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The general theory of the electronic dielectric constant of crystals, developed in a previous
paper in the framework of an individual-ion model, is analyzed for diatomic systems. Use
is made of an effective two-state model for the individual atoms. An exception is made, how-
ever, for certain terms in the polarizability which depend very strongly on the higher excited
states, whose effect is thus taken into account, in an average-excitation-energy approxima-
tion. The final result of this analysis is a simplified expression for the frequency-dependent
polarizability of an individual atom in the crystal, which includes explicitly the quantum cor-
rection arising from the induced dipole-dipole interaction. In R first application of these re-
sults, we carry out a detailed study of the static polarizability of alkali halide crystals, on
the basis of a reasonable assumption for the polarizability of a free ion in an excited state.
The dipole-dipole correction in the po1arizability is found to be positive and to vary from 2
to 8%. This effect is in good quantitative agreement with a correction which has been de-
rived from an empirical analysis of dielectric-constant data for the alkali halides. For the
effects of frequency dispersion in the polarizability, we also find reasonable agreement with
similar empirical results for the alkali. halide ions. As a second type of appbcation, we con-
sider the problem of deep impurity states in crystals. An explicit expression for the elec-
tronic frequency shift of a substitutional impurity is obtained from the study of the singulari-
ties of the polarlzablllty In particular this 16Rds to R simple expression for the van der
Waals constant for an excited impurity interacting with a matrix atom in the ground state. Ap-
plication of this formula to rare-gas and molecular impurities in rare-gas matrices leads to
surprisingly good agreement with empirical results, as obtained from an analysis of experi-
mental shifts in terms of 6-12 potentials. As R last application we study the oscillator strength
of two-quantum excitations (double excitons}, which arise as a consequence of the quantum
dipole fluctuations. For the alkali halides we find that this oscillator strength ranges from
4.5 to 20% of that of the ordinary one-quantum excitations in the NRC1 strocture, while rising
to 30% in the CsC1 structure.

I. INTRODUCTION

Theoretical and experimental studies of elec-
tronic excited states of the alkali halides and rare-
gRS solids seem to indicate that the model of tight-
binding excitons, as developed originally by
Frenkel, does not provide an adequate description
of the electronic states in these systems. Most of
these investigations were started, in fact, after
the unexpected finding that the electronic spectra
of the pure rare-gas solids can be interpreted
rather well in terms of the Wannier model, which
describes the opposite limit of loosely bound exci-

tons of large radii, ' This provided strong evidence,
of course, for non-negligible effects associated with

the overlap of the charge distributions of neighbor-
ing atoms or ions in these crystals, especially in
excited states. It has led to numerous attempts
to improve the extreme tight-binding approxima-
tion by taking overlap and exchange effects into ac-
count, in addition to the Coulomb interaction. In
this improved form, the tight-binding approxima-
tion has been rather successful in predicting exci-
ton energies in the pure rare gases2' as well as
excitation energies of impurities in solid He, Ne,
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and Ar. ' A more general pseudopotential formal-
ism which is valid, in particular, in both tight-
binding and weak-binding limits has been given by
Hermanson and Phillips. ' These authors arrive at
the interesting conclusion that the Wannier weak-
binding approximation, while working quite well
for exciton states in the pure rare gases, becomes
very poor for deep impurity states (because of
large central cell corrections), thereby providing
a firm basis for the validity of the corrected
Frenkel model in deep impurity problems.

On the other hand, from the experience provided
by the papers cited above, it has been concluded
that in practice it is very difficult to treat overlap
and electron-exchange effects in an accurate gener-
al way in the framework of the Frenkel model.
Part of the difficulties are due to the fact that a
parameterization of the theory in terms of macro-
scopic physical properties is either impossible or
does not result in an adequate description for most
real systems.

