
ULTRASONIC ATTENUATION IN QUARTZ AT LOW TEMPERATURES

waves in BC-cut quartz show nearly identical at-
tenuation with that of g-direction longitudinal
waves. Also, Ganapolskii and Chernet's mea-
surement of the attenuation of longitudinal waves
in the z direction of quartz shows the same pat-

tern of attenuation.
In summary, we bebeve that the marked anoma-

lies in the attenuation of acoustic waves peculiar
to quartz are a direct result of the unusually large
dispersion of the slow transverse branch.
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The energy-spectrum problem is treated for a bound stationary polaron. The Pekar Hamil-
tonian is used to describe the polaron and its polar lattice. This model is based on two main
assumptions. First, the carrier is assumed to move much faster than the lattice ions. Sec-
ond, the polaron is assumed to be spread out over a distance that is much larger than the lat-
tice constant. These assumptions restrict us to a strong-coupling regime. A variational
principle especially well suited for finding excited states has been used in a search for solu-
tions of the polaron Hamiltonian. Using trial wave functions having s-, P-, and d-like sym-
metry, some well-separated approximate eigenstates of this model polaron have been found.
The excited states represent internal and self-consistent excited-state solutions of the polaron
Hamiltonian. It is found that the energy of each state is proportional to the square of the po-
laron coupling constant. Also, the qualitative features of the spectrum, i.e. , the number of
energy levels and their relative positions, are independent of the coupling constant.

I. INTRODUCTION

A conduction electron or a valence hole in a de-
formable crystal lattice creates a distortion in the
over-all periodicity localized about itself. The dy-
namics of low-density carriers in insulators there-
fore involves the effects of local lattice deforma-
tions. The complex of carrier and associated de-
formation is a polaron. Reviews of work done on
the polaron problem have been given by Appel' and
by Kuper and Whitfield. Other work relating to
polaron excited states has been reported by Evrard,
Devreese, and Kartheuser. '

awhile it is frequently convenient- to consider the
polaron as a single entity like a simple particle,
it is clear that the many actual particles of which
it is composed together with their varying interac-

tions produce a more complex system. We expect
these complexities to be made manifest in the dy-
namical behavior of the polaron; the polaron should
show internal degrees of freedom or internal
states, and these internal states should be apparent
in phenomena involving energies comparable to the
carrier-lattice deformation energy.

In this paper, we report the results of a theoret-
ical search for such states. To find them more
simply, we have made a number of approximations
designed to reduce extraneous considerations to a
minimum and focus on the carrier-lattice deforma-
tion interaction. We treat the case of the stationary
polaron only, i.e. , the polaron as a whole does not
move through the lattice. We assume a constant
optical-phonon frequency. We also assume a sym-
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metric electron effective mass and dielectric con-
stant. Effects involving transitions between polaron
states giving rise to the emission and absorption
of real lattice phonons are neglected.

The two main assumptions in our polaron model
are the following: First, the polaron is large,
i. e. , spread out over a distance that is large as
compared to a lattice constant. %e use the effec-
tive-mass approximation to treat the basic, undis-
torted carrier-lattice interaction. Polaron struc-
ture with a range of the interatomic spacing is
neglected. Second, we assume that the oscillation
frequency of the electron in its potential well is
much greater than the optical-phonon frequency of
the lattice. The ions remain essentially stationary
as the carrier orbits around in its potential well.
These two approximations restrict us to a strong-
coupling regime. A discussion of the range of

coupling strengths for which these two assumptions
are valid is given later.

A Hamiltonian has been written for this complex
system by Pekar ~

' on the basis of macroscopic
arguments:

to satisfy Schrodinger's equation for this Hamilto-
nian must be the same one used to generate the po-
tential part of the Hamiltonian.

Section II treats the energy-spectrum problem
for the polaron Hamiltonian for solutions with s-
wave symmetry. A variational principle especially
well suited for finding excited states is used. The
polaron problem is treated for solutions with p-
wave symmetry in Sec. III and for solutions with
d-wave symmetry in Sec. IV. The range of cou-
pling strengths for which this theory is valid is
discussed in Sec. V.

