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The effect of electronic polarization on an electron in the s-like conduction band, described
by the tight-binding approximation, is studied using both the Green's function and perturbation
methods. A criterion for the validity of the second-order perturbation method is derived. It
turns out that the second-order perturbation method is valid even for large values of the cou-
pling constant due to the exciton energy being considerably larger than the conduction-band
width. The behavior of the polaron band and effective mass is examined as a function of the
coupling constant, of the parameter ~, which represents the extent of localization of the atomic
orbital, and of the exciton energy. For a given crystal, polarization effects are found to in-
crease as the wave vector k increases. The present results are compared with previous re-
sults which apply only near k= 0, and with the results obtained by classical theory.

I. INTRODUCTION

In analogy with the lattice polaron, ' Toyozawa
introduced the concept of the electronic polaron
—an extra electron dressed with virtual excitons.
The dimensionless coupling constant cy character-
izing the strength of interaction between the extra
electron and virtual excitons was found for the
alkali halides to be less than 1. Thus, according
to the usual criterion for these crystals, the elec-
tronic polaron problem lies in the region of weak-
coupling theory. Toyozawa has used his idea of
the electronic polaron and the intermediate cou-
pling method to study the effect of electronic polar-
ization on the state of a low-momentum conduction
electron in the effective-mass approximation. The
purpose of this work is to study the effect of the
electronic polarization on the state of a conduction
electron of arbitrary momentum, i. e. , on the
whole conduction band, for both CsCl-type and
NaC1-type crystals. This study is carried out by
using the basic concept of Toyozawa's electronic
polaron within the framework of the tight-binding
approximation. We are particularly interested in
(a) the shape and position of the polaron band as a
function of the electronic wave vector k, the exci-
ton energy e, and the parameter X in the atomic
orbital [to be defined in Eg. (15)] and (b) the effec-
tive mass near k = 0 as a function of e and X .

In Sec. II A, we use the Green's-functionapproach
based on approaches developed in Refs. 3 and 4 for
the lattice polaron problem, to obtain the polaron
band E&(k) for arbitrary k. Ordinary perturbation
theory is used in Sec. II B to obtain E~(k) and the
effective mass of the electronic polaron. In Sec.
III A, we show that second-order perturbation
theory is superior to the Green's-function method
used in this problem (even for a rather large value
of the coupling constant) and derive a criterion for

the validity of perturbation theory. Values of the
parameters in the theory are estimated in Sec.
III 8. The general features of the polaron band are
discussed in Sec. IIIC. In this section, we also
compare our results with those of Toyozawa, '
Fowler, ' and the classical ones of Du Pre et cr l . and
of Mott and Littleton. Finally, we discuss the
change in the effective mass caused by the electronic
polarization as a function of X', e, and n.

II. FORMALISM AND CALCULATIONS

A. Green's-Function Method

Toyozawa's Hamiltonian2 for the electronic po-
laron is of the form

2

H= +g V(r —R„) + eZbtb;+( —e) P(r), (1)
R n

where P(x) is given by

& [b e &Pi ~ r bt fi ~ r]-
The first term in the Hamiltonian describes the
extra electron moving under the influence of the
periodic potential of the crystal when the ions and
the crystal valence electrons are in the ground
state. Thus the eigenstates of the first term con-
stitute the conduction band of the crystal in which
the electronic and ionic polarizations are not yet
taken into account. The second term is the Ham-
iltonian of the excitons; the energy of each exciton
is e irrespective of wave vector q. The b; and b;
are, respectively, creation and annihilation oper-
ators for excitons of wave vector q. The last term
describes the interaction of the electron at r with
the excitons; e is the electronic charge, h is
Planck's constant divided by 2m, nz, is the effec-
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tive-band mass of an electron at the bottom of the
conduction band when neither the electronic nor the
ionic polarization is taken into account, V is the
volume of the crystal under consideration, and the
dimensionless coupling constant n is defined as

1 ( 1)4 (2m, 4)'

where &„ is the usual high-frequency dielectric
constant.

