For this gives

j=0 8=0

(see Baker, Rushbrooke, and Gilbert, "and ref-
erences therein). Consequently,

&n [m/Sl
I+K „, Z P)(n j) = —afx

n=l + ~ j=0

Hence, from (5), (8), and (9),

n«(I, I) = I

5 n„,(n, j)= 0, n &1.
j=0

We have checked (20) and (21) explicitly on all the
n's, [v'] = 1, 2, . . . , 358. Third, by rearrangement
of our previous expansion (3), '~ ' directly trans-
forming from y to t» one of us' has already pub-
lished what amounts to the coefficients f(n, j) for
j & 4. The present, entirely independent, calcu-
lations agree exactly with those results. ' In-
deed, these calculations are equivalent to having
taken the series in (3) a,s far as s = 8, instead of

stopping at s = 4, though a direct continuation of
the previous approach, up to s=8, would have
been impracticable on account of round-off error
or machine overflow. An advantage of the present
method is that, as outlined above, it proceeds
throughout in integer arithmetic (and the numbers
are never excessively large). In particula. r, the

f(n, j) are integers.
As for the structure of the f(n, j) coefficients,

Eq. (10) (the Opechowski theorem) implies

f(n, j)= 0, when n &j
Put otherwise, the series 0;(x) in (18) starts
with a term in x~.

III. MAGNETIC EQUATION OF STATE

Our primary objective of obtaining the mag-
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netic equation of state, namely, the interrela-
tionship between magnetization M, field II, and
temperature T, is now easily achieved. Since

f =Mco (x)+ M'c, (x)+ ~ ~ ~ + M'Vc, (x)+
where

c,(x) = [b,(x)]'

and c;(x) is given by the coefficient of $ in

(25)

(26)

Eq. (18) gives immediately

M=tbo(x)+ fbi(x)+ +f bs(x)+ ~ ~ ~, (22)

( I)~[c (x)P~+~+~
2j+1 q ()

x[gb, (x) +~'b, (x)+".]" (27)

where

bo(x) = 1+2Q „, f(n, 1)
n=1

(23)

00 n

b;(x) = 2 2 „[(j+ 1)f(n,j + 1) jf(n,j )]—, j~ 1,„12"et

(24)
a,nd we have chosen to measure M in units of Np. ,
so that its maximum, saturation, value is unity.

The series bo(x) is precisely the series E,(x)
of (3), namely, the high-temperature expansion
of the zero-field susceptibility. It was discussed
in detail in I and, as stated in the Introduction, is
known through x' for open lattices and through
x for close-packed lattices. Except in so far as
we shall subsequently employ the best available
estimates of the Curie temperatures, which were
derived in I from these longer series, only the
terms of bo(x) through xs are used in the present
work.

The series b~(x), j= 1 ~ ~ 8, are also known
through terms in xs; and, since f(n, j}= 0 when
n &j, Eq. (24) shows that b;(x), like O;(x), starts
with a term in xj. This implies that if we were
to group together like powers of x on the right-
hand side of (22), then the coefficient of x" would
be a finite (odd) polynomial in f of degree 2n+ 1,
so that the field-dependent coefficients of succes-
sive powers of x through x are known exactly.
But this regrouping of the terms is not pertinent
to our present approach.

The series 00(x) of (18), i.e. , Fo(x) of (3), does
not enter into the magnetic equation of state.
Essentially, as discussed in I, its second deriva-
tive is the series for the zero-field specific heat.

Although Eq. (22) is one form of the desired
magnetic equation of state, it is more profitable
to revert this series and obtain t as a double pow-
er series in x and M. This is because our prin-
cipal aim is to find the magnetic phase boundary,
i.e. , the spontaneous magnetization in limitingly
small field at temperatures below the Curie point
T, and (22) cannot be used as it stands for this
purpose, both because t-0 implies M-O, and
because bo(x) diverges for T & T,. To this end we
have used I agrange's reversion formula, there-
by obtaining the expansion

The operations entailed by (27) are easily comput-
erized, and can be so organized that the calcula-
tion proceeds in integer arithmetic without the
risk of round-off error.

The expression (27) shows that the series c,.(x),
just as b&(x) and 0', (x), starts with a, term in x'.
Thus the terms displayed in (25) include all terms
in powers of x through x'. Grouping together like
powers of x on the right-hand side of (25), there-
fore yields,

f =Mg(x, M ) (28)
where

g(x, M ) = 1+ Q „,p„(M~);
2 Pl t

(29)

g(x, M')=O. (3o)

For a ferromagnetic substance, M=0 is the stable
solution for T & T, and an unstable solution for T
& T,. An implicit equation for the spontaneous
magnetization as a function of temperature, for
7 &T„ is provided by Eq. (30}. It is the solution
of this equation, as a curve in the T, M plane,
which we call the magnetic phase boundary.

If this curve exists, then Eq. (25) shows that it
cuts the temperature axis (M = 0) at that temper-
ature at which co(x) vanishes. But, from (26) and
(23), co(x) is simply the zero-field inverse sus-
ceptibility. Thus, on this theory, the magnetic
phase boundary necessarily cuts the temperature
axis at the Curie point as determined by the van-
ishing of the inverse susceptibility.

Inspection of the polynomials p„(M ) reveals that,
in all cases, p„(1)=0. In view of (29) and (30),
this means that if the line M= 1 cuts the magnetic
phase boundary, it must do so as x-~, i.e. , at

P„(M ) is a, polynomial in M of degree n. These
polynomials epitomize our high-temperature ex-
pansion knowledge of the Heisenberg spin- —,

' model,
apart from the series F,(x) and either one or two
extra known coefficients in the series E,(x). We
present these polynomials in the Appendixes to this
paper.

IV. PHASE BOUNDARY

Equation (28) shows that H 0, i.e. , t-o, cor-
responds to one or the other of teo possibilities,
either M=O or
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TABLE I. Roots (multiplied by 104) of numerators
of PA's to g(x, M ), fcc latice.

l3, 3l [3,4l f4, 3j f4, 4l f3, 5~ [5, 3j

1
0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0, 1
0.05
0

4354
3806
3408
3135
2944
2803
2697
2614
2548
2493
2445
2396
2315
C. C.
C. C.
C. C.
2297
2339
2346
2347

5202
4039
3480
3153
2929
2745
C. C.
C. C.
C. C.
2635
2573
2538
2522
2543
C. C.