II. s-WAVE SOLUTIONS

The characteristics of a particular crystal are
introduced into the polaron Hamiltonian [ Eq. (l)j
by the electron bare mass m, optical-phonon fre-
quency ~„and the polaron coupling constant a.
However, qualitative features of the energy spec-
trum of this Hamiltonian are independent of these
terms. The relative positions and number of en-
ergy levels are also independent of the crystal un-
der consideration. Energy levels cannot be made

to appear or disappear by changing the coupling

strength. This can be seen from the following

scaling argument: Consider the operator 3C

= (2m/n')H,

where p(r) =
I 4(r)l '/(@I 4) is the electron density

distribution, + is the electron wave function, m

is the effective mass of the electron in the undis-
torted lattice (as opposed to its polaron mass),
co, is the optical-phonon frequency, n is the polaron
coupling constant o, = (e /SmS&uo) (2m+0/h)' (e „'
—e -'), e „ is the high-frequency (optical) dielec-
tric constant, and e is the low-frequency dielec-
tric constant.

The first term in H represents the kinetic energy
of the electron. The second term represents the
interaction potential between the electron and the
lattice at this level of approximation. This term
is negative and is the origin of the binding poten-
tial which forms the potential well in which the
electron is trapped. The third term represents
the polarization energy of the lattice due to the
presence of the electron. It is manifestly positive.

The polaron Hamiltonian shown in Eq. (1) is non-

linear in the electron wave function. This nonlin-

earity is a consequence of the reduction of the
polaron problem from a many-body problem involv-

ing phonons and an electron to an effective one-
body problem. The reason for the nonlinearity is
clear physically. The electron's wave function
must appear in its own Hamiltonian because the
electron is responsible for setting up the potential
with which it interacts. The wave function found

X=- V'- Jt d 'ie(r')i'

+
'y

(4I q')' ~
drdr'

~

@(r)~'~ 4(r') ~'

(2)

If a factor 0 is introduced to scale the unit of

length we have

X'(L ')/O'= —V'(L ')/u' -—(ky) B(L-')/-u' . (4}

The factor k can always be chosen such that ky
=1. The spectrum can be determined in this sys-
tem of units and then the resulting eigenvalues can
be converted to normal units in the last step. The
problem is reduced to a determination of the spec-
trum of the operator

where y = 2o. (2m&so/h)'~ . The operators Ã and

H will have the same eigenvalue spectrum except
for a multiplicative factor of (2m/h~). All of the

information characterizing the crystal is contained
in the parameter y, which has units of (length)-'.
K and V have units of (length) and (+I @) -'f dr'
x I 4'(r')I (I r- r'I )-' has units of (length)-'. Using
B to represent the integral expression, we can
write the following units equation:



EXCITED STATES IN MODEL POLARON HAMILTONIAN 555

+
2 @

~
@)2 Jf

drd"
I
+(r )

I
'I +") I'

(5)

where 3C, ~, x, and + are expressed in the system
of units in which the unit of length is chosen so
that y is 1.

Our method is a use of a variation principle
due to Frenkel. ' The details of this principle and
some other applications have been given by one
of us elsewhere. In this method a function 8,
containing adjustable parameters, is used to ap-
proximate 84'/Bt. Then the functional

is minimized by adjusting 8. The minimization
of I leads to the equation

Im J 58*(H4' —i«)dr =0

With the replacement of 8 by + = 84/Bt, this be-
comes

Im [5+ (r, t, a„aa, .. ., a„)/6a&]

et

where the a's denote the variable parameters in
the trial wave function 4. This is the basic equa-
tion used in the numerical calculations. One equa-
tion is generated for each adjustable parameter in
the trial wave function. The resulting equations
are solved simultaneously. An independent check
is then performed on each solution to insure that
it is indeed a minimum of the functional I shown in
Eq. (6). The energy is taken from the e-'"' time
dependence of the wave function or from (@IHI '0)
which is equivalent.

