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We note that two-dimensional systems are expected to

have long-range order once an anisotropic term of suf-
ficient size is present, in addition to the Heisenberg
term, in the Hamiltonian. Such terms are almost in-
evitably present in real two-dimensional systems for
there will exist spin dipolar forces which do not cancel
out (because of the two-dimensional character of the lat-
tice). These terms will generally be large enough to
have this effect.
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A set of microscopic parameters determined for LiTa03 in an earlier paper by comparing
dielectric properties with the results of a statistical calculation are analyzed in terms of a
point-charge-plus-electronic-polarizability model for the system. The results indicate the
existence of very strong intercell correlations for ionic motion to temperatures considerably
in excess of the Curie point Tz. These correlations are weak functions of temperatures to
the extent that they do not produce deviations from effective-field (e. g. , Curie-Weiss) be-
havior near Tz. Neglect of correlation effects leads to many inconsistencies and indicates
that the use of random-phase Lorentz fields in statistical theories for displacement ferro-
electrics is qualitatively unsound. Spontaneous polarization for LiTaO& is found to be 45%
ionic, 55% electronic; the tantalum-oxygen bond is very markedly covalent, with estimated
ionic charges of + 0. 8 and —0. 6 electronic units, respectively.

I. INTRODUCTION

In an earlier series of papers, ' a statistical
theory for displacement ferroelectrics was de-
veloped and applied in some detail for the salt
lithium tantalate LiTaO, . The statistical approxi-
mation adopted to describe equilibrium bulk dielec-
tric properties was to replace all primitive cells
except one by their ensemble averages, thereby
including long-range (intercell) interactions only
in a Hartree or effective-field approximation. In
this way it was possible to write an effective sys-
tem Hamiltonian in terms of the normal vibrational
modes of a single cell. For some displacement
ferroelectrics, only a single transverse optic
mode of lattice vibration is grossly temperature
dependent (the "soft" mode); LiTaO, and LiNbO,
are good examples. ' For these systems, the ef-
fective Hamiltonian contains sufficiently few
parameters for them to be comfortably overdeter-
mined by comparison of bulk ferroelectric prop-
erties with the results of the statistical theory.

In principle, by choosing a model for the micro-
scopic system, the Hamiltonian parameters
(which are microscopic quantities) could be deter-
mined from first principles. In practice, for
most of the parameters involved, such a calcula-
tion at the present time is not very meaningful,
and in the lithium tantalate work, ' we adopted the

"spin-Hamiltonian" philosophy from magnetism,
treating the parameters simply as numbers to be
determined by comparing theory with experiment.
The problem was overdetermined to a consider-
able degree, and the self-consistency of the re-
sults was surprisingly good, even with completely
temperature -independent parameters. Initially,
this was taken to imply that the random-phase ap-
proximation (RPA) for intercell interactions was
adequate in this context and that, consequently,
correlation effects were not a major factor.

However, certain Hamiltonian parameters are
fairly easily interpreted in terms of more funda-
mental microscopic properties of the lattice and
constituent ions and, when an effort was made' to
translate the "best-fit" parameter values into
more familiar microscopic concepts, some baffling
results were obtained: Lorentz fields more than
an order of magnitude smaller than expectation
and a Lorentz-field electronic contribution to
polarization of opposite sign to the ionic term. In
the present paper, we shall show that these, and
other inconsistencies which follow, disappear com-
pletely when an allowance is made for intercell
correlations between the ionic motions of neigh-
boring primitive cells of the lattice.

The way in which the numerous pieces of the
interpretational jigsaw fall neatly into place with-
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out exception, once the importance of correlations
is realized, gives confidence that the explanation
is basically the correct one. The correlations in-
volved are very significant, seemingly to tempera-
tures considerably in excess of the ferroelectric
Curie temperature T~ and throughout this range
(excluding, presumably, the immediate vicinity of
the Curie point, where a, critical divergence of
correlation length must take place for a second-
order phase transition') appear to be at most a
very slow varying function of temperature. It is
for this reason alone that the random-phase for-
malism of Ref. 1, with its Curie-Weiss laws and
typical Landau' critical parameters, still applies
in its entirety when correlations of the present
form are included. The form of the effective
Hamiltonian and the statistical analysis of the
earlier papers remains valid (which is presumably
why the self-consistency of the method was found
to be good for LiTaO, ); only the interpretation of
the Hamiltonian parameters in terms of funda-
mental microscopics is modified. Fortunately,
for ferroelectrics the true critical region near
T&, for which the present type of theory would

break down, seems to be of such minute extension'
that experimentally, to date, deviation from
Landau (effective-field) behavior has rarely been
observed near ferroelectric phase transitions.
A lesson of the present work is that it is danger-
ous to construe this as evidence for the absence
of correlation effects.