C. c,
C. C.
C. C.
2440
2405

5333
4094
3513
3183
2966
2812
2692
2589
2456
C. C.
C. C.
C. C.
2588
C. C.
c. c.
C. C.
C. C.
C. C.
C. C.
C. C.

c.c. 5283 6044
4568 3687 4197
3658 c.c. 3548
3274 c.c. 3200
3043 3113 2977
2888 2921 2820
2778 2796 2703
2697 2707 2612
2636 2641 2539
2590 2592 2478
2555 2555 2367
2529 2529 c.c.
2511 2511 2531
2494 2499 2511
2422 2488 2507
2264 2471 2512
2390 2448 2526
2420 2432 c.c.
2432 2432 c.c.
2436 2438 c.c.

T=O. Indeed, Eqs. (22)-(24) show that t=1 im-
plies M= 1 [because the numbers f(n, j) are zero
when n &j]. And f = 1 implies either H -~ or T = 0.
That this property transfers from Eq. (22) to the
reverted equation (28), is a satisfactory check on
the reversion arithmetic.

We are left with the problem of plotting the phase
boundary between the points (0, 1) and (T„O) in
the T, M plane. Equation (30) is an implicit equa-
tion to this curve, if it exists. For any value of
M in the range (0, 1) we can evaluate the coeffi-
cients p„(M ) in Eq. (29), thus obtaining (exactly)
the terms through x' in the expansion of g(x, M )
as a, power series in x. When a function f(z), is
given by a power series in z of which we know only
a finite number of terms, experience has shown
that it is profitable to construct Pads approximants
(PA) to this series. " The zeros of the numerators
of these PA s may be expected to approximate to
those of the function itself, while those of the de-
nominators reflect points at which the function is
singular. These zeros may be anywhere in the
complex z plane, but physical interest normally
centers on roots lying on the positive real axis.
With this is mind, it is natural to start by forming
PA's to these series for g(x, M') and finding the
zeros of their numerators,

Our most thorough studies have been confined to
the fcc lattice, in the belief that, for series of a
given length, convergence will be most rapid for
close-packed lattices. We shall present these in
some detail, and refer only briefly to those for the
bcc and sc 1.attices.

Table I shows, for values of M ranging from 0
to Q. 95, the relevant zeros of the numerators of
the most significant PA's to g(x, M') for the fcc lat-
tice. We take the relevant zero to be the smallest
positive real root, and it is these that are listed,
except that occasionally it is necessary to ignore
a smaller root which coincides closely with a root
of the denominator. For example, for the [3, 3]
approximant when M= 0. 4, the root listed is at
x=0. 23959. There is, in fact, also a root of the
numerator at x= 0. 106 56, but there is a root of the
denominator at x= 0. 106 54. The symbol c. c. im-
plies a complex pair rather than a real root; though
here again some discretion must be exercised. As
an exa.mple, we may cite the [5, 3] approximant
when M= 0. The numerator has a positive real
root at x= l. 7162, but clearly, the relevant root
is the complex pair 0. 2558 +0. 0059i.

Inspection of Table I reveals rather poor con-
vergence, between the different PA's. In this con-
nection it may be significant that about half the
PA's give evidence of a second positve real root
(of the numerator) somewhat larger than that listed.
This is particularly true of the [4, 4] and [3, 5]
approximants, for which this second root is in the
range 0. 29 to 0. 31 for M ~0. 4, and then increases
more rapidly, being about 0. 5 when M=0. 75. This
makes one wonder whether g(x, M2) vanishes in a
simple manner at the phase boundary, or has,
perhaps, a branch point there. In fact, we know
that when M= 0, it does have such a branch point,
for when M= 0, Eq. (30) is simply the equation
X(x) '= 0, where'(x) is the zero-field susceptibility
which, near the Curie point, behaves like (x, —x)
with y= 1.43.

For this reason me have felt it profitable to con-
sider not the vanishing of g(x, M'), but the singu-
larities in its logarithmic derivative Sing(x, M )/
Bx. Taking the logarithmic derivative necessarily
converts a branch pointinto a simple pole, to which
PA's should do good justice. Indeed, this way, we
are now doing for general M precisely what we did
in I when locating the Curie point from the tempera-
ture dependence of the zero-field susceptibility.
Table II lists the smallest positive real roots of
the denominators of the most significant PA's to
Sing(x, M~)/Sx, and we give the entries to one more
significant figure than those listed in Table I, since
it is clear that convergence, between results from
different approximants, has been appreciably im-
proved. Moreover, denominators of PA's to
8 In@(x, M )/Bx show no evidence of a positive real
root other than the one listed.

Table II repays careful examination. First, we
observe that the entries in the bottom rom, M=-O,
are necessarily the corresponding entries from
Table VII of I (in which we were looking for the
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TABLE II. Boots (multiplied by 105) of denominators
of PA s to 8 lng(g, M~)/Bx, fcc lattice. Last column is
mean (to four figures) of previous columns.

[3.3] [4, 2] [3, 4] [4, 3] [5, 2] Av

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0,55
0.5
0.45
0.4
0.35
0.3
0.25
0,2
0.15
0, 1
0.05
0

45701
43477
39023
35176
32357
30328
28850
27759
26944
26332
25870
25518
25249
25042
24883
24764
24687
24666
24701
24732

94844 c.c.
55699 c.c.
41207 42089
34994 35001
31682 31805
29684 29850
28374 28515
27459 27553
26790 26836
26286 26296
25900 25918
25601 25488
25371 25257
25201 25061
25087 24900
25034 24753
25018 24516
24948 25449
24857 24879
24824 24829

c.c.
52138
37959
33514
31148
29594
28473
27627
26973
26462
26064
25757
25526
25361
25252
25168
25067
24988
24955
24948

C. C.
52976
39919
35201
29695
29579
28455
27565
26872
26322
25862
25394
C. C.

26187
25454
25213
25070
24991
25021
C. C.

46674
42218
37200 3957
33676 3459
31309 3133
29658 2978
28461 2852
27565 2759
26876 2688
26329 2634
25867 2591
25397 2553
24523
c, c.
C. C.