One of the important features of this variational
principle is that it can be used directly to find ex-
cited states. It aves not always find the lowest-
energy state of the trial wave function as does the
standard variational principle wherein (4 (H~ 4') is
minimized. A given trial wave function will contain
adjustable parameters and will represent a certain
class of functions. It can be used to find any ap-
proximate eigenfunction contained in this class of
functions. Hence trial wave functions of the same
general form are used in finding both the ground
state and the excited states of the Hamiltonian.
Each of these states will correspond to a minimum
of the functional I and a corresponding best 8 for
the "eigenf unction. "

The Frenkel variational principle was chosen
for use in this problem because of its ability to
find excited states directly. The ground-state so-

lution can also be found by the Frenkel principle,
however, and for this case the result is the same
as that found by the standard Ritz variational prin-
ciple.

The variational-principle calculations are done
with the operator K rather than II. It is convenient
to adjust the units of time so that the magnitude of
2rrr/ir is 1. When this is done, the variation equa-
tions take the form

ImJ
— K- i — Pdr =0

gg) ett
(9)

4(r, t, a„.. ., a„)=e-"N' e "r~'rrr-

(10)x (1. +arr ya2r y +arr 2 p ).2 N-2

The a's are the adjustable parameters and are
assumed to be real. The parameter aN gives the
polaron energy. When this trial wave function is
used in the variational principle, Eq. (9), with the
operator X given by Eq. (5), the following set of
simultaneous equations result:

N-2

arara~r(j+k+1) [-(a„'a„r+ &) I"(i +I +2)
j~g~k = 1

+ (lt1+) (rtl+) a+„rs,' ',r~] =0

for 1& l & N- 2, (lla)
N-2

a;a&ar, ar I'(j+k+1) [- (arIra„r+ )r(i+I+—2)
j~j k l=1

+i(f + I)r(i+ I) +a„,S,'", „,
+ 2(l —I)(- (a„'a„,+ 4)I'(i+ I)

+t(f —I)r(i+I —2)+a~, Sr".r']] =0, (lib)

N-2
a;ara~ar I'(j+k+1)[- (a„'a~„r+—', )r(i+l +1)

f~ j~k~l = 1

where Sr' =[(—,')r ' —1] I"(j —1)

(12)

The charge on the electron polarizes the lattice.
This polarization acts back on the electron and con-
fines the major portion of the electron density to
a limited region of the crystal. Equation (1) shows
that the potential energy in the effective Hamilto-
nianhasa 1/v behavior far from this region. This
suggests that the wave functions should have a
"hydrogenlike" or decaying exponential asymptotic
behavior for large I r t . We begin, therefore, by
considering s-wave states with trial wave functions
of the form



556 ~AN ZANDT, AND PROHOFSKY

a„' =a„—(2(e
I
@)')

x drdr

qs ei(0.001948t) e-r/22. 633
(p ppl 339 2

+ 0. 000 291 08m —0.000 01383Vx

and I' is the gamma function I'(j) = (j -I)!. This
set of N simultaneous nonlinear equations was
truncated and solved numerically. Solutions were
found corresponding to a ground state and to two
excited states. All of these solutions are bound
states, and they are all self-consistent under the
operator 3C. The ground-state solutions are given
below for two-to-six-parameter wave functions:

e t(0.024 41t) e-r /6. 4000
(p QQ] 214 2)

qs ei(0.02701&& e-r/3 7557 (p. 02p 7120=e

+ 0. 009 051 9r)

qs I( 7 OIt) /, (0 p21 423

+ 0. 007 365 lr —0. 000 231 83r )

~s i(0.02'I 09t) -r/5. 3660
(p Q21 726

+0.006 28V 1x —0. 000 39V 63r2

+0. 0000060330r )

~s i(0.027 13t) -r/3. 4023
(p p23 693

+0.006419 8"+0.0009V252x
—0. 000041714r +0. 000000650' 4r ) .