In See. II we show how ionic correlations can
be included in an analysis leading to an effective
Hamiltonian for a displacement ferroelectric, and
how one is led back to exactly the same algebraic
form for the "displacement" Hamiltonian used in
Ref. 1. Section III reexamines the LiTaO, findings
in the light of the new approach, redefining the
earlier problems and difficulties and demonstrat-
ing their natural explanation when correlation
effects are recognized. Finally, we are led to a
fairly accurate method for obtaining effective
ionic charges in ferroelectrics. Using the analy-
ses of relevant data for LiTaO, (present paper)
and LiNb03, we find effective charges for tan-
talum and oxygen in LiTaO, and for niobium and
oxygen in LiNbO„which are in close agreement
with those obtained by Peterson and Bridenbaugh
from an analysis of nuclear quadrupole resonance
experiments. We conclude that for both salts the
spontaneous polarization is about 45% ionic and
55% electronic.

II. MICROSCOPIC THEORY

Since classical statistics were found to be ade-
quate in the context of Ref. 1, the arguments will
again be presented in classical terms. The basic

procedure is to write down that pa, rt of the system
Hamiltonian which involves explicitly the coordi-
nates of a particular (or 'primary") primitive cell
of the lattice (say the ith cell) and to approximate
intercell interactions in some statistical sense, so
that the resulting effective Hamiltonian involves
ith cell coordinates only and can then be used to
evaluate relevant ensemble averages in a self-con-
sistent way.

We define an elementary polarization p' for an
arbitrary jth cell. It can, in general, be thought
of as the sum of two parts: p~ 0, polarization
when the Maxwell field E is absent, and P ~,
additional contribution resulting from the introduc-
tion of field E. In particular, we define polariza-
tions P = NP ', P~ 0

= Np~ 0, and P~ = Np ~, where
N is the number of primitive cells per unit volume
and i is the primary cell for which an effective
Hamiltonian is to be constructed.

At the outset we make the supposition that elec-
tronic polarizabilities are independent of ionic
motion in the lattice, i.e. , p~=p~ for all j. This
being so, the contribution to local field E'„, (at
site b of the primary lattice cell) which arises
from the influence of Maxwell field alone is ther-
mal-motion independent and is given by

Eg« —Eiop(E = 0) = E+&aaz P ~ i (2. l)

where yR» is the effective-field or Lorentz'
parameter for site b. The local field in the ab-
sence of E, viz. , E,„(E=0), js motion dependent,
however, and can formally be written as a sum
of zero-field dipolar contributions from all jci,
i. e. , as

where y'~ is the effective-field parameter at site
b of the primary cell for the dipolar contribution
from cell j . Now p~ 0 is sot independent of j
(or, more accurately, j —i) because of thermal
motion, and we here encounter the many-body as-
pects of the problem. To proceed, statistical ap-
proximation is necessary.

To reduce the problem to an effective Hamil-
tonian involving only the coordinates of the pri-
mary cell i, from which ensemble averages (~ ~ )
for the system can be calculated using classical
statistics, the intercell forces must be related
using a physical criterion to properties connected
with the motion of the ith cell alone. The simplest
approximation is the RPA for which pE 0 is re-
Placed by (Pa p) for all joi This aP.Proximation
relates intercell forces only to the averaged mo-
tion of the primary cell. What is neglected here
is the effect of intercell correlations, in particular,
the dependence of E,'„(E=0) on the deviations of
the motion of the primary cell from its average,
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E)'..(E= 0) = r'(P&z=o + r.'.„Pz=o,

where y + y„„=ysp& .b 5 b

(2. 2b)

(2. 2c)

In these equations (P)z 0=—(Pz 0) = IV&pz 0) and
we have defined a new dimensionless effective-
field parameter for correlated motion y'„„(and
an associated parameter y'). The new concept

ygopp al low s us, in parti cu lar, to re cognize the
existence of intercell dipolar forces in the non-
polar phase arising from correlation effects, i. e. ,

Es«(E =' 0) = ybb» Pz = o T ~ Tc ~

The linear form of the last term in Eq. (2. 2b) is
dictated not only by being the lowest-order cor-
rection to RPA and hence valid for weakly corre-
lated systems (high temperatures), but also by the
fact that it becomes exact in the opposite (low-
temperature) fully correlated limit for which p~z

= Pz 0 for all j and hence, E„,(E = 0) = yapA Pz - 0,
i. e. , y„„-ygpA in this limit.