In contrast to the importance of overlap effects
in the detailed interyretation of oytical spectra of
alkali halide and rare-gas crystals, it must be re-
called, however, that there are properties ofthese
crystals which also depend to some extent on the
excited states and which are quite well interpreted
on the basis of a model of individual ions or atoms
which do not overlap in first approximation. The
most striking example is that of the electronic diel-
ectric constant of the alkali halides. The polariza-
bility of these crystals can be discussed surpris-
ingly well, in fact, by using an individual-ion mod-
el as shown originally by Tessman, Kahn, and

Shockley arid later, more carefully, by Pirenne
and Kartheuser. ' From the work of these authors
as well as from other evidence, provided by the
study of frequency dispersion of the yolarizability
as well as by the success of the Born theory of
crystal binding, it follows that a model of individ-
ual nonoverlapping ions (or atoms) is probably a
valid starting point for a theory of the dielectric
constant of alkali halides (and the electronically
similar rare gases). Overlap effects are certainly
of some significance but it seems reasonable to
expect that they will only slightly modify the effect
of the electrostatic interaction between the atoms.
Thus it would appear that the two effects are es-
sentially additive and may be treated independent-
ly of each other to a good approximation. o In turn,
this justifies the use of a multipole expansion for
the Coulomb interaction where then the dipole-di-
pole (and perhaps the dipole-quadrupole) term is
treated explicitly. Further evidence for the valid-
ity of this procedure in cases where the charge
distributions involved are overlapping has been ob-
tained by Brooks. ' He concludes that although the

use of a multiyole expansion is of course not rigor-
ously justified in this case, it nonetheless may be
exyected to give reasonable results if only the low-
er-order terms are considered at small internu-
clear separations.

In a recent paper, "we have discussed a general
theory of the frequency-dependent dielectric con-
stant which is based on the model of individualnon-
overlapping atoms. The most interesting feature
of this theory is that, as a result of an exact treat-
ment of the classical Lorentz field effect in afirst
step, it provides the framework for a systematic
study of the effect of quantum dipole fluctuations
on the polarizability of individual atoms by means
of perturbation theory. For an individual atom A,
this correction to the free yolarizability has the
form

a n„((o) = Z «~ ((o)
BOA

where the summation extends over all neighboring
atoms B and ~ is the frequency. The pair-interac-
tion term ha~(&o) is proportional to the inverse
six power of the distance R~ which separates A
and B. Since the general expression of 6n~ (a&)

is quite complicated, we were later" led to sim-
plify it by introducing convenient but reasonable
approximation for the effect of the real spectrum
of the atoms in various terms of this expression.
The approximate result was then evaluated numer-
ically and applied in a detailed study of the effect
of dipole fluctuations on the energies of long-wave-
length tight-binding excitons as well as on the os-
cillator strength of two-quantum excitations in

monatomic systems.
The nature of the approximations which were

used in II and the identification of, and reason for,
discarding an alternative approximation scheme
for 4 n~(v) may be further elucidated as follows.
Since the correction in the polarizability originates
from a physical mechanism which is similar to
that of the ordinary two-body van der Waals dis-
persion forces, it is useful to compare the sim-
plest approximations which have been proposed in
the two cases for purposes of detailed applications.
Inbothcasesthe goal is to get rid (insome approx-
imation) of the complicated summation over the
complete set of intermediate excited states of the
individual atoms which is always present in sec-
ond-order perturbations. For simplicity, we dis-
cuss the problem for an isolated pair of identical
spherical atoms A and B, which are characterized
by their polarizability o.o and a typical excitation
energy ~0 (h = I) in the bound-state spectrum of ex-
cited states. In fact, throughout this work we shall
use a single excitation energy for each atom, which
we roughly identify with the energy of the first al-
lowed transition. Consider first the expression of
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8 (d o QOTr T»j 2
'

2 (2)

which is the familiar Londonformula. Here (0, A)
denotes the ground state of atom A, p, „the z com-
ponent of the dipole moment operator of the n-elec-
tron atom A,

~e~ Z r,„-p„j
1=1

and T~ = (I/Rz»» )[ 1 —3(%~»» ~~/R~ )]

is the dipolar tensor.
For our purposes it is important to recognize

that Eq. (2) may also be obtained formally in two
alternative ways. The first one consists in retain-
ing only the contribution from the first excited
state of the atoms in the general expressions of
both 4E» and no. For convenience we choosethe
first excited state to be a triply degenerate P state

1 1, , A) (f =x, y, z), the ground state being an S
state, and we have the usual selection rule

&o Alp»~II» A) =&o Alp»~li» A&5». »

In this approximation bE„s retains the form (2)
but no is now given by

n. = (2/~p) l&O, A (4)