24556
24885
24970
24984
24983 2488

Curie point). The more extensive work of that
paper, using a longer series and a variety of alter-
native procedures for locating x„ led us to con-
clude that x, = 0. 2492. Qf the approximants in
Table II [3, 4] comes closest to realizing this value.
Second, we note that the [3, 3] and [3, 4] approxi-
mants give values of x which increase monotonically
with M. Third, we note that for M in the range
0.45 to 0. 65 there is good convergence not just be-
tween these two approximants, but over the wider
set. In the final column we list, for 0.4 ~M ~0. 85
(which includes the range of particularly good con-
vergence), the straight average (to four figures
only) of the values given by the six successive ap-
proximants. The value 2488 against M= 0 comes,
likewise, from averaging the entries in the bottom
row of Table II, counting the [3, 4] entry twice (to
compensate for the missing value from the [4, 3]
approximant).

In Table III we give, to three figures only, the
values of Ty'T, as calculated for given M from the
[3, 3], [3, 4], and final columns of Table II. In

Fig. 1 we show this (normalized) phase boundary,
the full curve being drawn through the points of
the last column of Table III over the range 0. 45
&M --0. 85 (as nearly as is consistent with having
a smooth curve). In Fig. 1 we show also the low-
temperature limiting T ~3 law resulting from spin-
wave theory. There is no adjustable parameter
in this spin-wave curve, whose equation' is

TABLE III. Phase boundary, fcc lattice, as calculated
from columns 3, 5, and 8 of Table II.

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0 ' 6
0,55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

[3, 3]

0.262
0.446
0.602
0.709
0.784
0.836
0.875
0 ~ 904
0.927
0.944
0.959
0.970
0.978
0.985
0.990
0.992
0.992
0.995
0.999
1.0

0.479
0.657
0.744
0.801
0.843
0.876
0.903
0.925
0.943
0.957
0.969
0.977
0.984
0.988
0.991
0.995
0.998
1.000
1.0

0.629
0.719
0.794
0.835
0.872
0.902
0.925
0.945
0.960
0.975

1.0

M = 1 —0.02932(xT/J)'

= I - 0. 3357(T/T )"'
on using the value 0. 2492 for x„Our phase bound-
ary appears to join satisfactorily with this spin-
wave curve, which it must approach from below. "

Over the range 0. 7 ~ M ~ 0.45 we present the
phase boundary with some confidence. Though
estimates of accuracy are necessarily subjective,
we suspect the full curve gives T/T, to within
about I/p. Moreover, over this range, our curve
seems virtually identical with that given by second-
order Green's-function theory. ' On the other
hand, for M & 0.4 we are, of course, more inter-
ested in 1 —T/T, than in T/T„and, as is clear
from Table III, we certainly do not know this with
comparable accuracy.

We shall now refer very briefly to the corre-
sponding results for the bcc and sc lattices. For
the bcc lattice we can follow the same procedure
as led to Table III above. We shall, however,
now quote only numbers for comparison with the
last column of Table III (namely, straight aver-
ages over the six most relevant PA's), and we have
used x, = 0. 3973 (from our previous work on the
longer susceptibility series) For. M=0. 65, 0. 6,
0. 55, 0. 5, and 0, 45, wenowfind T/T, =O. 872, 0. 900,
0. 924, 0. 943, and 0. 957, quite extraordinarily
close to the fcc values listed in Table III. This is
not, perhaps, as surprising as it may at first
seem, for the spin-wave curve for the bcc lattice,
namely,
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T/T

0.7 0.8 0.9 I,O

FIG. 1. Magnetic phase boundary, fcc lattice. 0
from [3, 3] PA of Table III, && from [3, 4] PA of Table
III. Full curve from last column of Table III. Broken
curve, l~ law from spin-wave theory.

M = 1 —0. 0587 (vT/8)

becomes, on taking x,= 0. 3973,

M = 1 —0. 2344(T/I", )'"

in which the coefficient differs by less than I%%u&

from that for the fcc lattice.
For the sc lattice our Pads tables are appre-

ciably less well converged. The [3, 2] Pads of
Table III behaves rather oddly. Ignoring this and
then averaging over the five remaining approxi-
mants, using x,= 0. 5962, we find for M = 0. 75 and
0. 65, the values T/T, = 0. 74 and 0. 82 (and we
should have obtained these answers, to two figures
only, by averaging simply the [3,4] and [4, 3] ap-
proximants). In the range 0. 55)M )0. 30, the

[4, 2] and [5, 2] approximants fail to exist, so that
we shall quote only the mean of the [3, 4] and [4, 3]
approximants to give T/T, = 0. 88 when M= 0. 55.
These values are 5 or 6%%uq lower than the corre-
sponding values for the fcc lattice; which is roughly
in accordance with the results of second-order
Green's- function theory. '9

Finally, we ought to examine what happens when
we apply the same analysis to the series data for
a two-dimensional lattice, and we shall look at the
results for the plane triangular lattice. We know
from the work of Mermin and Wagner that for
any two-dimensional lattice there can not in fact
be a magnetic phase boundary, for as II 0, M
-0 if T 0. Nevertheless, as we have seen, there

TABLE IV. Roots (multiplied by 104) of numerators
of PA's tog(x, M), pt lattice.

[3, 4] l4, 3] t:4, 4] l3, 5] [5, 3]

0, 95 11590
0.9 10880
0.85 10175
0.8 9550
0.75 9024
0.7 8589
0.65 8231
0.6 7940
0.55 7708
0.5 7531
0.45 7406
0.4 7327
0.35 7282
0.3 7263
0.25 7258
0.2 7261
0.15 7266
0.1 7272
0, 05 7275
0 7276

17970
13979
11770
10449

9599
9017
8596
8276
8023
7810
7620
7434
7229
6967
6547
C. C.
C. C.
C. C.
C. C.
C. C.

21193
16163
13022
11222
10148
9477
9044
8756
8555
8407
8291
8198
8121
8059
8009
7971
7942
7922
7910
7906

C. C.
C. C.
C. C.
C. C.
C. C,

C. C.
C. C.

C. C.

C. C.

C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.

17557
11865
9055
8416
8406
8145
7776
7309
6445
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.