The Lorentz parameters y' and y,'„,will be
generally temperature dependent. The concept
proves very useful for displacement ferroelec-
trics, however, since we shall find that this tem-
perature variation is so small that it can be ne-
glected for calculations in the vicinity of phase-
transition temperature T~ and leads to the concept
of noncritical correlation phenomena associated
with ferroelectric phase transitions. Finally,
for total local field at site b of the primary cell

Eio =E+rRpAPd+r'(P)z=o+y„„Pz=0 ~ ( 3)

The Lorentz parameters y' and y,' „, as ygpA &

will be second-rank tensors. We shall, however,
maintain a simplistic scalar formalism; the gen-
eralization to tensor notation is quite formal and

readily accomplished if desired.
Using Eq. (2. 3) and writing electronic polariz-

abilities ~„we find a total polarization for the
particular primitive cell of interest, expressed
in units of polarization per unit volume, as

P = (1/v) Zb [nb (E+ rRpd Pd+ y (P)z 0

+ ycb» Pz = 0) + eb fb 1 ~
(2. 4)

where v is the volume of a primitive lattice cell,
and ions at sites b possess point (effective) charge
e]I, and are displaced a distance q~ from centrosym-
metry The sum.gb is over all sites in the primi-

i. e. , on Pz 0
—(Pz 0). Thus, RPA theory can

be improved by allowing E,'„(E=0) to depend both
on the instantaneous and the averaged motion of the

primary cell. Including deviations from random
phase in lowest order, we write

(E= 0) = r Rpd &»z = o + y!.» (Pz = o &»—z = 0 )
(2. 2a)

or, identically,

tive cell. A question of semantics enters at this
point concerning the y,'„,Pz 0 term of Eq. (2. 4),
i. e. , whether it should be included as part of the
ionic or electronic polarizations. Its physical
origin is obviously electronic, but it enters the
theory fully correlated to ionic motion and there-
fore can be formally included as an additional con-
tribution to ionic charge. We have chosen to re-
strict the term "ionic polarization" to the physi-
cally ionic [last term of Eq. (2. 4)] characteristic
of the system, including all other terms as an
electronic contribution to polarization. However,
we shall reserve the term "dynamic charge con-
tribution to polarization" for the combined action
of the last two terms in Eq. (2. 4). Thus, in the
absence of an "applied" field E, and in a nonpolar
phase, the effective charges associated with ionic
vibrations are thought of as "dynamic charges";
they differ, often very significantly, from the true
ionic charges because of the effects of short-range
correlations contained in the y,'„,P~ 0 terms
above.

At frequencies of applied field very much higher
than optic phonon frequencies, all ionic motion
will be relaxed completely and the equation for
polarization reduces to

Pd= (I/v) ~b nb(E+ r». P.),
from which we find that

zA &E,

where n = (1/v) gb n,

and qR'pA = [1 (1/v) Zb nbyapd]

(2. 5)

(2 6)

(2. 7)

(2 3)

from which, using the fact that

&P&z =0=&P& -Pd,
we obtain (P) =qd bh&Pd ch)+QRpd nE,

nd' .h= [1 —(1/v)-Qb-nb r'] ' .

Also, from Eq. (2. 11), it follows that

(P)z = 0 Od-ah&Pd ch)'-
By definition, we may write

(2. 10)

(2. 11)

(2. 12)

(2. 13)

(Pd,„)= (P;,„)+(1/v) Zb nb'y„„(P)z 0, (2 14)

from which, using Eq. (2. 13), we find that

Equation (2. 6) is just a generalization of the
Clausius-Mossotti equation for electronic suscepti-
bility.

