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Classical Heisenberg Magnet in Two Dimensions"
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(Received 20 March 1970)

The equilibrium properties of a square planar array of classical spins with near-neighbor
Heisenberg interactions have been examined fox arrays of up to 2025 spins with and without
periodic boundary conditions. Equilibrium values of the root-mean-square magnetization
M~, were obtained by Monte Carlo calculations. Sample spin arrays whose energy agreed
with the ensemble average at a given temperature were taken as characteristic of that tem-
perature and were employed to obtain instantaneous correlation funcbons. The results are
less clear than those reported previously for three-dimensional systems: The Monte Carlo
calculations converged more slowly becaUse of the lower connectivity of the lattice, and, un-
hke the three-dimensional case, the short-range order has a range as large, or larger, than
the largest sample dimensions. The results are consistent with the observation of Mermin
and Wagner that the system does not order ferromagnetically at finite temperatures, and
lend some credence to the conjecture of Stanley and Kaplan on the existence of a special or-
dered state possessing "long-ranged short-range order. "

I. INTRODUCTION

In an earlier paper, ' we have presented results
of extensive computer studies of a three-dimen-
sional classical Heisenberg ferromagnet. That
paper reported Monte Carlo calculations of the
magnetization and the static spin correlations at
various temperatures in various sizes of arrays.
Also given were the time-displaced spin-correla-
tion functions, found by numerically integrating
the classical equations of motion for the entire
system of spins. The same computer methods
are readily extended to arrays of other dimension-
ality. The static properties of a two-dimensional
array of three-dimensional spins are of interest
because of the fact that a ferromagnetic statedoes
not exist in near-neighbor coupled two-dimensional

Heisenberg systems and because of associated
questions concerning the existence of a nonferro-
magnetic state which nevertheless possesses some
kind of long-range order. '3 Consequently, we
have made Monte Carlo calculations of such two-
dimenslonal systems of a vaI'lety of sizes and at
a variety of temperatures.

In the next two sections, we review the method
of calculati. on and summarize the results. A fuller
discussion of the Monte Carlo procedure is given
in I.

II. MODEL AND METHOD OF CALCULATION

I et each site n of a simple square lattice be oc-
cupied by a spin 8„, where 8„ is athree-dimensional
vector of unit length. I et the energy of the system
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be

E= ——,
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where the summation is over pairs of nearest
neighbors only. We consider finite lattices of
rectangular outline containing N sites. Two types
of boundary conditions have been used: periodic
boundary conditions and isolated boundary condi-
tions, for which the only terms in (1) are for pairs
inside the array. In the work reported, N has
been assigned various values from 225 to 2025.

The Monte Carlo method' is employed as de-
scribed in I. In effect a random walk, biased with
a certain weighting function, is carried out in the
configurationspace of thespinsystem. The weight-
ing function depends on a Boltzmann factor involv-
ing the energy E of the point in configuration space
and the temperature, which plays the role of an
arbitrary parameter of the calculation. After
enough steps have been taken, averages over all
the steps of any property of the system approxi-
mate the true canonical average of that property
at the chosen temperature and converge to the
average as the number of steps approaches infin-
ity. A different Monte Carlo series is carried
out for each temperature of interest. Temperature
is defined in energy units where 8 of Eq. (1) is set
equal to l.

The averages were found to converge more slow-
ly in two-dimensional systems than in three-di-
mensional systems; the resulting demands on com-
puter time prevented use of arrays as large as
some of those in I. In general, several Monte
Carlo series would be run for a given temperature
with starting points, in configuration space, char-
acteristic of temperatures below, at, and above
the temperature in question. This provided better
average quantities than single longer samplings.

The magnetization of the system is defined as

N

M=. PS„.

The root mean square of this quanity M, , was
calculated, as were the first moments of M, „and
the average of the absolute value of M, denoted by
(~M~). Also calculated were the two kinds of in-
stantaneous pair correlation functions, longitudinal
and transverse.