To reach the Green's-function approach, we shall
now use the usual formalism of second quantiza-
tion and rewrite the Hamiltonian in Eq. (1) in a
complete second-quantized form. Adopting the
tight-binding approach of I.owdin, we write the
crystal orbital of the conduction electron as

(r) Q-3/2 g elf ~ a44@(r R ) (4)
n

x f 4*(r, R,) e "' '
C (r, 0) dr, (lo)

where we have changed the variable of integration.
As the 4's are orthogonal, we expect that the
largest contribution occurs when R& = 0. Applica-
tion of Eq. (6) to Eq. (10) yields

where 2a is the lattice constant. With units of en-
ergy and length of

I
J

I
and a, respectively, we

write k /2m, = l.
The last term in Eq. (1) in a complete second-

quantized form includes the matrix elements

(gf, (r)
I

e"' '
I gf,. (r)) and (gf, (r)

I
e ~ I'pp. (r)) .

The former is of the form

f g „*(r)-e"''t);,(r)dr

=G g exp[ik ~ R, +i(k'+q —k) ~ R ]
Rms R)

where the summation extends over the positive ions
only. The C(r, R„) are defined in terms of the
normalized atomic wave functions 4t4(r, R„) as fol-
lows:

Rm

—Q J $(r, R ) 4t4(r, 0)e" ' ' S + ~ ~ ] .

44(r, R„)= Q(r, R„)—2Z 414(r, R )S„
Im

where the S„have the form

S„=f $(r,R„)g(r, R ) dr —6-„„~ (6)

The second term is of order S,o, 6 being the near-
est-neighbor distance and is neglected. With the
aid of the identity

g e"'" " "-=G' gb(k'+q-k-K„),
Rm V

The crystal orbital given by Eq. (4) is exactly or-
thonormalized (up to and including terms of the
first order in the overlap S) in a crystal containing
G' lattice points. In the case of negligible over-
lap, S„=O, and Eq. (4) reduces to the usual Bloch
sum. In terms of the electron creation and anni-

hilation operators ak and ak, respectively, the
first term in Eq. (1) can be written as

Xo--Q (Ek)a'-, af (7)

where E(k) is the energy of the electron of wave

vector k in the tight-binding approximation. In

the simple cubic case, which corresponds to the

lattice formed by the Cs ions in CsC1, CsBr, and

CsI, the E(k) for the s-like conduction band is
given by

&(k) = —
I

J
I

(cosk„a+cosk, a+ cosk, a), (8)

where a is the lattice constant and
I
J

I
is an over-

lap integral, which is estimated from the width of

the conduction band (see Sec. III B). We take as
our units of energy and length

I
8

I
and a, respec-

tively, which implies k /m, = l. In the fcc case,
corresponding to crystals with the NaC1 structure,
the E(k) for the s-like conduction band is given by

E(k) = — J
I
(cosk„a cosk, a

+ cosk„a cosk, a+ cosk, a cosk, a),

= g V, (0) [b", —b;]a~f, g ap,
q, k

(12)

where V,(0) is given by

(444)'" (4' )"' 4

x f I
y(r, o) I'e"''dr.

Accordingly, when the electronic part is requan-

tized, the Hamiltonian of the present system is
given by

K=+ E(k) agag+eQ b;b;
k q

K„being a vector in the reciprocal lattice, we then

obtain

&(~(r) I'"'' q.-(r)&
= + ~(k + q- k- K.) f I

y(r 0)
I

e"' d' (»)
Et/

Restricting ourselves to the case of K„=O and

treating the other matrix element in the same man-

ner, we obtain the interaction term in Eq. (1) in

complete second-quantized form as

&/= Z ( (I (r)
I

(- e) 4(r)
I
qp(r) ) a ., aa,

k, k
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+ g v, (0) [I 'g-b;]~f„-sf . (14)

Here we note that in the following numerical cal-
culation based on Eq. (14), for simplicity, the
atomic orbital Q(r) in V,(0) will be approximated
by the 1s orbital

y(+) (y 3/v)1 /2 xt-' (15)

determined approximately by the ionization energy
of the free alkali atom (see Sec. III B). The Is
orbital determined in this way is approximately
4s-like in character for potassium and Gs-like in
Cs.