The second procedure consists in approximating
the real spectrum of the atoms by a pair of effec-
tive states, aground state (O, A&, and a triply de-
generate excited state ]1, A), their energy differ-
ence being oro. In particular, we have in this case
the closure relation

I o, A& & o, A
I

+ ~ I 1,A)& 1,A
I

= »
which implies that

&o, Alp', „Io,A) =I&o,Alp, „li„A)l',

(5)

so that n, has the form of Eq. (1). These remarks
are of no real significance and help in the study of
LE», but they do provide much insight in finding
the best approximation for the correction 4m~(&o)
As we shall now see, the distinction between the
two approximations is fundamental since they lead
to quite different results for nF~(»»»). First, we
recall that in the Unsold approximation nnz»»(»»»)

still involves summations over all excited states

the van der Waals energy ~E~ of the pair. The
first step is to make the so-called Lennard- Jones-
Unsold (LJU) approximation where one replaces
the free-atom excitation energies in the exact sec-
ond-order perturbation formula by the constant
(average) value p»p. If in addition, the same ap-
proximation is made in no, one has

n =(2/p» )(O, A Ip .~ I
0, A) (1)

and one obtains

&O, Alp. p. lo, A& =&0,A

(isotropy of the atomic polarizability),

A& =O,
and &O, Alp„'~,'„IO,A& =-,'&o, Alp', „Io,A)

(7)

(s)

(9)

(with similar relations arising from permutations
of x, y, z). Equation (8) expresses diagonality of
p„with respect to the subset of degenerate states

~ l, ,A) (Ref. 12) and Eq. (9) can be quite generally
established for atoms with spherically symmetric
charge distributions in the ground state. One then
obtains

6 n~ (0) = ——, nPp [ (4 ——', v) (TrTP»») 1 + 2(2 - —', v)T&»»],

10( )
where v is defined by

v=&o, AIpp~pp~lo, A)/(&o, AIpp~lo, A&)'. (ii)
Now, upon insertion of (5) into (11), using (7), it
follows at once that v could take the two values 1
and 3 in the effective two-state model. This ambi-
guity indicates that those terms in Eq. (A2) of II
which depend on v, when all excitation energies are
replaced by»dp (in the spirit of an average-excita-
tion-energy approximation), are not strictly defined
in an effective two-state model. They are, infact,
very sensitive to the effect of the higher excited
states since the parameter v reaches its actual
unique value only when the contribution of these
states is properly included, '2 In order to take this

of an atom' which cannot be eliminated in favor of
the ground-state polarizability. '2 Thus, in order
to make further progress one is naturally led to
use one of the two procedures just described. In
addition, these approximation procedures play an
essential role in obtaining a useful definition of the
average polarizability of an excited state which
arises in the Unsold result. ' We confine the dis-
cussion to the static correction An~(0). Consider
first the approximation where we retain only the
contribution which arises from the first excited
state of the free atoms. Using Eq. (A2) of II,
where in this case we replace the mean values co

and n(0) by»»»p and ng = np respectively, we ob-
tain

an~(0) = —
p n'p[(2TrT ~)1+ST~] .

Next, we examine the alternative approximation
where we use an effective two-state model and ap-
ply, in particular, the closure relation (5). Such
a model has been very useful in the study of exci-
ton states, which will also be discussed in this pa-
per. The reduction of Eq. (A2) of II in the two-
state model approximation is straightforward; use
is made of (1), (5), and of the symmetry proper-
ties
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Z T» = (~ P TrT») 1 = (—,'v N) 1
BOA B AA

(12)

(¹isthe number density of atoms and 1 is the unit ten-
sor), one is lead exactly to Eq. (50) of IL The actual
value of v for the rare-gas configurations is about
5, as was suggested previously' and as will be
shown here by more detailed calculations. This
then indicates the existence of a large numerical
discrepancy between Eqs. (10) and (6) which is due
to the effect of the higher excited states, which is
completely neglected in (6). Therefore, the ap-
proximation of retaining only the contribution from
the first excited state of the atoms is not valid and
must be rejected in the study of nn„~(0), although
it is suitable in the study of the van der Waals in-
teraction 4EAB.