C. C.
31821
17262
13456
11781
10844
10231
9783
9436
9163
8948
8779
8649
8548
8472
8415
8375
8347
8331
8326

is a sense in which our procedure yields M= 1 at
T= 0, and, in so far as when M= 0 we are exam-
ining the divergence of the zero-field suscepti-
bility, the possibility of a pseudo-critical-point (T,*,
at which the susceptibility diverges but there is
no onset of magnetization) cannot be rigorously
excluded (see, for example, Stanley and Kaplan '
and de Jongh et al. ' ). Thus, it is possible that
we shall find a pseudo-phase-boundary, simply be-
cause, in dealing with finite series, we may have
to pass continuously from the pseudo-critical-point
(M=0, I'= T,*) to the saturation point M= 1, T=O.

Tables IV and V give for the triangular lattice the
quantities equivalent to those displayed for the fcc
lattice in Tables I and II (except that in both cases
the x values have been multiplied by 10', whereas
those in Table II were multiplied by 10'). Although
Table IV is not well converged, there might seem
to be some evidence of a pseudo-phase-boundary.
It should, however, be observed regarding the
three approximants which use all the known coeffi-
cients, that the numerators of the [3, 5] and [5, 3]
approximants necessarily have a real root (which,
as we see, is in most cases positive), whereas
with the [4, 4] approximant, where there is no
such necessity, there are consistently only com-
plex roots (which, in fact, do not lie near the real
axis). Turning now to Table V, we observe first
that the evidence for a, pseudo-critical-point (at
M= 0) is, in fact, very weak; the only approxi-
mants we have, [3, 2], [3, 3], and [3, 4], give no
evidence of convergence. Second, what should per-
haps be the best approximants, [3, 4] and [4, 3],
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are, overall, the most oddly behaved. Indeed, if
we believed in a pseudo-phase-boundary and wished
to plot it, it is only in the neighborhood of M = 0. 55
that we could do so with any conviction. But most
marked is the contrast between Table V and Table
II. It is clear that there is a qualitative difference as
regards satisfactory convergence between the results
for two- and three-dimensional lattices; and we

are content to leave the matter there.

V. CRITICAL EXPONENTS

We turn now to an examination of the extent to
which, from our magnetic equation of state, we
can determine the critical exponents P and 6. Here
P denotes the degree of the magnetic phase bound-

ary, defined by

y(0)xT/p. Assuming that for sufficiently small t
only the terms displayed in (34) matter, this equa-
tion yields

aint 1 —M', (x) ~M'(x)

Sx, t M-M, (x) M, (x) (s5)

M, (x) = M, (x,)+ (x —x,)M', (x,)+ ~ ~ ~

we find, effectively,

(s6)

and for x& x„ i.e. , T & T„ it is only the first term
on the right-hand side of (35) that we expect to be
singular (as a function of x). The singularity in
this term occurs when M, (x) attains the value M.
Denoting by x~ the value of x for which M, (x~) = M,
and writing

M, (T) -a(1 T/T, )' -a.s T -T, (31) ~x, g 0 x-xp (3V)

[we now use M, (T) to denote the spontaneous mag-
netization at the temperature T], and 5 denotes the
degree of the critical isotherm, defined by

But,

(
S lnt 8ing(x, M~)

ax ~ Bx

II-DM', T = T„M 0' (32)

M = Mo(x)+ M, (x)tt + ~ (s4)

where, as throughout, x= J/xT and t=t nah(p H/Tx).

If t, = 1, M, (x) is now the "reduced" susceptibility

Equation (31) refers, of course, to the limit H
-0. It is convenient to introduce a third exponent,

t, , defined by the hypothesis that

M=MD(T)+M, (T)H + ~ ~ ~ (33)

in the neighborhood of the phase boundary T & T,.
The value of 4 is closely related to the existence
or nonexistence of an initial susceptibility y(0) at
temperatures below the Curie point for

(Inc)

and if t = 1 then X(0)= M, (T), but if t & 1 then y(0)
diverges. Now for the Ising model it is virtually
certain, from the work of Essam and Fisher,
that the initial susceptibility exists (and deverges
as T-T,), and thus that t =1. But for the Heisen-
berg model, this is by no means the case; indeed
spin-wave theory gives L= —,'. To anticipate our
results, we have not found it possible unambig-
uously to determine L from the series expansions
with which we are here concerned. But the in-.
vestigation of the problem is of intrinsic interest,
and also has a bearing on the determination of P;
we shall therefore take it first, and then go on to
discuss P and 5, respectively.

A. Exponent g

We start by replacing Eq. (33) by the essentially
equivalent equation

TABLE V. Roots (multiplied by 10 ) of denominators
of PA's to 8 lng(x, M~)/Bx, pt lattice.

[3, 2] [3, 3] [4, 2] [3, 4] [4, 3]

0.95 24522
0.9 27457
0.85 23848
0.8 18754
0.75 14907
0.7 12325
0.65 10570
0.6 9336
0.55 8448
0.5 7815
0.45 7387
0.4 7140
0.35 7068
0.3 7169
0.25 7447
0.2 7885
0.15 8422
0.1 8949
0, 05 9334
0 9475

C, C.
C. C.
C. C.

15928
9714
8298
7955
8060
8445
9071
9947

11069
12345
13514
14198
14174
13601
12871
12321
12123

C. C.
C. C.
C. C.

16493
11868
10379
9599
9163
8445
8377
8182
7981
7740
7385
6668
C. C.

C. C.
C. C.
C. C.
C. C.

13924
47495
C. C.
6270

10275
14040
19051
27615
46643

113138
4x10'
C. C.

819930
81096
37357
25499
21494
20321
20191
20243

C. C.
C. C.

33966
19061
10218
10371

9745
9122
8448
7524
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.
C. C.

[5, 2]

11711
12045
11834
j 1403
10914
10371
9756
9123
8535
8022
7588
7256
7112
7306
7941
9117

11655
121564

C. C.
C. C.

so that x~ is simply the value of x on the magnetic
phase boundary which we have determined, for
given M, in Sec. III above, and which is listed for
the fcc lattice in Table II. Thus, the residues of
the PA's at the poles listedin Table II should con-
verge (if our series are long enough) to I/t .

This argument is valid provided x& x„ i.e. , M
c0. When M = 0, however, by (25), g(x, 0) = c,(x),
where co(x) is the zero-field inverse susceptibility;
consequently, the residue of 9 1ng(x, 0)/Sx is nec-
essarily y, the susceptibility exponent. ' Thus, if
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TABLE VI. Estimates of 1/g (M). I'or numbers in
parentheses see text.