The longitudinal correlation function is

(s„,(r)s„,(~+ ~)) = (s„'s'),

where 8„' is the z component of S„, z is in the direc-
tion of M, and site n is at r and site m is at r+ 4r.

Similarly, the transverse correlation is

(s,(r) s, (~+ ~r)) = —,'(s„"s"+ s~ s~
& . (4)

The correlation functions were evaluated for
arrays whose M, and energy coincided with the
average values obtained from the set of Monte
Carlo series for the temperature in question. To
test, correlation functions were obtained for sev-
eral arrays (appropriate to a particular tempera-
ture). The general features of the correlation
functions were, by this criterion, quite reproduc-
ible. A better, but much more costly, procedure
would have been to take running averages of the
correlation functions in the course of the Monte
Carlo samplings. This was not done.

III. RESULTS

The root- mean-square magnetization, found
from the Monte Carlo investigations of isolated
two-dimensional square arrays, is plotted against
temperature in Fig. 1. That for the square arrays,
but with periodic boundary conditions, appears in
Fig. 2 (the dashed curves are the results for iso-
lated arrays of 225 and 2025 spins repeated from
Fig. 1). The inflection points correspond to the
ordering temperatures of the arrays in question.
The first moments of the M, „ofFigs. ]. and 2,
appear in Figs. 3 and 4, respectively. The data
of Figs, 1 —4 are normalized with respect to Mp,
the magnetization associated with ferromagnetic
order at T= 0. These moment data were used to
help place the inflection points; the positions of
the maxima in the moment data suggest that the
inflection points are almost independent of array
size for the isolated arrays, while shifting to sig-
nificantly lower temperature with increasing array
size for the periodic arrays. There is considerable
uncertainty as to the exact positions of the inflec-
tion points. For example, Fig. 4 suggests that
it lies in the region 0. 5 &T&0. 7 for the 2025 spin
array. We have placed the transition at T-0. 6 in

Fig. 2, but we will shortly see results suggesting
that it lies at a higher temperature. Each point
on Figs. 3 and 4 is the result of a Monte Carlo
calculation and the scatter in the points is symp-
tomatic of the poor convergence of the Monte Carlo
procedure for these two-dimensional arrays.

The vertical hatching in Figs. 1 and 2 is the
Monte Carlo data on which the 2025 spin magne-
tization curves are based. The dashed regions in-
dicate where at least one Monte Carlo run placed
the magnetization, and the solid-lined regions in-
dicate where the preponderance of the Monte Carlo
results lie. (As was discussed in Sec. II, a num-
ber of Monte Carlo runs were obtained at most
temperatures. ) The Monte Carlo sampllngs em-
ployed here are almost two orders of magnitude
larger than those used for the simple cubic three-
dimensional array of 8192 spins reported in I, and
the scatter is still an order of magnitude worse.
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I SOLATED TWO- DIMENSIONAL SQUARE ARRAYS
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FIG. l. Boot-mean-square
magnetization M~, versus tem-
perature from Monte Carlo calcu-
lations for various sizes of iso-
lated two-dimensional square lat-
tices of spins. TsK is the temper-
ature at which Stanley and Kaplan
found a singularity in the suscepti-
bility. M~, is normalized with
respect to the magnetization at T
=0, i.e. , Mo.
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There are several factors contributing to the poor
convergence. First, the convergence of such Monte
Carlo samplings is known to be dependent on the
connectivity of the particles, in this ease, the
spins. The eonnectivity of the near-neighbor cou-
pled square lattice, with each spin having four
near neighbors, is much weaker than that of the
simple cubic lattice considered in I. For this rea-
son alone, the Monte Carlo convergence should be
poorer here. Second, the short-range order of
the planar system appears to be as long, or longer
ranged, than the dimensions of the largest arrays
we have dealt with. This creates fluctuations in
the sampling, hence poor Monte Carlo convergence.
Similar effects, arising from critical fluctuations
at temperatures in the vicinity of T„were encoun-
tered for the simple cubic lattice in I.