Relationships are also readily deduced relating
the total thermodynamic polarization (P) to the
ionic polarization (P,„)and to the dynamic-charge
contribution to polarization (Pd,„). We may write
the ensemble average of Eq. (2. 4) in the form

(»=P" (I/v)Z. (n, r"(». .) (P. ..), (2. 9)
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where we have also made use of Eqs. (2. 2c) and
(2. 12). It follows that

(P& = n aPA (&Pl..) +»)
We now consider the contribution to the system

Hamiltonian resulting from dipolar forces. We
shall be concerned with the equation of motion for
the ionic coordinates of a particular (e.g. , the
ith) primitive lattice cell. We may therefore dis-
regard all contributions not involving ith lattice-
cell coordinates. In general, we have a dipolar
conti lbutlon of the folnl

V'= —(1/v) Qb[e, qbE,'„+—,
' nb(Elb„)'] . (2, 17)

If we include only intercell dipolar forces in E„„
taking all intra-ith-cell dipolar interactions into
the isolated ith cell system Hamiltonian (see Ref.
1), then E,'„doe snot contain any ith cell coordi-
nates and Eq. (2. 17) reduces to

eX= pm + 200) +At +8)

QbMbBb ——1,

(2. 20)

(2. 21)

(2. 22)

and where M&, P~, q~ are, respectively, the mass,
momentum, and displacement of the bth ion, and
u&M', the bth component of normalized eigenvec-
tor.

The dipolar contribution V'of Eq. (2. 19) can
now be expressed in terms of the normal-mode
coordinates and added to Eq. (2. 20) to give the
final "displacement" Hamiltonian. Transforming
Eq. (2. 19) we obtain

hi.bit a gross temperature variation of only a
single (soft) mode. For such systems we retain
only that part of the system Hamiltonian describ-
ing this single (transverse optic) mode. The re-
sulting Hamiltonian may be expressed in terms of
the conjugate momentum and displacement coordi-
nates m and $ of this mode in the form

V'(i) = —(I/v) Qb e b A(i) [E+y al AP A+ y '0 ap A (P„)
+ y'„„1vp'( corr)z b], (2. 1.8)

vV'(() = —qs] [E+(ys/v)&t')]

'(ny. ...S-'/v) 5', (2. 23)

where P~ (corr)a b denotes the fully correlated
polarization of an arbitrary cell j@i. Quite gen-
erally, a potential function containing terms
q(i) q(j), which is restricted by correlations to
q(i) = q( j), yields the same equations of motion as
the potential function which is the same except
that q(i) q(j) has been replaced by —,'[q(f)]b. Thus,
dropping subscripts i and j, we can write for the
particular primitive cell of interest

V'=-( I/v) ~b eb Vb(@ +yB'PA PA+ ygR &PPA)l
+2y',.„Pa 0) . (2. 19)

To ensure that y»A in Eqs. (2. 1) and (2. 2) refer
to the same Lorentz parameters, it is convenient
to include the intracell dipolar contribution to E„,
in Eq. (2. 18). This merely has the effect of
changing the meaning of y„„in Eq. (2. 19) to in-
clude intracell as well as intercell effects. The
coefficient z in the intracell case is required in,

order to avoid counting the interactions twice in
the sum over cell sites b. Thus, all Lorentz
parameters are now defined in conventional fash-
ion, i. e. , including contributions from all ions ex-
cept the one in question.

The basic approximation of the statistical theory
of Ref. 1 ls thRt, ln the Rbsence of dlpolRl lnter-
a,ctions, optical modes of lattice vibration are
sufficiently weakly varying functions of wave vector
that it makes sense to neglect this variation and
describe the motion in terms of normal modes of
vibration of a single primitive cell. The formal-
ism is simplest for those ferroelectrics which ex-

wllel'e S =Zb eb Bb, (2. 24)

1)S =Qb[l+'qapAyapAo]ebBb ~

t
gys =~y g Rph Y ey+v y

t~5 0 Rph +coxre 5+5

(2. 26)

(2. 2"I)

where ~', = no- (qy,.„S'/v) . (2. 29)

The HRlnlltotllRll Eq. (2. 28) ls exactly that used ill

our earlier work so that all the parameter deter-
mination and self-consistency checks carried out
previously for LiTa03 are still valid. All that
has changed are the definitions (2. 24)-(2. 27) and

(2. 29) of the Hamiltonian parameters in terms of
the more fundamental microscopic parameters.