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0,55
0.5
0.45
0.4
0.35
0,3
0,25
0.2
0,15
0.1
0.05
0

fcc (6)

2.o5 (s)
1.90 (5)
1.58 (5)
1.45
1.35 (5)
1.30
1.28
1.29
1.29
1.29
1.30
1.29
1.32
1.34 (4)
1,39 (4)
1.37 (5)
1.38
1.41(5)
1.42
1,41(5)

bcc {6)

2.so (5)
1.77 (5)
1.46
1.43
1.30
1.31
1.31
1,32
1,32
1.35
1.4O (5)
1.40 (5)
1.41
1.33 (5)
1.37
1.40
1.45
1.44 (5)
1.47 (5)

sc (5)

2.45 (4)
1.84 (4)
1.88
1.79
1.82
1.65 (3)
1.61(3)
1.57 (3)
1.54 (3)
1.51 {3)
1.47 (3)
1.43
1.53
1.40
1.40
1.41
1.41
1.41

we were dealing with infinite series, we would ex-
pect the residues of 9 lng(x, M )/Sx, at the poles
which determine the magnetic phase boundary, to
have value I/a (presumably constant along the
phase boundary) for MAO and to jump to y when
M= 0.

Unfortunately, we are not dealing with infinite
series but with finite series, 8 lng(x, M )/Sx being
known through terms in x only. It is by forming
PA's to these finite series that we have located the
singularity at x= x~(M); and the residue, which we
will denote by I/t *(M), is incapable of showing the
discontinuous behavior at M= 0 which we expect.
It is tied to the value y at M= 0, and must move
continuously away from this value. Gf course, the
nonuniformity of behavior which we would expect
the infinite series to reveal should not affect the
phase boundary itself, for x~ must decrease con-
tinuously to x, as M-0. Thus, we are satisfied
that we have adequately located the phase bound-

ary, even though the residues 1/&*(M) cannot ade-
quately converge to I/i. . The best we can hope of
these is that, as M increases from 0 to 1, I/t*(M)
will decrease from y to 1 if t. = I, or will increase
from y to 2 if L = —,'.

In a parallel study of the spin- —,
' Ising model,

Gaunt and Baker~ have found that as M increases
from 0 to 1, I/C +(M) does in fact decrease mono-
tonically from y (1.25 for the bcc lattice and 1.75
for the ps lattice) to a value very close to unity.
This is satisfactory, since, as we have said al-
ready, we expect c = 1 for the Ising model. In the
present, Heisenberg, case the position is less sat-

isfactory. Table VI lists, for the three cubic lat-
tices, the mean values of the residues given by the
different PA'sfor each valueof M. For the fcc and
bcc latticeswe have listedthe meanof the residues
of the [3, 2], [3,3], [4, 2], [3 4], [4 3] and [5 2]
PA's if these all exist, but for the sc attice we have
omitted the [3, 2] approximant which, as we have
said above, is badly out of step in this case. Where
not all the PA's exist (due to the absence of real
poles), we have taken the mean of those which do
exist (and indicate the number of approximants
over which we have averaged by the figure in paren-
theses to the right of the mean). In a very few
cases we have omitted an approximant which is
particularly out of line with the others; the most
significant instance being the omission of the [5, 2]
approximant for the bcc lattice when iM = 0. That
this is irregular is clearly seen in Table VIII of
paper I.

That the bottom line of Table VI does not yield
precisely y= 1.43 is simply because in finding y
in I we were using rather longer series and a more
thorough analysis. Looking now at what happens
as we move away from M= 0, we notice that I/g*(M)
is apparently "strongly" tied to the value y, in that
if plotted against M it would approach this value
horizontally. This "strong" tying is also clearly ex-
hibited by the Ising-model results of Gaunt and
Baker. But as we move still further away from
M = 0, to the middle range of M, we find that for
the fcc and bcc lattices I/t ~(M) decreases, where-
as for the sc lattice it increases. Finally, for rel-
atively la, rge M, I/c*(M) increases, in all cases,
to a value of the order of 2, though (except for the
fcc lattice) there are too few approximants left to
carry the table right up to M = Q. 95.

It is impossible to draw a firm conclusion from
these figures. If one believes in t, = —,

' on other
grounds, then one might see some support for this
here. All we can confidently say is that, evidently,
the Heisenberg model behaves rather differently in
respect to t*(M) than does the Ising model, and
we doubt if this is entirely due to our using rela-
tively shorter series.

B. Exponent P

%e next look at the problem of determining P,
defined by Eq. (31). Perhaps the most obvious
approach, having found the phase boundary, is to
follow the common procedure of experimentalists
and plot lnM, against Inn T, where" AT =-(T, —T)/
T,. %e expect this plot to exhibit linearity as AT
-0, with a gradient given by P. Unfortunately, it
is immediately apparent, from both Tables II and
III, that for small M our knowledge of the phase
boundary is not sufficiently precise for this ap-
proach to be practicable. In the region of rel-
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log~oDT, fcc lattice. Symbols
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data, Table II.
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then the best we can hope is to determine p*(~VI)

over the range of M for which we know the phase
boundary with some confidence, say 0. 4 «M «0. 7.
For larger M, in as far as the phase boundary ap-
proaches the spin-wave limit, P*(M} must tend to
zero as M tends to saturation. " Figure 2 shows
plots of logM against logd T as given by the [3, 3]
and [3,4] approximants of Table II, and we observe
that over the range 0.4 «M «0. 7 an effective gra-
dient is fairly well defined. For larger M, P* ap-
preciably decreases (though Table II is not well
converged for large M). For M (0.3 the approx-

atively small M, say 0. 3 ~ M )Q. Q5, there is
neither adequate agreement between different ap-
proximants nor sufficiently smooth behavior of any
one approximant for convincing conclusions to be
drawn. We can, however, say more than this.
If we were to pin our faith to one particular ap-
proximant, say the [3,3] approximant, and follow
this right down to very small M, we should inev-
itably eventually obtain the classical exponent P
= 0. 5. We have verified this for the [3, 3] approx-
imant taking M = 0. 001 and M= 0. 002 (though it
necessitates finding x~ to eight significant figures},
and indeed find P= 0. 5 (to one significant figure).
The reason is that x~ has been located as the zero
of a finite polynomial (the denominator of the ap-
propriate PA) whose coefficients are themselves ra-
tional functions of M . If we follow this zero as
a function of M, we shall necessarily find P=0. 5.
For both reasons, therefore, we must confine at-
tention to that range of M, above Q. 3, for which the
phase boundary is known with some precision.