(14)

((0 005 060t& -r/14, 652 (p QQ3 916 5

+ 0. 000 685 94T —0.000 041 251K

The first-excited-state solutions are given below
for three-to-six-parameter wave functions:

.!,s i(0,004097t) - r/20. 416

x (0. 0087798 —0. 00033543r)

~s i(0.004 980t) r/11.962 (p pp-3 655 6

+0.000871 50r —0.000041 312r )

+0. 00000011883r )
(16)

E= (4a„)n h(00 (17)

For the six-parameter wave functions, we have the
three self-consistent energy levels:

ground state,

a~= —0.02V 13, E0 = —0. 1085@ Sct0,'

first excited state,

a„=—0.005 120, E1 = —0. 02048o. ScoP,'

second excited state,

a„=—0. 002010, E2 = —0. 008040m Sco0

The root mean square radii must be treated in a
similar manner. Since the root mean square
radius has units of length, it can be converted to
conventional units for a particular crystal by mul-
tiplying through by (2n(2m(d0/h)'/ ) '. lf we let
(r )'/' denote the root mean square radius in the
system of units for which y is unity, the root
mean square radius for a particular crystal is
given by

qs i(0 002.010t& -r/27, 014(p ppl 443 p

+ 0.000 242 93' —0. 000 013058m'

+0.00000015168r —0.00000000041185r )

In order to apply these results to real crystals,
the inverse units transformations must be made.
In the above work, y =2n(2m( 0/h)'/ having units
of (length) was set equal to unity. Hence, the
eigenvalue a„, of X, having units (length), can
be corrected to normal units by multiplying a„by
y =4n (2 m0/)0If)Th, en this eigenvalue of X must
be multiplied by h /2m to get the eigenvalue of H,
the Hamiltonian. Hence the energy eigenvalue for
a particular crystal is

+0.000 000 303 58r )
r, , =(r') '/'(h/2m(00)'/'/2n (18)

qs et(0. 005 120t) - r /11.180 (0 pp5 Q34

+0.000 2VV 56' +0.000022831m

—0. 0000019951r +0.000000 014 908r )

The second-excited-state solutions are given be-
low for five- and six-parameter wave functions:

The energy-level scheme in Fig. 1 shows the
energy states for trial wave functions containing
varying numbers of parameters. The three energy
levels for the most accurate trial wave functions
are shown again in Fig. 2. The root mean square
radius has been calculated for each of the above
s-state wave functions. These radii are displayed
in Fig. 1. %e note that the coefficient in the ex-
ponential seems to be very sensitive to the number
of parameters in the trial wave function, However,
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"ov = l32 I 26

treated using the Frenkel variational principle
with trial wave functions of the form

q=cosee "3' e' "'"2' (r+a,r'/as) . (l9)

—.02— =65.5
5I,O 49,6 48.4

When this wave function is used in the variation-
al principle shown in E4l. (9), the following set of
simultaneous equations is generated:

—04—
3

C4~ —.05—

~ —.06—
LIJz
LLI

—07—

& fir'lf&
2a (2 m~o/h)

D11+alD12 ( 2 as + 4) (D21+ 1D22)

- as(D31+a1D32) = o

(I aal)D12+alD13 (a2a3+ 4) [(I aa1)D22

+alD23] a2[(l ~1)D32+a1D33]
'43 I 1 l

D12 (a2 3 + 4) 22 2D32

(ao)

(al)

(22)

—.08—

—I0 — = II. I

9.43 9.3l 9.30 9.27

FIG. 1. Energy-level diagrams for s-wave trial
wave functions containing different numbers of adjust-
able parameters. The root mean square radius of
each level is written below that level.

where D, =(2 —4a, )I'(m+3)+Sa, l'(m+4}

D „=I"(m+4)+a, l'(m+5)

Ds ——I'(m + 3) +a, I'(m + 4) +((2/5) [I'(7)

+ aa, r(8)+a', r(9)] [r(m+ I)

+a, r (m+ 2)] —q...„-(2/5)q, .
+ (2/5) Qs, ~ 5+ Q4, ~ 3

+al[(2/5} Q2 + 5+ Q4 4 Qs + 3

quantities of interest, the energy and the polaron
radius, become relatively stable and consistently
decrease as the wave function of the level becomes
increasingly accurate. While the exponential fac-
tor fluctuates from wave function to wave function,
the product of the exponential factor and the poly-
nomial factor is relatively stable.

The ground-state solution can be compared with

the result obtained by Pekar. '~ ' Pekar used the
Ritz variational principle with an exponential trial
wave function and obtained the same result as our
calculation. The two excited s-wave levels are
new.