The tendency of M, , for the periodic array to
lie higher and to have a more rapidly moving in-
flection point, moving with changing array size,
is reasonable. The M, lies higher because the
spins on the edge of the sample see the exchange
field of the neighboring array (s), whereas those
of the isolated array have fewer near neighbors,
hence feel weaker exchange fields. The more
rapid change in shape and shift in the inflection
point follows from the tendency of samples with
periodic boundary conditions to converge more
rapidly than isolated arrays to the thermodynamic
limit (i. e. , the limit of infinite sample size). The
two samplings will, of course, coincide in this
limit.

It should be noted that M, , samples both long-
and short-range order. The isolated array data
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FIG. 2. Root-mean-square
magnetization versus temperature
from Monte Carlo calculations
for various sizes of two-dimen;
sional square arrays of spins with
periodic boundary conditions.
The dashed curves indicate the
behavior for isolated arrays (from
FIG. 1) of the same size. Max.
Dev. provides a measure of the
maximum deviation between the
average of the magnitude of the
magnetization and the root-mean-
square value. (The maximum oc-
curs at an inflection point. ) 2lf~,
is normalized with respect to the
magnetization at T = 0.
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ISOLATED TWO- DIMENSIONAL SQUARE ARRAYS
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FIG. 3. First moment of M~~,
normalized with respect to Mo,
for the isolated square planar ar-
rays. Each point is the result of
a Monte Carlo run.
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of Fig. 1 suggest that much larger "laboratory
size" arrays, of say 10000 &10000 spins, would

display nonzero M, curves. We believe that such
behavior, as well as that of Figs. 1 and 2, arises
from short-range order. This implies short-range
order of extraordinary long range as comparedwith
three-dimensional systems. This, taken with the
attendant poor Monte Carlo convergence, makes
it impossible to use our results to assay the prop-
erties of two-dimensional arrays in the thermo-
dynamic limit. Mermin and Wagner concluded
that the spontaneous magnetization (i. e. , long-
range order) vanishes at all finite temperatures,
by considering the system with an external mag-
netic field, applied taking the limit X-~, andthen

allowing the external field to vanish. Our x esults
are compatible with Mermin and Wagner's con-
clusion. Stanley and Kaplan's high-temperature
expansion of the susceptibility yielded a singular-
ity at the temperature marked TsK in Figs. 1 and

2. This would seem to imply some sort of mag-
netic ordering at that temperature, but given Mer-
min and Wagner's results, it is not conventional
long-range order. Our M, , results, with their
suggestion of extraordinary short-range order, are
compatible with Stanley and Kaplan's conclusions.
Note that our inflection points lie at higher tem-
peratures than TSK, and would decline for larger
ax'x'ays.

Monte Carlo samplings of (I M I) as well as M, ,
were taken for the periodic boundary spin arrays.
While the samplings of M, , and (IMI) displayed
considerable scatter from run to run, the two av-
erages tracked each faithfully and quite accurate
quantitative statements can be made concerning
their relative behavior. (~M~) bes lower than

M, „as it should. The two averages are in close
agreement (approaching the width of the plotted
lines in the figure) at the lowest and highest tem-
pex'atux'es shown. The lax'gest deviations occux' in
the vicinity of the inflection points. For the 2025
spin array, this deviation equalled the interval marked
"Max. Dev. "onthefi~re. Onemighthopethat(IMi)
would supply some insight, when compared with

M „into the respective roles of long- and short-
range order. This is not the case, since the ap-
parent range of the short-range order is at least
equal to sample dimensions, causing (I MI) as
well as M, , to be dominated by short-range effects.