If we define an "effective" P by

P*= 0. 35 + 0. 05 (39)

An alternative approach to finding P* is given by
use of the cyclic rule

(40)

at points near the phase boundary f = 0. From (38)
and (37) we see that, as a function of x, the right-
hand side of (40) behaves like

(x, —x,)x~

+C

TABLE VII. Estimates of P (M) from columns 3,
5, and 8 of Table II; fcc lattice.

Range

0.35—0.4
0.4—0.45
0.45 —0.5
0.5 —0.55
0.55-0.6
0,6—0.65
0.65 —0.7

[3, 3]

0.39
0.38
0.36
0.34
0.33
0.30
0.28

[3, 4]

0.41
0.38
0.37
0.35
0.34
0.33
0.31

Av

0.26
0.32
0.32
0.32
0.30
0.29

imants are too irregular for the gradients to have
any meaning. "

Confining further attention to the region 0. 4 «M
«0. 7, in Table VII we list the gradients of lines
joining successive points of Fig. 2, together with
those similarly calculated from the last (average)
column of Table II. We include this last column
because it gives some indication of the behavior of
approximants other than [3,3] and [3,4]; but clearly,
its gradient 0. 26 over the range 0.4 «M «0. 45 is
appreciably too low (as is to be expected from the
last entry in the right-hand column of Table III).
Ignoring this figure, we can conclude ' that for
0. 4 «M «0. 7
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If then, for a given value of M, we form PA's to
the left-hand side of (40) as a function of x [which,
from (26) and (29) is known as a power series in
x through the term in x'], and locate x~ from the
vanishing of a denominator, then if x denotes the
residue of the approximant at this pole, we shall
have

t+P+= —[(x~- x,)x,]/(xp). (41)

In combining Eq. (41)with our previous estimates
of I/L*(M) to find p*(M), we shall keep to the
central range of M, for which both sets of appro-
priate Pade tables show the best apparent conver-
gence. Taking the mean of the [3, 4], [4, 3], [4, 4],
[3, 5], and [5, 3] approximants to the right-hand
side of (41), using x, = 0. 2492, we find for c*P",
for the fcc lattice, at M = 0.5, 0.55, and 0.6 the
values 0. 289, 0.263, and 0.247. Combining these
with the corresponding va, lues of I/ t*(M) ,from
Table VI, yields P*(0.5) =0.37, P*(0.55) =0.34,
and P*(0.6) = 0. 32; estimates consistent with Eq.
(39).

We shall comment only very briefly on corre-
sponding results for the bcc and sc lattices, since
for these lattices the estimates of & P* are ap-
preciably less well converged, and have not been
taken below M = 0.6. If, for M = 0.6, we follow
the procedure of the last paragraph for the bcc
lattice (but omit the [4, 4] approximant to c*P*
which is markedly out of line with the other four)
we again find P*(0.6) = 0.32. Although the close
agreement is doubtless accidental, we certainly
expect Eq. (39) to hold also for the bcc lattice
since, as we have noted, there is near coincidence
between the bcc and fcc phase boundaries. On the
other hand, for the sc lattice we can hardly say
better than that at M = 0. 6, c*P* lies in the range
0. 20 to 0. 25; taking I/& *=1.65 from Table VI,
this gives P* in the range 0. 33 to 0.41. In view
of the uncertainty, both here and for other values
of M, it seems wisest not to attempt to draw con-
clusions regarding P* for the sc lattice; we sim-
ply do not know the phase boundary with sufficient
accuracy.

It will havebeennoticedthat inusing Eq. (41) we
have located x~(M) from poles of PA'sto 8 lnt/8 lnM,
regarded as a function of x, rather than from
poles of PA'sto 8 lnt/8x, as in Sec. IV. Fortunately,
over the range of M with which we are here con-
cerned, this makes no significant difference. In-
deed, in their parallel study of the Ising model,
Gaunt and Baker have used 8 lnt/8 lnM as the basic
function for determining the phase boundary.
They preferred it to 8 lnt/8x because its approx-
imants showed better convergence for large M.
This is not the case for the Heisenberg model,
for which we find that approximants to 8 lnt/sx

5 (M)=„8 lnt
(42)

and natural to expect that 6= lim6*(M) as M-0.
If we were dealing with infinite series rather than
with polynomial approximations to them, and could
sum the series, then this expectation would doubt-
less be justified. But in fact, from Eqs. (26) and

(29),

x"
lnt= lnM+ „~ q„(M )

n-1 2"nl (43)

where the q„'s are related to the P„'s of (29) as
are cumulants to moments, and q„(M ) is a poly-
nomial in M of degree n. Consequently,

=1+ „) d„M
2 t1

J
fl

where

d„(M )=2M q„'(M ) (45)

Now we know (44) through terms in x' (and there-
after extend the series by the method of PA' s). From
(45), as M-O, d„(ZvI')-0; therefore,

(M) I as M 0

inevitably, when the work is based on afinite rather
than on an infinite series. It is little comfort that
the true situation is doubtless one of nonuniformity
of convergence.

In these circumstances the best we can hope is
that the finite series effect will be unimportant for
larger values of M, and that 6*(M) found for these
larger values of M already shows a dependence on
M which is typical of its true (infinite series) be-
havior. To investigate this, we now, for given M,
form PA' s to the right-hand side of (44) and evaluate
these approximants at x=x,. We shall concentrate
on the fcc lattice, taking x, = 0.2492.

are better converged than those to 8 lnt/8 lnM
both for large M and for small M. But over the
middle range of M, roughly 0.55 &M &0.75, for
both the fcc and bcc lattices, the two methods
agree to within the I /o a,ccuracy that we have
quoted. For the sc lattice the agreement is less
good. This all correlates rather strongly with
the value of I/L * (see Table VI and Table III in
Ref. 26). We can locate the phase boundary satis-
factorily from 8 lnt/8 lnM when I/& is close to
unity.