We now follow the procedure of Pines and Puff
and Whitfield4 to obtain the propagators. Treating
the electron exciton interaction as the perturbation,
we obtain the following true Green's function:

G(k, &o) = [(u —E(k) —Z(k, (o)+f5] . (16)

G(k, (u) is the Fourier transform of G(k, t). As in
Ref. 4, we approximate the self-energy Z by the
expression

Z(k, ~) =P fv, (o)f'
&d —f —E(k —q ) — Z (k —q (d —f)

z =E,(k)

as a solution of

z-E(k)-Z(k, z)=0 .
B Perturbation Method

(18)

(19)

~e start with the Hamiltonian given by Eq. (14)
and treat the last term of that equation as a small
perturbation. So our initial state is one in which
no excitons are present, and an electron of wave
vector k is present. We write this state as

lk, o) =a (20)

f v, (0) f'
Z'(k, ~) =g' (&- e-E(k-q)- Zo(k-q, (u- e))

we replaced Zo(k- q, &o —e) by a constant Z(or —e),
i. e. , its average value. This procedure seems
reasonable since for the parameters considered
Zo(k, &u) and Z~(k, (o) differed by less than 15%.
Hence, the main part of Z(k, (u) is determined by
the value of the zeroth order. Having approxi-
mated Z(k, (u) = Z (k, &a), we obtain the electronic
polaron band

This corresponds to solving the Dyson equation as
in Fig. 1. Replacing the summation over q by an
integration, we obtain an integral equation. This
integral equation is too complex to solve exactly.
In principle, it can be solved by an iteration
process, but this requires a very large amount of
computing time even on a high-speed computer.
In calculating Z (k- q, &o —e) numerically in zeroth
order,

Z (k —q, (o —e) = Z
f

V, (0)
f
/[& —2& —E(k —q - q ') ]

using the E(k) givenfor the particular set of param-
eters n=1, &=4 (X=&a), x=e/

f

J
f
=12, we

found that Z is a slowly varying function of k.
Thus, in calculating Z'(k, ~) in first order of our
iteration,

FIG. 1. The Dyson equation is solved approximately
as indicated above. Double lines represent true one-
electron propagators, and the solid single and broken
single lines represent the free-electron and free-exci-
ton propagators, respectively.

where k =k- q, so that the intermediate state en-
ergy is E(k- q)+ c. The second-order perturba-
tion formula leads then immediately to

(~& - I vq(0) I~ E(k-q)+~-E(k) ' (22)

We have replaced the summation over q by an in-
tegration to evaluate nE'~'(k) onanelectronic com-
puter for the directions [100], [110], and [111]in
both cubic lattices, using the energy expressions
given by Eqs. (8) and (9). In both the simple cubic
case and the fcc case, the Brillouin zone was taken
as a cube of side 2v/a. Actually, in the fcc case
the Brillouin zone is a truncated octahedron of
volume &(2v/a) . A more reasonable calculation,
in which the Brillouin zone was replaced by a
sphere of radius v/a, showed that replacing the
Brillouin zone by a cube of side 2w/a caused an
overestimate in bE' '(k) of order 10%. Qualitatively,
no other changes were introduced. The accuracy
of the numerical calculations was estimated to be- 1090.

The fourth-order energy has been calculated
(the odd orders vanish) to be

where
f
0) is the ground state of the system in

which there are no extra electrons and no excitons.
Then an intermediate state leading to nonvanishing
matrix elements is of the form

fk', q&=a'-„.b';
f
0),
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~E g (k) g I Ve.(0) I I Vq(0) I

;;.(E(k)-E(k- j)-.)'(E(k)-E(k q g ) 2,)

I Va (0) I'
I V,(0) I'

;; «(k)- (k-~')-e)(E(k)-E(k- j-q')-2e)(E(k) —E(k —j)-e)
I V"(o) I'

I V,(0) I'
(k) -E(k - & ) -.) ZE(k) (23)

The fourth-order energy is evaluated at k =0 par-
tially analytically and partially numerically for the
particul3r set of parameters m=2, X=4, and
x= e/IO'1=12 by using the effective-mass approxi-
mation and the approximation of replacing I q,„ I

by ~. In this way, we find that hE' '(0) = 0. 005
and r E ' '(0) = 9.4. This means that the contribu-
tion from the fourth order is negligible. We note
that the fourth-order term is identically zero
when the bandwidth is much less than ~. This cor-
responds to the physical case as the bandwidth of
the s-like conduction band is considerably less than

the exciton energy.
The values of E~(k) versus k, based on the sec-

ond-order perturbation result, are shown in Figs.
2 and 3.