The instantaneous pair correlation functions,
(f„(r) S„(r+&r)& 'and (S„(t)S„(t+&r)&-( M/ M)' are
plotted for (10) directions in the periodic 2025
spin array in Fig. 5. The plots have been drawn
such that the self-correlation functions (dr= 0) have
common amplitude. The values of the self-corre-
lation functions, i.e. , the amplitudes of the pair
correlation plots are shown in Fig. 6. We believe
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FIG. 5. Instantaneous spin correlations (nol"mall&ed

to the self-correlation functions) between various neigh-
bors along (10) lines, for various temperatures. The
results were obtained for the 45~45 (i.e. , 2025) spin
array with periodic boundary conditions. Crosses de-
note longitudinal, the circles transverse, correlation
functions.

these results fail to give the full measure of the
short-range order appropriate to the two-dimen-
sional square lattice in the thermodynamic limit.
This is suggested by the fact that these functions
are sensitive to varying sample size and to the
boundary conditions. Such a failure is consistent
with our experience with the simple cubic lattice,
in I. Some insight into the two-dimensional lattice
can nevertheless be gained from the figures.

The correlation functions for the two-dimensional
array fall off much more slowly than their three-
dimensional co~nterpa~ts. For «ample, the (20)
transverse correlation function, at temperatures
below the inflection point, is about one-third the
self-correlation function (and two-thirds the near-
neighbor) while the (300) transverse function in
the simple cubic lattice is about one-fifteenth the
self- (and one-quarter the near-neighbor) correla-
tion function at temperatures below T„Some mea-
sure of an ordering temperature can be gained by
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amplitude) below the ordering temperature, whj, ]e
the longitudinal function collapses, i.e. , the long-
tudinal order goes into the long-range term with
decreasing temperature. The collapse of the longi-
tudinal function seems somewhat slower than was
our experience with the simple cubic lattice over
the temperature range considered (i. e. , down to
-2 the ordering temperature). Also, there is a
hint that the transverse function starts contracting
before the longitudinal function has come up to it
as one approaches and goes through T, frombelow.
If true, this is inconsistent with what occurs in
three-dimensional systems. The temperature
dependence of the self-correlation functions seen
in Fig. 6 also differs from that for the simple
cubic lattice. For the latter, the transverse func-
tion is quite faithfully proportional to T below T,.
Here it appears proportional to a lower power of
T.

IV. CONCLUSIONS
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FIG. 6. Amplitudes of the instantaneous self-correla-
tion functions (i.e. , of the plots in Fig. 5) as a function
of temperature. Longitudinal correlations are denoted
by crosses, transverse correlations by circles.

inspecting where the self-correlation functions
equal —, (implying no long-range order) in Fig. 6
or where the transverse and longitudinal functions
first take on identical shape in Fig. 3. This would
suggest an ordering temperature between 0. VO and
0. 75, a rather higher value than is suggested by
the moment data for the 2025 spin array in Fig. 4.
(Such a measure always places the inflection point
equal to or higher than the moment samplings of
Figs. 3 and 4. )

The temperature dependence of the correlation
functions is very similar to that found for the three-
dimensional system, though there are suggestions
of a few subtle differences. The transverse and
longitudinal correlation functions are identical above
the ordering temperature andbecome shorter ranged
as the temperature increases. Consistent with
most theories of three-dimensional systems, the
transverse function is of fixed shape (though not

The conclusions to be drawn from the present
study are less definite than those for the three-
dimensional system. This is because of the slower
convergence of the Monte Carlo procedure in two
dimensions, as is discussed below. The calcula-
tions indicate, for our finite samples, a nonzero
root- mean- square magnetization below an apparent
transition temperature. This is consistent with
the theorem of Mermin and Wagner' on the absence
of long-range order at finite temperatures, and
gives some credence to the conjecture of Stanley
and Kaplan of the existence of an ordered state
with "long-ranged short-range order, " i.e. , a
state for which (SO. S„) 0 as r-~ while g„(S,.S„)
diverges. It is not possible to argue definitively
from our results that such a state exists because
of the difficulties in the convergence of the Mo~te
Carlo calculations and because of the question of
the range of the short-range order relative to
array size. Nevertheless, on balance, the evidence
indicates that some sort of phase transition does
occur in the two-dimensional Heisenberg system.
Further experiments, of the type done here, which
might sort this matter out require substantially
larger, faster, and cheaper computing facilities.
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We note that two-dimensional systems are expected to