HI. LITHIUM TANTALATE

In Ref. 1, a detailed comparison of statistical
theory with experiment for the displacement ferro-

We note, in partlculRr, thRt S is Rn ionic- chRrge
parameter, in terms of which the ionic contribu-
tion to polarization (P„„)= (S/v) &$) . We have also
extended the finding &P)a 0=1)apA&P„„) of Eq. (2. 16)
for use as I'~

&
= q &»P&„, thereby assuming a

constant ratio of ionic to electronic polarization
during fully correlated ionic motion. Adding Eq.
(2. 23) to Eq. (2. 20) we obtain a final displacement
Hamiltonian for our single-soft-mode ferroelectric
in the form

vK= —,'(lib+ u&o)b)+A) +B)' —qS)[Z+ (yS/v) &$)],

(2. 28)
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C~ —1 + 47TQRpA Q ~ (3. 2)

Barker and co-workers"' have measured ~„from
infrared ref lectivity experiments for both LiTaO3
and LiNb03, with the results e (LiTa03) =4. 5 and

e„(LiNbO~) = 4. 6 for light polarized with E parallel
to the polar axis of the ferroelectrics. Since we

anticipate that the electronic polarizability is dom-
inated by the oxygen contribution, '" this very
close correspondence for isomorphic structures
is not surprising. From Eq. (3. 2) we find qa»o. '

=0. 29 for the niobate and equals 0. 28 for the tan-
talate. Putting gap„= 1.3 for LiNb03 (RPA approx-
imation') and q „»= 0. 8 for LiTa03 we obtain from
Eq. (2. 7) (primitive cell volume V= 106 A for
both salts)

3o.(O)+ a(Ta)-19 A',

3n(O)+ o.(Nb)-12 A',
(3. 3)

where n(O), o. (Ta), n(Nb) refer, respectively,
to the electronic polarizabilities of oxygen, tan-

electric LiTa03 showed that an analysis using
Hamiltonian (2. 28) gave results which were quite
self- consistent for a markedly overdetermined
problem. However, an attempt to interpret the
"best-fit" values for the Hamiltonian parameters
in terms of more fundamental microscopics led
to some extremely puzzling conclusions. How-

ever, this interpretation was made under the as-
sumption that the RPA was essentially valid, e. g. ,
the y' values in Eqs. (2. 25) and (2. 26) were both

pgpp Bnd that y „=0. Let us review the HPA in-
terpretation for LiTaO3 to stress the difficulties.

The really important step in the interpretation
of results by RPA theory is the elimination of
g, y'e, u, between Eqs. (2. 25) and (2. 26) to give

q = 1/(1 —ny), (3. 1)
a result which is not valid if correlations are pres-
ent. It will turn out that all the ensuing difficul-
ties can be traced back to Eq. (3. 1). Since ny
= (7}ap~ n)(y/7} „'») = 0. 3x ~ for LiTaO„' it follows
that the q parameter is only a percent or turbo

larger than unity. In conjunction with the results
of the overdetermined statistical LiTaO, problem,
viz. , q/gap„——1.3, qapJ, /y = 13, qappS = 520 cm 3/2

sec ', this finding then precipitates the results:
(i) q ap„= (total polarization)/(ionic polarization)
& 1; (ii) Lorentz parameter y is nearly two orders
of magnitude less than the cubic" value of 3 m; (iii}
effective-charge parameter S is markedly larger
than that appropriate for even fully ionic ions. To
these embarrassing conclusions we can add still
others. From Eq. (2.6) we can relate optical re-
fractive index (or more accurately e „the high-fre-
quency contribution to dielectric constant) top„'» o.'

through the equation

talum, and niobium ions in the two salts. The
contribution from lithium ions is, in all prob-
ability, negligibly small and has been omitted
from Eqs. (3.3). Although no good quantitative
estimates are available for o.'(Ta) and o.(Nb), the
existing evidence' ' suggests that they are small
compa. red with a.(O). Thus, Eqs. (3.3) predict
&(0) in LiTaO, of order 6 A' and suggest a very
sizable difference between o.(O) in LiTaO, and

LiNb03. In view of the close correspondence of
e„values the latter finding is difficult to accept.
The former finding o!(0)=6 A' for LiTaO, is, how-

ever, completely out of the question. Axc" has
quantitatively assessed optical polarizabilities
from e data, for the perovskites and finds 3 o.'(0)
+ o.'(Ta) = 6. 6 A' in KTaO„where the tantalate
group is essentially just that present in LiTa03.
Also, for a wide range of oxides, values of o'(O)
seem always to be in the 1.- to 3-A range.