C. Exponent 6

Finally, we look at the problem of determining
the exponent 6, defined by Eq. (32). Since t is
proportional to H when H is small, it is convenient
to define 5*(M) by
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0.975
0.95
0.9
0 ~ 85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

10.53
9.41
8.01
7.19
6.63
6.22
5.90
5.64
5.42
5.17
4.8

+ 0.01
+ 0.01
+0.01
+0.05
+ 0.1
+ 0.2
+ 0.2
+ 0.4
+ 0.05
+ 0.15
+ 0.2

0.752 + 0.001
0.580 + 0.001
0.365 +0.002
0.237 + 0.002
0.157 + 0.002
0.104 + 0.004
0.068 + 0.004
0.044 + 0.004
0.028 +0.008

TABLE VIII. Estimates of 6 (M), and t(M) on
critical isotherm; fcc lattice.

model series (by Gaunt and Baker), 5*(M) is again
a linear function of t(M) for large M, but the ex-
trapolant (5.4 for bcc and 5.7 for sc lattices) is
larger than can be maintained on other grounds. '
Second, we can be guided by mean field theory.
From its basic equation

pH/~T, = M+ -,'(T/T—,) ln [(1+M)/(1-M)], (46)

we easily derive the isothermal

M= 3' '(pH/~T, )' '
5(p,H/-~-T, ),

which has the form

0.2
0.15
0, 1
0.05

1.93 + 0.5
1.50 + 0.2
1.15 + 0.2
1.04 + 0.1

(since 5 = 3 on the mean field approximation).
Hence,

Table VIII shows what happens. For M~ 0.85
the Pade table [to the right-hand side of (44) eval-
uated at x,] shows very good convergence. It does
not matter whether we take 5* from the mean of
the [4, 4], [3, 5], and [5, 3] approximants or include
also the earlier approximants [3,3], [3, 4], and

[4, 3]. Thereafter, we are led to lean more heavily
on the later approximants (and take the mean of the

[4, 4], [3, 5], and [5, 3] results, omitting one only
if it is badly out of line), though we have paid some
attention to all six approximants in listing the
inevitably subjective "uncertainties. " With odd ex-
ceptions (e.g. , at M = 0.65), things are fairly sat-
isfactory down to M= 0. 5; thereafter, there is a
region of considerable uncertainty until we reach
M= 0.2, when we are clearly approaching the lim-
iting value of unity.

Although for large M, 5*(M) is well defined, its
dependence on M is not linear. This leads us to
consider plotting 5* not against M but against the
corresponding value of t, for which purpose we
must form Pade tables to the right-hand side of
(28), regarded as a function of x to be evaluated
at x=x,. Again, these Pads' tables are well con-
verged for large M, and the third column of Table
VIII lists the values of t, for given M, on the crit-
ical isotherm. There is no point, however, in
taking this column below M = 0.6 since the uncer-
tainty in t, though still numerically small, is be-
coming commensurate with t itself. We now find
that a plot of 5*(M) against t(M) is remarkably lin-
ear over the range 0.975 ~ M~ 0.8, an extrapola-
tion to t = 0 yielding 6 = 5.6. For M & 0. 8 the
points start falling below this line.

We do not, however, regard 5.6 as the best es-
timate we can make of 5; rather we regard it as
an upper bound. There are two reasons for this.
First, when a similar analysis is applied to Ising

or equivalently (to this approximation)

g+dt1- 1/6

where t=tanh(gH/zT, ). This suggests that we
should plot 5 not against t but against t' ' '.
Without pretending that the argument is a strong
one, ' we are led to plot 5 against t ', since we
expect 5 to be fairly close to 5. The result of
so doing is shown in Fig. 3. Here the upper
points show 5* plotted against t, while the lower
points (more accurately, points further to the
right) show 5* plotted against to'', in each case
for 0.9~ M~ 0.65. At its lower end the second
curve does seem appreciably more linear, and
extrapolates to a value about 5.1. We must, how-
ever, draw attention to the uncertainties in the
data of Table VIII, which (for this second plot) we
have indicated by hatched rectangles in Fig. 3.
In view of these uncertainties, we incline to cori-
clude ' that 5=5+0.2.

We would add only that if the above argument
has any validity, then the finite series effect,
which causes 5* eventually to approach unity, sets
in for our series at about M=0. 6.

VI. SUMMARY AND CONCLUSION

We have shown that it is possible to locate the
magnetic phase boundary for the Heisenberg spin-
2 model with acceptable accuracy from an expan-
sion of the magnetic free energy in powers of
J/zT and tanh(pH/zT), i.e. , of essentially high-
temperature variables. The phase boundary is
not accurately determined for a magnetization
greater than about 80'%%up of the saturation value,
but by then we are entering the realm of spin-
wave theory. For the fcc lattice our phase bound-

ary agrees closely with that given by Cooke and
Gersch, using second-order Green's-function
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theory. Likewise for the sc lattice, although we
know the phase boundary less accurately, our re-
sults agree within their precision, with the sec-
ond-order Green's-function treatment. For the
bcc lattice we find a magnetic phase boundary
barely distinguishable from that for the fcc lattice,
which is in keeping with the similarity of their
limitingly low-temperature forms provided by
spin-wave theory.

On this latter point, it is interesting to observe
that the experimental results for the magnetic
phase boundary of the bcc Heisenberg ferromag-
netic Cu(NH, )~Br4 2HzO reported by Wielinga'8 lie
very much closer to the Cooke and Gersch fcc
phase boundary than to the corresponding phase
boundary for the sc lattice, notwithstanding that,
as regards lattice coordination number, the bcc
is closer to the sc than to the fcc lattice.

In contrast to this, we have found that there are
intrinsic difficulties in determining the critical ex-
ponents P and 6, relating, respectively, to the
phase boundary and the cr'tical isotherm. Al-
though by using rather longer series we could
have located the phase boundaries with greater
precision, this is probably not the case as re-
gards these critical exponents, whose exact de-
termination escapes us as much in principle as
in practice. Longer series might well clarify
the question of c and the existence or nonexis-
tence of an initial susceptibility at subcritical
temperatures; but without radically new methods,
or a rigorous proof of the scaling laws, it seems

unlikely that much more can be said about the
magnitudes of P and 5.