In the above work, it was assumed that the a' s
were all real. The problem was also approached
under the condition that the a's appearing in the
polynomial had the additional freedom to become
complex. This was done because the nonlinearity
of the Hamiltonian prevents one from showing that

any eigenvalue could be made to correspond to a
real eigenfunction. However, in this case the
eigenfunctions obtained differed only by a complex
over-all factor from the real wave functions. No

new essentially complex solutions were found.
(We have no theorem that any exist. }

III. I-WAVE SOLUTIONS

Self-consistent excited states having p-wave
symmetry may also be found. This case has been

-.OI-

—.02-

—03-

-04-
0
3

44= -05-

~ -06-
Lij

07

—.08-

—09-

—10-

FIG. 2. Energy-level diagram showing most accurate
results for trial wave functions having s-, p-, and d-
like symmetries. The lower levels are connected to
their nearest-neighboring levels with a line and number
indicating the value of 0, for which the energy gap equals
the phonon energy.
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and

—(2/5) Q. ..,]]/ [r(5) + 2a, r(6)
+a', I'(7)],

Q1~ =V1~+2a1V1+1,++a'1 Vr+2, ~ i

Via =r(&) Zi F (j+m)/[F(j)2/+™]
2=1 7

a' =a3- (2&0
I
t)')-'

dr dr r r y r —r

When this set of equations is solved for the case
of a two-parameter wave function, the result is" "' e " ' ' (0.010068) with en-
ergy E~1 = —0.04V 00m hc 0.

When the above simultaneous equations are solved
for the case of a three-parameter wave function,
the lowest p wave becomes more accurate and a
second p-wave solution appears. The wave func-
tions are

(91 cose e1(0,013 124) er /. 35962
(Q QPQ 5P1 g6r

—0. 00045148r ) (23)

IV. d-WAVE SOLUTION

The polaron problem has also been treated for
the case of solutions with d-wave symmetry. Here
the Frenkel principle was used with a two-param-
eter trial wave function of the form

g=r P (cosa)e 12 e (25)

where P, is the second Legendre polynomial. On-

ly the simplest wave function was used in the d-
wave investigation.

This trial wave function was used in the varia-
tional principle [E11. (9)] to give the following set
of simultaneous equations:

=92SCOge'" 0" "e r/20. 699 (p 000576 lgr

—0. 000 01192SI')

and their corresponding energies are E,
= —0. 05248o. Acooand E~q = —0. 01360m her . The lo-

cations of these energy levels are shown on Fig.
2.

The energy of the lowest p wave has been cal-
culated by Schultz, ' who used the Ritz variational
principle with a one-parameter Gaussian trial
wave function and obtained an energy of —0. 041
x a h~o. Our calculation with the simplest wave

function was 14% lower in energy. This improve-
ment was made possible by the better asymptotic
behavior of our wave function. Our most accurate
result E~1 = —0.05248n hvo is still lower because
of the extra variational parameter. The second
p-wave solution is new.

3I'(6) —I"(7)(a21a2+ —,) —[2a,/I'(8)] [F(11)

+ I"(9) I'(4) +pr(7) I"(6)—V„,—V

--,'v„+v, „+v„+(&)v, ,]=0,
3I'(7) —I'(8) (a', a,'+-,' ) —[2a,/F(8)]

x [r(11)r(3) + r(9) r(5) +~7r(7) r(7)

~11,2 ~94 2 ~V6

+ V2, 11+V49+r V67]

where a2=a2 —(2(g I() )

x J drdr' ~((r)

(26)

(27)

The above polaron model is valid in the strong-
coupling regime. The coupling strength is re-
stricted in the strong-coupling limit by the as-
sumption that the polaron is spread out over many
lattice constants. As the coupling strength in-
creases, the radius of the polaron decreases.
The root mean square radius of the polaron is
given above in E11. (18). This radius must be
much larger than the lattice constant a:

r, = (r2&'/2(If/2m010)'/2/2n»a (28)

or ct«n =(r )'/ (8'/2m' )
/ /2a (29)

The upper limit on n is influenced by the proper-
ties of the individual crystal because of the pres-
ence of the factors a and (8'/2m 010)'/2.