Expanding the second-order energy shift about
k = 0 in terms of a power series in k, we obtain

m~/m, = (1 —y) ',
which shows the change in effective mass caused
by the electronic polarization. m& is known as the
mass of the electronic polaron. The X in its sim-
plest form in normalized units is

(4y~)~ "' " " dj 2sin q„
q2(4X2+ q')'(x+ 3+E(q) )' x+ 3+E(q) (25)

for the simple cubic case and

g~4 r g ~ g f 2g

x 2m „„O„g-O„o0 q (4X +q )~(x+3+E(j) )~

for the fcc case.

2 sin~ q„(cos~ q, + cosq, cosq, )' —cosq„cosq, + 1
E(g) +x+ 3

(26)

III. DISCUSSION AND CONCLUSION

A. Comparison of Green's-Function and Perturbation Methods

We compare the relative merits of the Green's-
function and perturbation methods. As shown in

Fig. 2, the E~(k) predicted from the Green's-func-
tion method is higher than that predicted from the
second-order perturbation method for the same
set of parameters. As the energy shift corres-
ponds to the self-energy of the electron, the self-
energy obtained from perturbation theory is thus

larger. Then taking this fact as a variational cri-
terion, we conclude that the second-order pertur-
bation theory gives a better result than this
Green's-function approach. A similar result has

been found by Puff and Whitfield in the case of the
lattice polaron. It is not surprising that the
Green's-function method yields a higher energy
than the second-order perturbation method. The
reason is the following. In the Green's-function
method only a particular class of diagrams is
summed. In contrast, in the above perturbation
method more terms are taken into account [for ex-
ample, in Eg. (23) only the first term is included
in the Green's-function method]. However, the
three terms in the fourth order nearly cancel each
other [see the discussion following Eq. (23)], even
though each term itself is not negligible. Thus in
this Green's-function approach we are not summing
over all the physically important diagrams and we
conclude that for the present problem the second-
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FIG. 2. The polaron band E&(k) is
plotted in units of I Jr for & =1 in the
simple-cubic case. The top line E(k)
refers to the unperturbed band. Sets
of solid lines refer to values of x=6,
broken lines to values of +=12, and
dotted lines to values of x=18. The
four lines in each set correspond
from the top one down to values of
X=1, A. =2, A, =3, A, =4, respectively
(see also Ref. 10). The dotted-dashed
line in the [1 0 0) direction corre-
sponds to the Green's-function result
for &=1, x=12, ~=4.
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order perturbation result is more reasonable.
This conclusion is supported by the following dis-
cussion. In the theory of nuclear forces, the Ham-
iltonian for the interaction of a nucleon with neutral
mesons has the same form as our Hamiltonian.
Wentzel ha, s shown that in the case of no recoil,
the second-order perturbation result obtained from
such a Hamiltonian is exact. No recoil effect cor-
responds in the present problem to the physical fact
that the conduction-band width is considerably less
than the exciton energy.

We now discuss the regions of a in which the
application of second-order perturbation theory to
the electronic polaron problem is valid. There
are several criteria we could use. We start with
the usual criterion based on the second-order
shift. Using the effective-mass approximation,
the replacement of q,„~ by ~, and

~ ~

~ ~
~ ~

~
~

0 $(l,o,o) a (y'2'p)

FiG. 3. The polaron band E&(%) is plotted in units of
I J f for &=1 in the fcc case. The top line E(k) refers
to the unperturbed band. Sets of solid lines refer to
values of g = 6, broken lines to values of g =12, and dot-
ted lines to values of +=18. The four lines in each set
correspond from the top one down to values of ~1, ~
=2, ~=3, A, =4, respectively (see also Ref. 10).

[derived from Eq. (13) by neglecting the atomic
nature of the electronic'function], we obtain from
Eq. (22) the energy shift at the bottom of the con-
duction band to be nc. The result is in agreement
with that predicted from Toyozawa's theory. For
this energy shift the number of virtual excitons
around the extra electron is (N) = —, n The unpe. r-
turbed state of the electron without polarization is
Ep, which is of the order of the exciton energy &.