It is possible to attempt an explanation of these
various findings in terms of numerous ad hoc hy-
potheses (e. g. , total breakdown of the point-charge
approximation. , large ionic distortion effects from
nondipolar sources, etc. ) but this is most unsatis-
factory at best, particularly in the light of Axe's'
findings for the perovskites. Moreover, the oxygen
polarizability result remains quite unrealistic in

any context.
The unsatisfactory aspects disappear completely

once one accepts the not very surprising possibility
that intercell correlation effects could be signifi-
cant for ionic motion. To do this we merely relax
the RPA restriction on the Lorentz parameters
which produced Eq. (3. 1) and analyze the LiTaO,
data using Eqs. (2. 24)-(2. 27). However, before
doing this in detail, it is advisable to caution our-
selves that a number of approximations have en-
tered even the correlated motion theory. First,
the procedure of accounting for electronic suscepti-
bility in terms of a local electric field acting upon
an electronic polarizability of the ions is not rigor-
ously justifiable. Dipole contributions resul, ing
from exchange charge effects' and from ionic de-
formation by short-range repulsive interactions
with neighbors' ' ' (as conceived in shell-model
calculations '

) must be recognized and may be
responsible for corrections of order 20/0 to simple
dipolar theory in calculating effective charges.
Even within the local field approximation the theory
of Sec. II assumes the equality of the RPA Lorentz
parameters ygpp for the Maxwell and zero-field
contributions to polarization, i. e. , for I'~ and
I z 0, Since different ionic sublattices do not con-
tribute equal proportions to ionic and electronic
polarizations, this will (except for the simpler
cubic-type lattices) not be the case and thus in-
volves an additional approximation. The theory
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can only be refined to allow for this effect if
Lorentz parameters are computed for each ion
site from all ionic sublattices separately and if de-
tailed knowledge of relevant pol. arizabilities and
soft-mode symmetry is available. The effect,
however, is probably not serious for systems with
a large electronic contribution to total polarization
(we shall estimate electronic contributions to be

55% in LiTaO, and LiNbG, ). These limitations of
the theory should be kept in mind when it comes to
assessing the quantitativeness of the ensuing calcu-
lations.

Using Eq. (3. 2), we can estimate q bbpp from the
measured high-frequency dielectric constant c„if
the relevant polarizabilities are known. We can
proceed in two ways, the quantitative consistency
of which gives us some confidence in the results.
First, we can assume that the polarizability of a
tantalate ion (TaOb) is relatively well defined
(i. e. , comparatively insensitive to environment)
and use the value 6. 6 A calculated by Axe for
KTa03 as applicable for LiTa03. Neglecting the
electronic polarizability of lithium (for which the
usual estimate is 0. 03 A') we proceed to calculate
ria»=2. 21 and o. [of Eq. (2. 7)] 0. 126. We note,
from Axe's numbers, that the electronic polariz-
ability of the titanate ion in BaTiO3 and SrTiO3 is
constant to within 1% of the value 6. 75 A, which
lends some support to the idea of an ion group
polarizability which is somewhat insensitive to en-
vironment. Second, we note that for many cubic
structures, including the perovskite lattice, we
can write

'q»z= (1 —
b mn)

for electronic polarizability, where the anion con-
tributions to electronic polarization are equivalent.
(The same equation is not valid for ionic terms in
perovskite where one has two inequivalent anion
contributions to ionic polarization leading to the
famous Slater enhancement effect for Lorentz field
in BaTiO, . ) It is likely, therefore, that Eq. (3.4)
will also be a good approximation for electronic
polarizability in the slightly distorted (at room
temperature) pseudoperovskite LiTaQb. Using
Eqs. (3.4) and (3. 2) for LiTaO„(with e „=4. 5), we
calculate values q ppA = 2. 1V & = 0. 128, and a tanta-

0
late electronic polarizability of 6. 8 A . The agree-
ment is excellent; with some confidence we can
write q»&= (total polarization)/(ionic polarization)
= 2. 19+0.02, indicating an electronic contribution
to spontaneous polarization of about 55/g, and an
ionic contribution of about 45'%%up.