In this paper we have not tried to estimate P
itself; only to say something about an effective P
over the range for which we know the phase bound-

ary with some coDXidence, namely, 0.4 & M & 0.7,
for which we have given P*=-0.35+0.05. In I, in-
voking the scaling laws, we concluded 0.36 ~ P
~ 0.41, though the tempting assumptions y =

7 and
24 = 7" led to P =- —,'4- = 0.357; a value which we till
rather favor. If this is so, it is clear that the
true value of P may well remain effective up to,
say, M=0. 6 or T/T, =0.9. In any case, it should
be noted that in deter ming the value P = 0.38
+0.04 for Cu (NH, ), Hr, 2HzO, Wielinga leaned
heavily on the saturation magnetization measure-
ments in the region oi M= 0. 6 and T/T, = 0.9.

Regarding 5, we believe we can say with confi-
dence that 5 &5.6. In I we concluded 4.46 ~ 6
~ 5.00, while the fractional values for y and 2~
led to 6 = 5. We have allowed ourselves here to
say 5.0 a 0. 2, and believe there is some positive
evidence for this. Longer series could improve
our confidence, but some uncertainty over the
validity of the extrapolation procedure used must
inevitably remain.
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APPENDIX A: FACE-CENTERED-CUBIC LATTICE

p, (M') = —12+12M',

p2(M )=48 —360M +312M,

p, (M') = 288+ 6 S84M'-18 624M'+11952M',

P4(M )= 288 —69408M + 681120M —1 222272M +610272M )

Pm(M )= —13632—172608M —16961280M +73509120M -95359680M +.38998080Mi0,

Pe(M ) = 1017V92+8860992M +252075072M —3144229056M

+ 8518176000M —8625 V55 520M + 2989854 V20M

p7(M ) = V V 429 Veo + 65 179 392M —186 05V 984M + 97 083 899 136M —54'7 553 147 904M

+ 1 GV2 326 44V 360M —889 210 586 880M + 26V 396 83V 120M

pa(M ) = 330620V V44 —13 523091456M —410V1441920M —1914333448704M +26 V82383496V04M

—95 894 560 355 328M' + 146698249098 240M —102 955 962 332 160M + 27 335 511866 880M

APPENDIX B: BODY-CENTERED-CUBIC LATTICE

pi(M )= —8+8M

p2(M )=32 —176M +144M,

p3(M ) = - 128+ 2 912M —6 720M + 3 936M,

p, (M') = 2112 -494V 2M'+ 229184M' - S2V 936M'+ 146112M',

p (M )= —30848+961408M —7272960M +18680320M —19209600M +6871680M'

p, (M') = 829568 —24 1SO 688M'+ 242 365 824M' —944OOV 504M'+1648 88O 64OM'

—1 314 305 280M' + 39135V 440M' ~

p~(M ) = —14 608 896+ Vl9 391 744M —8 992 936 960M'+ 4V 45V 141 760M —121 SSV 169 408M

+ 158991006 720M —103015019520M + 26 192 194 560M

p~(M ) = 5V1 524096 —26098 339 840M + 380 321 157 120M —2 50V 078 153 216M + 8 543 360 842 V52M

—16 035492 V59 552M' + 16 V35 590 574080M' —9 106 VV3 903 360M' + 2015 599057 920M

APPENDIX C: SIMPLE-CUBIC LATTICE

p, (M )= —6+6M,

P, (M') = 24 —1OaM'+ 84M',

ps(M ) = —96+ 1 560M —3 264M'+ 1 800M,

P, {M')= 144 —21456M'+ OS 744M' —124 704M'+ 52 272M',

Ps(M ) —2 784+ 283 296M —2 423 040M + 5 929 920M —5 V15 360M + 1 922 400M 0,

P6(M ) = 184 224 —4 290 528M + 61 205 472M' —244 855 008M'+ 408 312 OOOM'

—306 308 160M"+ 85 V52 GGGM"

P (M )= —6059136+94389504M —1619869440M +96249V26V2M —245646VV V60M'

+ 30 799 GVV 120M —18 831 052 800M + 4 503 219 840M

pa(M ) = 24005 SV6 —269892V 104M +4V 855 V64 992M —380 555 46V 008M + 1371468809472M

—2 542146 098 688M + 2 541133969 920M" -130V420 835 840M" + 272 338 VV8 880M"
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APPENDIX D: PLANE-TRIANGULAR LATTICE

pi(M ) = —6+6M,

p2(M )=24 —108M +84M,

P,(M ) = 24+1296M —3048M +1728M~,

P4(M ) = —1 296 —9 072M + 69 840M —105 984MS+ 46 512MB,

p5(M ) = —4896 —18144M —1123200M +3948480M —4356000M +1553760M

pe(M ) = 359 904+ 592 800M + 11 265 696M —108 004 320M + 240 888 960M

207 397 440M + 62 294 400M y

pp(M ) = 3 151296+ 16 170 048M' —35 578 368M'+ 2 219 228 928M —9 843 511 104M'

+ 15972'264000M —11251 820160M' + 2920095 360M' ~

ps(M ) = —214 622 976+ 30 950400M' —911121 408M' —30 397 316 352M + 312 908 501 760M'

—gP2 373 5P2 464M" + 11495P9 g75 04PM" —685 160 985 60PM" + 156 6P8 1216P0M".

pg(M ) = —4+4M y

p, (M') = 16 —56M'+ 40M',

APPENDIX E: PLANE-SQUARE LATTICE

p, (M ) = —64+ 688M —1 248M + 624M,

p, (M ) = 96 —8288M'+ 301V6M' —35 328M + 13 344M'

p~(M )= 1856+97344M —675840M +1423360M —1 212480M + 365 VGOM',

Pe(M )= 64 —1120832M +14703040M —50 582592M +73789440M8

—49080960M' +12291840M',

p7(M') = —5VO 112+12943 8V2M —315 780 864M + 1 696 3VV 088M —3 808 890 624M'

+ 4 220 160OOOM' —2 294 772 480M + 490 533 120M',

p8(M )= 3681792 —150519808M +6 V343605VGM —55223961088M +180758358528M

—298 530 462 720M + 265 595 581 440M —121 889 295 360M + 22 702 256 640M
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The frequency moment appearing in a relation between susceptibility and fluctuation is ex-
pressed in terms of measurable quantities. A discussion is given of a determination of the
critical exponent for the staggered magnetic susceptibility of RbMnF3.

I. INTRODUCTION

In a discussion' of the relation between the criti-
cal exponents of susceptibility and of fluctuation

near a critical temperature T, a frequency moment
of a spectral density was introduced. If this mo-
ment co goes to zero at T„ these two critical ex-
ponents are equal. In the present work ~ is re-