Therefore, the energy of the perturbed state of the
system is Ep 0.'E+ 2 & E For the perturbation to
be small we require Es»

~

—so's
~

or n«2. This
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is a rather stringent condition on o,' compared with
one obtained next, from another point of view. By
use of the effective-mass approximation [i.e. ,
E(e) "e'],

(4ma)'"
(

Ir' )"' i

and I q,„ I =m, we obtain, from the power series
in terms of q /x for the fourth-order term given
by Eq. (23), hE' '(0) = ns/x In. applying pertur-
bation theory, we require hE '4'(0) to be much less
than the second-order energy AE N'(0). In the
same approximation hE"'(0) is found to be nx(2/s)
xtan '(m/px). As x is large(see Sec. III B) we can
set nx(2/m) tan t (w/$2x) = nx ~ . Thus we get the
criterion o.'/x «ox' or n «x' . This criterion
can be written in another form. The classical
electron self-energy is of order [es/2(0. 6a)]
x (1- 1/s„).'s Denoting this self-energy divided by

I J I by P —the normalized electron self-energy
—and writing

prom Eq. (3) upon noting m, = g/l 8 l a ], we obtain
n =P/gx. Thus in terms of P the criterion
«&&' can. be reduced to P «x . This criterion
implies that when the normalized electron self-en-
ergy is much less than the cube of the normalized
exciton energy, the perturbation method is always
valid. In other words, perturbation theory is valid
in the electronic polaron problem even for insula-
tors with large values of n. Of course, this is not
the case in the lattice polaron problem. The dis-
crepancy is due to the fact that the exciton energies
are considerably larger than typical phonon ener-
gies (exciton energy -7 eV, phonon energy -0.03
eV, typically).

B. Estimate of Realistic Values of n, X, I J I

n is defined in Eq. (3). All quantities contained
in that equation are well known except m, . In the
present calculation the value for ~„is obtained
from those given in Refs. 13, 14, and 16. For
these values and the consequent values of a see
Table I.

The nondimensional X we use in our calculations
is defined as X = X a, where a is defined in Sec.
IIA. The X is determined by setting the observed
ionization energy of the alkali metals of interest
equal to e /2(r) = —,'e X, which is the ionization en-
ergy for a hydrogenlike 1s orbital. The values of
X determined are summarized in Table G. These
values are about half of & in the real hydrogenic 1s
function. Thus the determined 1s orbital is much
more diffuse than the real hydrogenic 1s function
and is likely to be the orbital of the valence elec-

TABLE I. Values of the calculated coupling constant,
the exciton energy e in eV (corresponding to the experi-
mental values of the lowest exciton peak given in Ref.
15), the optical dielectric constant e„(Ref. 12) and m&/
m~. The value of m&/m~ is taken (a) for KCl and KBr
from the cyclotron resonance data of Hodby (Ref. 13),
(b) for KI from Hodby et al. (Ref. 13), and (c) for CsI
from the theoretical value of onodera (Ref. 16).

mo/me

KC1

7.76
2. 13
0.48
0.48

KBr

6.77
2.33
0.39
0.49

5.80
2. 69
0.398
0.61

CsI

5.76
3.03
0.42
0.66

TABLE II. Values of the calculated dimensionless pa-
rameter 4 ' The ionization energy used in the calculation
is 4. 32 eV for potassium and 3.87 eV for cesium (Ref.
17). a is the nearest-neighbor distance in A in KC1,
KBr, and KI but represents the lattice constant in A in

CsI.
KCl

3.14
2. 83

KBr

3.29
2. 96

. KI

3.53
3.18

CsI

4. 57
3.70

tron in character.
The value of

I
J

I
may be determined from the

s-like conduction-band width in a particular direc-
tion. Philips" has attempted to use the ultraviolet
absorption spectra of alkali halides to deduce the
band structure. The s-like bandwidths in[100] di-
rection for KCl, KBr, and KI were found to be
3. 3, 2. 6, and 2. 0 eV, respectively. From this
we obtain

~

J
I

equal to 0. 83 eV for KCI, 0. 65 eV
for KBr, and 0. 5 eV for KI. The normalized ex-
citon energies denoted by x =a/I 8

I
are summa-

rized in Table III. More reliable band calculations
performed on KCl, ' KI, ~ and CsI ' have shown
that a single parameter

l

J
l

does not suffice to
describe the band structure, so that the tight-bind-
ing approximation may not be too reliable in the
case of the alkali halides. We thus expect our re-
sults to be semiquantitative, i. e. , the present cal-
culation is an order-of-magnitude calculation.
This, however, does not affect the conclusions
drawn or the qualitative features of the polaron
band.