The importance of the higher excited states in
&o»(0) is tied to the fact that this correctionaris-
es purely from anharmonic properties of the real
atoms, being thus exactly zero in a harmonic
(Drude) model. " On the other hand, a detailed
evaluation of the general expression of bZ»(0)
[Eq. (2. 48) of I] for harmonic oscillators shows
that individual terms do not vanish separately but
that instead an exact cancellation between the var-
ious terms does occur; but only a few excited
states of the oscillators (actually the first two)
contribute effectively in these terms. These fea-
tures of the result for harmonic oscillators lead
us to suspect that for real atoms very substantial
effects will arise from the higher excited states
which are mixed in as a result of the electronic
anharmonicities. One important consequence of
including the effect of the higher excited states
(through the parameter v) is the existence of two-
quantum excitations, which would be completely
absent in an effective two-state model. '

effect into account we must calculate (11) explicit-
ly, i.e. , without making use of the effective two-
state model.

To summarize then, it appears that Eq. (10)
[and Eq. (11)jcorresponds to the following well-
defined, and probably valid, approximation scheme:
It is based on the two-state-model approximation
of those terms, in Eq. (A2) of II, which are well
defined and determined sufficiently accurately with
this model; on the other hand, those terms which
are. not defined in the two-state model are approx-
imated by replacing the excitation energies in the
denominators by the constant value co0, while the
parameter v arising in the numerator is defined by
the'actual value of (11), which includes large con-
tributions from the higher excited states. We note,
incidentally, that by summing Eq. (10) over neigh-
bors in a cubic monatomic lattice, using the ap-
proximate relation

The aim of the present paper is to study, along
similar lines as in II, the detailed effects of in-
duced dipole-dipole interactions on the polariza-
bility and on the excited states of individual atoms
in cases where two interacting species are involved
in a crystal. This includes the study of various
effects in pure diatomic ionic crystals like the al-
kali halides as well as the study of deep impurity
states in monatomic crystals like the rare gases. ~

Our treatment will be based on the approximations
discussed above. In all the mentioned applications
we find reasonable agreement between the theory
and the results deduced from experimental data.
This shows the relevance of both the theory and

the individual atom model on which it is based to
actual dielectric properties in these solids. This
feature was less evident in II, where we dealt only
with monatomic situations for which the variety of
experimental effects to compare with is necessari-
ly more restricted. Specifically, we shall apply
the theory to the study of the polarizability of al-
kali halide ions, to the electronic excited states
of rare gas and molecular impurities in rare-gas
solids, and finally to two-quantum excitations in
alkali halides. Concerning the polarizability, the
theory accounts quantitatively for a correction in
the additivity rule of ion polarizabilities, which
has been obtained by Pirenne and Kartheuser, '
from an empirical analysis of dielectric constant
data. It also explains essentially the frequency
dispersion effects in the polarizability of these
crystals. When applied to impurity states in rare-
gas solids, it agrees rather well with the empiri-
cal van der Waals contribution to the total shift
of the excited states of various impurities. These
shifts have been determined by Roncin" from an
empirical fit of the experimental data to 6-12 pair
potentials. Finally, our numerical results for the
oscillator strength of two-quantum excitations in
alkali halides are intermediate between the results
of earlier calculations by Hermanson'6 and Miya-
kama, "both of which are based on the electronic
polaron model. The present work clearly shows,
however, that the oscillator strength for two-quan-
tum transitions depends rather strongly on the lat-
tice parameter, polarizabilities, and other elec-
tronic properties of the individual atoms. Weak
two-quantum exciton transitions have apparently
been observed very recently in the rare gases. "

The paper is organized as follows. In Sec. II,
we derive the approximate expression for the fre-
quency-dependent correction b,n»(+) in the polar-
izability. In Sec. III, we analyze this correction
in the static limit and show how it enables us to in-
terpret the empirical results for alkali halide ion
polarizabilities. In Sec. IV, we discuss and solve
the dispersion equation for the excitation frequen-
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The various problems of interest in this paper
can be handled, without loss of generality, starting
from the expression her~(ar) of the correction in
the polarizability for an isolated pair of interacting
atoms. This is physically obvious since all the
effects to be considered are pairwise additive. In
I and II, our interest was focused directly on per-
fect cubic lattices, but in the case of a single pair
some modifications do occur both in the derivation
and in the final form of the correction. We pre-
sent a brief account of these modifications and dis-
play the final result in the Unsold approximation
in Appendix A, Eq. (A6). We now proceed with the
further reduction of (A6) using the effective two-
state model together with the modifications which
enable us to deal properly with the higher excited
states in the terms where their effect is most
prominent (see Sec. I).