Since the ionic contribution to spontaneous polar-
ization (P...) is directly related to effective ionic
charges e(Li), e(Ta), and e(O), we may use the
fact that (P„„)=0. 45(P) to obtain a relationship

between these charges. In general, we have

~b eb'qb ( }//»A &
(s. 5)

e (Li) + e (Ta) + 3 e (G) = 0 . (S. 7)

The effective charge for Li' may safely be taken
to be close to + l. Equations (S.6} and (3.7) now

determine the effective point charges for tantalum
and oxygen as e(Ta) =0. 8 and e(G) = —0.6. An

equivalent calculation for LiNbQ, gives' e(Nb} = l. 4
and e(G) = —0. 8. These numbers are in very good
agreement with the estimates of Peterson and
Bridenbaugh from a point-charge analysis of nu-
clear quadrupole resonance data which are e(Ta)
=1.2, e(O)= —0. 7 for LiTaOb, and e(Nb)=1. 6,
e(O) =--0. 9 for LiNbOb. The calculations both in-
dicate that the bonding in the tantalate ion and nio-
bate ion is very far removed from ionic, for
which the effective charges would be e(Ta) =e(Nb)
=-+5, e(O) = —2. They also indicate a, greater
degree of covalency for the tantalate, a result in
agreement with that expected from electronega-
tivity differences.

It is now trivial to complete the LiTaO, analysis.
Using the parameter ratios deterxnined from the
statistical calculation' and quoted at the beginning
of the present section, it now follows that

q= 2. 8, y= —,', S=240 cm"'sec '. (S. 8)

Also, from Eqs. (2. 25) and (2. 26) we find that

b
~b'Yaph eb ub = 6 58 ~

+by ebub=0. 22S,

(S.9)

and from Eqs. (2. 2c) and (2. 27) it follows that

1~b Ycorr eb ub

and y„,,=4.9. We can, from Eq. (3.9), define
some sort of averaged RPA Lorentz factor with a
value 6. 5. Although this average is of no particu-
lar significance, and is probably not accurate to
better than + 25%, it demonstrates that the Lorentz
effects (ya~.b) are now of the expected order of mag-
nitude, i.e. , 3 m. It is also apparent from Eqs.
(S.9)-(3.11) that the motion of the ions which con-
tribute significantly to Lorentz field is almost com-

where qb are the displacements from the nonpolar
phase as measured by x-ray and neutron-diffrac-
tion techniques. ' Using the observed room-tem-
perature values q(Li) =0.43 A, q(Ta) =0.029 A, q(O)
= —0. 17 A for displacement" and (P) = 50 pC/cm, '
we find the equation

0. 43e(Li)+0. 029e(Ta) —0. 51e(O) =0.76, (S. 6)

where we measure effective charge in units of
electron charge. Since we have charge conserva-
tion, we also know that
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pletely correlated throughout the temperature range- T~. As emphasized before, these are not critical
correlations intheusual sense since, as evidenced
by the Curie-Weiss behavior near T~, the tempera-
ture dependence of these correlations must be very
weak over this temperature range.

From the statistical analysis of Ref. 1 we find
for the harmonic parameter ~0 of Hamiltonian
(2. 28) a value of approximately 140 cm '. From
Eq. (2. 29) we can now estimate the separate bind-
ing (short-range forces) and correlated dipolar
contributions to this parameter. We find values

&0=480 cm, (qy„„S /v)'~ =460 cm
(s. 12)

Thus, the frequency of the soft mode in the ab-
sence of dipolar forces is -480 cm ', which is of
the order of, but perhaps a little less than, typical
stretching frequencies observed for the tantalum-
oxygen covalent bond. The very significant part
played by correlation effects is evident from Eq.
(3. 12), making &uo «Qo and bringing LiTaO, very
close to being an order-disorder ferroelectric. '
It is interesting to note that recent x-ray and elec-
tron-scattering experiments ' seem to support
the idea of very significant correlation effects in
ferroelectrics. The BaTiO, controversy " ' is
particularly relevant, indicating another system
where strong lattice correlations seem to bring
the system close to an order-disorder situation
(which results when &uo becomes negative, or before
that in the presence of negative quartic anharmo-
nicity').