C. Features of E (k, 0., X, x)

We have plotted E~ (k, X, x) [obtained from Eqs.
(8), (9), (13), (15), and (22)] versus k in Fig. 2

for the simple-cubic case and in Fig. 3 for the
fcc case. In drawing these figures we chose n =1,
in view of the fact that the energy shift is directly
proportional to Q. and hence shifts of arbitrary a
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TABLE III. Values of f J f, and the norrna1ized exci-
ton energy g. For KC1, KBr, and KI, 4 f J f —the band-
width in eV —[1 0 0) direction is obtained from Phillips
(Bef. 18). For CsI the bandwidths in the [1 0 Oj and

[1 1 1] directions are obtained from Onodera (Bef. 16) and
the average value is used for f J f .

KCl KBr KI CsI

O. l

0.83
9.4

0.65
10.4

0.50
ll. 6

0.32
18

0.2
X=25

0.3
X= I2

can easily be obtained. In general, the polaron
band Ea(k) is lowered when n, x, and a increase.
Furthermore, the shift EE(k) increases as k in-
creases. Thus the polaron band is not merely
shifted down from the bare band but its shape is
also distorted. The result that the electronic po-
larization increases as k increases can be ex-
plained as follows. As k increases, the energy of
the electron in the bax e band increases and thus the
electron has a larger probability of creating vir-
tual excitons. In other words, as k increases (N),
the number of virtual excitons surrounding the
electron, , increases as shown in Fig. 4 and hence

FIG. 5. D versus 4&' a in [1 0 0) direction in simple-
cubic case for &=1. D is the change in bandwidth, in
units of f J f, caused by the electronic polarization. The
bandwidth without polarization is 2.

bE(k}~(N) x increases. Of course, in accordance
with physical intuition if the electron's speed be-
comes sufficiently large the polarization will start
to decrease again. Thus we expect the electronic
polarization energy versus the kinetic energy of
the electron to increase for small k from a con-
stant Q6' come to a maximum and then decrease
again. As X increases a similar effect occurs,
the number of excitons again increases (see Fig.
4). Mathematically, this is due to the matrix ele-
ment describing the electron-exciton interaction

16@'
V,( )~0[J

~
Q(x)

~

e" "dr] =
(4~a+&a)a&

~ ~ f ~ ~ l ~ ~ ~ ~ ~ t 0 ~ ~ ~ 0 ~ 5g
~ g ~ ~ e ~ ~ +

~ t ~
~ ~ ~ ~ ~ ~

~ y 4 ~ ~
~ 1 ~ ~ 4 ~ ~ ~ ~

'144 ~ l ~ ~ ~ ~ ~ ~ i0 ~ ~ ~ ~ ~

This matrix element asymptotically approaches 1
frorQ zero as X increases. Physically, this effect
can again be explained from the energy point of
view. As X increases the orbital kinetic energy
of the electron increases and its ability to create
virtual excitons again increases. The change in
conduction-band width in the [100]direction is

~ ~ ~ ~ ~ ~ ~ o ~

I

g (l,0,0)

TABLE IV. Self-energy in eV of an extra electron at
the bottom of the conduction band. Bow 1 shows the self-
energy according to Toyozawa (Bef. 2). Bow 2 shows
the self-energy for the case in which the atomic nature
of the lattice is neglected, the effective-mass approxima-
tion is used, and the Brillouin zone is replaced by a
sphere of radius 7t/a. Bow 3 shows our results. Bow
4 shows the classical results H~ of DuPr6 et al. (Bef.4).

KCl KBr KI CsI

FIG. 4. (Q is plotted versus k in the simple cubic
case in [1 0 0) direction for e = l. Solid lines refer to
x=6, broken to x=12, and dotted to x=18. According
to Toyozawa, at A =0, ( = 2o.'.