have long-range order once an anisotropic term of suf-
ficient size is present, in addition to the Heisenberg
term, in the Hamiltonian. Such terms are almost in-
evitably present in real two-dimensional systems for
there will exist spin dipolar forces which do not cancel
out (because of the two-dimensional character of the lat-
tice). These terms will generally be large enough to
have this effect.
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Intercell Corrections for Ionic Motion in Displacement Ferroelectrics
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A set of microscopic parameters determined for LiTa03 in an earlier paper by comparing
dielectric properties with the results of a statistical calculation are analyzed in terms of a
point-charge-plus-electronic-polarizability model for the system. The results indicate the
existence of very strong intercell correlations for ionic motion to temperatures considerably
in excess of the Curie point Tz. These correlations are weak functions of temperatures to
the extent that they do not produce deviations from effective-field (e. g. , Curie-Weiss) be-
havior near Tz. Neglect of correlation effects leads to many inconsistencies and indicates
that the use of random-phase Lorentz fields in statistical theories for displacement ferro-
electrics is qualitatively unsound. Spontaneous polarization for LiTaO& is found to be 45%
ionic, 55% electronic; the tantalum-oxygen bond is very markedly covalent, with estimated
ionic charges of + 0. 8 and —0. 6 electronic units, respectively.

I. INTRODUCTION

In an earlier series of papers, ' a statistical
theory for displacement ferroelectrics was de-
veloped and applied in some detail for the salt
lithium tantalate LiTaO, . The statistical approxi-
mation adopted to describe equilibrium bulk dielec-
tric properties was to replace all primitive cells
except one by their ensemble averages, thereby
including long-range (intercell) interactions only
in a Hartree or effective-field approximation. In
this way it was possible to write an effective sys-
tem Hamiltonian in terms of the normal vibrational
modes of a single cell. For some displacement
ferroelectrics, only a single transverse optic
mode of lattice vibration is grossly temperature
dependent (the "soft" mode); LiTaO, and LiNbO,
are good examples. ' For these systems, the ef-
fective Hamiltonian contains sufficiently few
parameters for them to be comfortably overdeter-
mined by comparison of bulk ferroelectric prop-
erties with the results of the statistical theory.

In principle, by choosing a model for the micro-
scopic system, the Hamiltonian parameters
(which are microscopic quantities) could be deter-
mined from first principles. In practice, for
most of the parameters involved, such a calcula-
tion at the present time is not very meaningful,
and in the lithium tantalate work, ' we adopted the

"spin-Hamiltonian" philosophy from magnetism,
treating the parameters simply as numbers to be
determined by comparing theory with experiment.
The problem was overdetermined to a consider-
able degree, and the self-consistency of the re-
sults was surprisingly good, even with completely
temperature -independent parameters. Initially,
this was taken to imply that the random-phase ap-
proximation (RPA) for intercell interactions was
adequate in this context and that, consequently,
correlation effects were not a major factor.

However, certain Hamiltonian parameters are
fairly easily interpreted in terms of more funda-
mental microscopic properties of the lattice and
constituent ions and, when an effort was made' to
translate the "best-fit" parameter values into
more familiar microscopic concepts, some baffling
results were obtained: Lorentz fields more than
an order of magnitude smaller than expectation
and a Lorentz-field electronic contribution to
polarization of opposite sign to the ionic term. In
the present paper, we shall show that these, and
other inconsistencies which follow, disappear com-
pletely when an allowance is made for intercell
correlations between the ionic motions of neigh-
boring primitive cells of the lattice.

The way in which the numerous pieces of the
interpretational jigsaw fall neatly into place with-