Table I shows the restriction which the large
polaron assumption places on the coupling
strength. The root mean square radius is also
given for each level. These results were calcu-
lated with a = 5 A and (8/2m 100)'/2= 13 A. The s-
wave results refer to the most accurate s states
as determined by the six-parameter wave func-
tions.

A lower limit is imposed on Q. by the basic
strong-coupling assumption of a fast electron and

TABLE I. Upper limit placed on coupling strength by
the large-polaron assumption. The root mean square
radius is also given for each level.

State sP sf s2 P f P2 df

(r ) 9.27 48.4 126 22. 3 89.8 46.4
a f 12 63 164 29 117 60

This set of simultaneous equations was solved
to find the lowest d state. Its wave function and

gy are g4r2p(COS8)e i &000649)9 ter / 12405

x (0.000039562) andE, = —0.026 00n A&o0. The lo-
cation of this level is shown in Fig. 2. The use
of a trial wave function with more adjustable pa-
rameters would undoubtedly move this level down.

V, RANGE OF VALIDITY



slow lattice particles. In order for Pekar's semi-
classical polaron Hamiltonian to be valid, the fre-
quency of the electron oscillation in its potential
well must be much greater than the optical-pinon
frequency. The electron oscillation frequency de-
creases as the coupling strength decreases.

The problem of establishing a coupling-strength
criterion for the strong-coupling model has been
discussed by Devreese and Evrard, Hohler,
and by Frohlich. '3 The coupling strength must be
very great, a = 9 or 10, before the fast-electron
assumption is satisfied for the ground-state polar-
on. It must be even higher for the excited states
since they are less tightly bound in their potential
wells.

Also this model neglects effects involving the
emission and absorption of real lattice phonons.
This requires that the gap between polaron energy
levels be large as compared to the phonon energy.
The energy-level separation decreases as the
coupling strength decreases. When this separation
nears the phonon energy, resonant transitions can
occur and the energy levels will broaden and shift.
In Fig. 2 the lowest levels are connected to their
nearest neighbors by a line and a number indicat-
ing the value of e for which the energy separation
equals the phonon energy. At n = 4.2 the lowest s
state is separated from its nearest neighbor by an
optical-phonon energy. At n = 6.1, this energy gap
separates the first P level from its nearest neigh-
bor. However, the coupling constant must already
be greater than 9 or 10 for the fast-electron as-
sumption to be valid. Hence if the coupling con-
stant is large enough to satisfy the fast-electron
assumption, it is large enough to aQow real pho-
non emission and absorption to be neglected for
the lowest levels at least.

The strong-coupling model is not well satisfied
for any range of coupling strength. By the time
the fast-electron assumption becomes satisfied,
the large polaron assumption begins to break down.
However, in the range of strong coupling, the as-

sumptions are roughly satisfied and the polaron
structure should be found.

VI. CONCLUSION

For suitable ranges of coupling strengths, this
model can be used to study the internal structure
of polarons. The model suggests that self-consis-
tent excited states of polarons should exist and that
indeed many states of different symmetries may
exist. We have exhibited several self-consistent
states within the limits of this model and have dis-
cussed the range of coupling strengths for which
these states are valid. The energy of each of the
states has shown the n dependence characteristic
of the strong-coupling case. This dependence is
clearly a consequence of the assumed separation
of the trial wave functions into electron and phonon
parts, the assumption of the static lattice and rap-
id electron. The observability of these excited
states depends upon their lifetimes, to which ques-
tion we have not here addressed ourselves.

It was possible to compare our results with
other published results at two points, the lowest
s-wave state and the lowest P-wave state. Pekar '

performed a variational calculation using the Ritz
principle with an exponential trial wave function
and obtained a result for the ground-state s-wave
solution that was the same as ours. Schultz per-
formed a variational calculation using a Gaussian
trial wave function with P-wave symmetry and
found the energy to be Ej = —0.041@ Au~0. Our
most accurate result for the same level was 25/g

lower, E~& = —0.0525m 8~0. The improvement in
our result was made possible by the use of a trial
wave function with a better asymptotic behavior
and with more adjustable parameters.
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