AC 3.73 3.34
n~(2/m) tan-'[ml/g(2m, ~a') j l. 94 1.84

&E(0) 2.75 2. 34
Hq~ 1.96 2.06

3.53 3.82
1.92 1.74
2.38 1.68

j 8 ~ ~ ~
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FIG. 6. mmmm&versus 4A.' a in the simple-cubic case.
Solid lines refer to values of x=6, broken of x=12, dot-
ted of x = 18.

shown in Fig. 5 as a function of a, x, and X.

We now discuss the shift at 0 = 0. According to
Toyozawa, the shift at the bottom of the conduction
band is ne. This result can be obtained from our
basic etluation for the energy shift, i.e. , Etl. (22)
as discussed in Sec. IIIA. If we keep the Bril-
louin zone finite the energy shift in dimensionless
units becomes ox(2/w) tan'(m/$2x) (see Sec. IIIA),
a result which has also been obtained by Fowler.
For realistic values of x this latter result reduces
the self-energy o.e approximately by a factor of 2.
These results, our results obtained by using the
parameters given in Tables I-III, in Figs. 2 and

3, and the classical results are summarized in
Table IV. In general, the results are of the same
order of magnitude so that the essential part of the
polarization energy seems to be included in the
classical results.

D. Features of Effective Mass

mmmm& versus 4V2at in the fcc case. Solid

lines refer to values of x=6, broken of x=12, dotted of
x=18.

tively get further apart). We can expect this re-
sult since, according to the discussion in the pre-
vious section, as X increases the interaction of the
excess electron and virtual excitons increases.
Also, because there is a stronger interaction, m&
increases as a increases. m~ decreases as x in-
creases since the probability of creating virtual
excitons is reduced.

Qur results for m~/m, agree closely (see Table
V) with those of Toyozawa, according to whom

m~/m, = I ~st ct. Finally, wenote that changes in ef-
fective mass caused by electronic polarization ef-
fects are considerably less important than those
due to ionic polarization effects.

TABLE V. Ratio of electronic polaron band mass to
bare band mass. Row 1 shows Toyozawa's value (Ref.
2) and row 2 shows ours.

The ratio m~/m, versus 4X' a is plotted in

Figs. 6 and 7. The general features a,re the fol-
lowing. As X increases, m~ increases more rap-
idly than m, (m, increases since the atoms effec-

mp/my= &+6 &

m~/m„

KCl

1.080
1.082

KBr

1.082
1.083

1.096
1.108

CsI

1.110
1.079
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It is shown that by using alternate layers of materials with high and low elastic constants
resolved shearing stresses of the order of p&,„/100 will be required in order to drive dislo-
cations through the combination. The layers should be so thin that a Frank Read source can-
not operate inside one layer. The low-elastic-constant material should be such that perfect
dislocations rather than partials occur in bulk specimens of the material. Several possible
combinations are suggested.

Present knowledge about dislocations should be
enough to suggest methods of preparing specimens
which resist deformation and which are not sus-
ceptible to brittle fracture. Friedel reviewed the
situation. '

We would like to propose a composite material
which is rather different from previous sugges-
tions. Suppose that a specimen is prepared by
epitaxial crystal growth which consists of alter-
nate layers of crystals A and B. We attempt to
choose the two crystals such that:

(a) Their lattice parameters, at the operating
temperature, are nearly equal. Actually we want
to grow the two crystals on one another epitaxially
without having large strains present at the inter-
face.

(b) Their thermal expansions should be as
nearly equal as possible so that changes in tem-
perature will not destroy the lattice fit at the
interfaces.

(c) The elastic constants should differ by as
much as possible. What is really required is
that the line energy (i.e. , the energy per unit
length) of the dislocations should be as different
as possible in large single crystals of materials
A and B. If B is the material associated with
large line energy the dislocations prefer to be
in A. Moreover a very large external stress will
be required to drive dislocations from A into B.

(d) The bonding between A atoms and B atoms
should be large, i. e. , of the same order as the
bonding between two A atoms or between two 8
atoms.

Note that we did not require that materials A
and B have the same crystal structure. In fact,
interesting complications probably arise if A and
B have different crystal structures.

(e) The thicknesses of the A and B layers must
be small. The A layer (i.e. , the low-line-energy
material) must be thin enough so that dislocation