At low temperatures T«T~, we are unable to
estimate the ionic correlations since they play a
very small role in this almost completely ordered
range. In the low-temperature statistical theory,
the parameters ~o and y enter only in the combina-
tion

& = ~o - (n»'iv) = &'0 (nr„~&'iv)-,

where yRPA is defined by

b
nrRPA ~b~RPAYRPAeb b

(s. ls)

(3. 14)

so that F is independent of correlation effects. In
the earlier statistical analysis for LiTa03 in Ref.
1, we found, that the agreement with experiment
was improved if the parameter y was allowed to
vary with temperature from 6 near T~ to yg at low
temperatures. The physical reason for this must
now be understood from Eq. (3. 13) either as a de-

, crease of bonding frequency 00 or an increase in
Lorentz parameter y»A with increasing tempera-
ture. The observed effect is quantitatively ex-
plained by a 1% decrease in bonding frequency or
by a 2/& increase in yR» as O-T-T~, indicating

a marked temperature independence of these
parameters despite the high Curie point= 890 K.

Finally, it is interesting to consider the dynamic-
charge concept introduced earlier in Eqs. (2. 12)
and (2. 13). Since y is very small we may approxi-
mate Eq. (2. 12}by

nd .h
= (1 —nV)

' (3. 15)

to obtain the value gd, h= 1.02 for LiTa03 Thus,
the dynamic-charge contribution to polarization is
about 98%, which is only another way of saying
that the ionic correlations are very large indeed.
In the nonpolar phase just above Tc the correla-
tions have the effect of distorting the electronic
clouds of the ions during their vibrational motion.
This effect is in the present picture due to dipolar
forces via electronic polarizabilities, even though
the thermodynamic polarization is zero. In a sim-
ple RPA picture (neglecting correlation effects)
the ions behave as if they possessed markedly in-
creased point charges, dynamic charges 8'„which
must be carefully distinguished from the true ionic
(or static) charges e, evaluated for LiTaO, above.
The equation for dynamic charge is

+ / I
~b b 9 b +d-ch &i'~d-ch

and for LiTa03 may be written

(s. 16)

IV. CONCLUSIONS

We have analyzed the results of a statistical cal-
culation for LiTa03. We are forced to the conclu-
sion that very important ion correlations between
neighbor primitive cells of the system exist right
up to temperatures well in excess of Tc. The cor-
relations are very weak functions of temperature
on the temperature scale - T~ and, therefore, are
not critical correlations in the usual sense. Near
T&, in LiTa03, about 9'7 or 98/q of the Lorentz field

0. 43 e'(Li) + 0. 029 e'(Ta) —0. 51 e'(0) = 1.62,
(3. 1V}

where we give dynamic charge in units of electronic
charge. For dynamic charge there is no charge
conservation law so that Eq. (3. 17) comprises our
only information in the absence of a detailed knowl-

edge of Lorentz parameters for each site. How-

ever, because of the extreme smallness of n(Li)
it is safe to assume a value e'(Li)=1. Since we

expect n(Ta) to be smaller than n(0) and because
the coefficient of e'(Ta) in Eq. (3. 17) is verysmall,
we shall incur little error if we take e'(Ta)=+2,
allowing even with this lack of knowledge concern-
ing the tantalum ion a rather precise estimate for
the dynamic oxygen charge. We find the value
e'(0) = —2. 2 which is almost four times the static
oxygen charge e(0) =-0.6.
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results from fully correlated motion. We find that
the neglect of correlations (e. g. , the use of simple
random-phase local fields proportional to the ther-
mally averaged polarization) leads to many incon-
sistencies and that these are all removed completely
when correlation effects are recognized. With the
new interpretation [which now replaces that of Ref.
1, (III 8) although the rest of the earlier work' re-
mains valid] we calculate ionic charges e(Ta) =0. 8
and e(O) = —0.6, and a (Ta03) ion polarizability of
6. 8 A, which are all in very close agreement with
previously published estimates from independent
studies. '" We find that the spontaneous polariza-
tion is about 55% electronic, 45 lo ionic, and es-

timate a soft-mode "bonding frequency" (i. e. , fre-
quency is the absence of long-range dipolar forces)
of 480 cm ', which is of the order of, but somewhat
less than, a tantalum-oxygen stretching frequency.
Finally, very similar strong correlation effects
are found for LiNbO3 to even higher temperatures, '
suggesting that the phenomenon may not be an iso-
lated one (see Ref. 22). We conclude that the ex-
istence of "effective-field-like" Curie-Weiss be-
havior is not necessarily indicative of the absence
of correlation effects, and that the use of random-
phase Lorentz field theory for ferroelectric cal-
culations near of above Tcis probably bound to fail
for displacement ferroelectrics.
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