First, however, we discuss the important ques-
tion of the choice of the average polarizability
a„(co) of a free atom in an excited state. So far,
both in Secs. I and II, we have only considered the
choice

ne(c0) =o. ,e(c0)= —noe(c0), C -=A, B (13)

which would seem the most natural one to make in
the framework of an effective two-state model.
We would like to emphasize, however, that this is
by no means the only choice which is compatible
with our proposed approximation scheme for
ha~(co): In fact, it may be necessary, in addition
(in some cases), to take into account the effect of
the higher excited states in ne(&o), as it already
turned out to be essential for the terms depending
on v. ' First, we note that the term involving

cre (&u) in Eq. (A6) has a quite different structure
than the others. This follows from the fact that in
the perturbation expression for the polarizability
of an excited state of an isolated atom, all terms
but one involve energy differences which corre-
spond to two excited states. In addition, one finds
that, in the static limit, all other terms in (A6)
involving energy differences between two excited
states vanish identically. ' Thus, a different ap-
proximation for n, (&o) is not formally inconceivable.
On the other hand, the contribution from virtual
transitions between excited states in o.e (c0) may be
quite large (among other things, as a result of the
smallness of the corresponding energy denomina-
tors) and even exceed that which arises from the
transition to the ground state, the only one which

cies of an isolated pair and apply the results to im-
purity states in rare-gas solids. In Sec. V, we
study the oscillator strength of two-quantum exci-
tations and some final comments follow in Sec. VI.

II. POLARIZABILITY OF A PAIR OF UNLIKE ATOMS

is taken into account in (13). Such a situation,
which will usually make ne (0) positive, has been
discussed previously at co= 0." The above remarks
lead us to distinguish two cases as far as the value
of a~ (c0) is concerned: In the first case the higher
excited states are unimportant and Eq. (13) is ap-
proximately valid, whereas in the second casetheir
effect is so large that it cannot be ignored.

We now discuss the derivation of an explicit ex-
pression for ae (&u) in the case where the higher ex-
cited states are important. Instead of using a spe-
cific atomic model (which would be quite compli-
cated to construct), the expression of ne(c0) will be
chosen such as to obtain an optimum value for the
perturbation expression of nc7~(~) in the average-
excitation-energy approximation (A6). Therefore,
the use of the result may even be justified to some
extent for atoms or ions where the higher excited
states do not have such a drastic effect on the ex-
cited states polar'izabilities. The argument which
will be used is suggested by Kirkwood's vagiation-
al version'0 of the Unsold average-excitation-en-
ergy approximation in second-order (stationary)
perturbation theory. In this method the optimum
average excitation energy is determined to be the
average of the true excitation energies weighted
with the matrix elements of the perturbation V
under consideration. This is also equal to the ra-
tio of the expectation values of V(BD —E,) V and V',
where Ho and Eo denote the unperturbed Hamil-
tonian and the ground-state energy, respectively.
Bather than actually carrying out a similar varia-
tional treatment to obtain an expression for ne(ur),

and because of the appealing simplicity of Kirk-
wood's result, we shall postulate the form of
ne(e) by analogy with Kirkwood's result. This
leads us to define o.„(&o)(n~(v)) in (A6) as an aver-
age of the induced dipole moment operator weight-
ed with respect to the dipole-dipole interaction

~AB pA ' TAB pB

Qg(co)g Fpg e + C. C.

, &0, &;O, BI&~ yv~PeAyv~ Blo, ~;O, B)
( O, A; 0 B

l WAB
I
0 A 0 B)

Here V„'
~ O, A) denotes the ground state of the free

atom A as perturbed by the effect of the Lorentz
local field '

—,
' (Po„e'"' + c.c. ),

and the factor 2 has the same origin as a similar
factor in the usual ground-state polarizability.
With Eq. (t) the second member of (14) becomes

3 & 0» I
~'~P, ~p~

& o, alp„V~ ~ p„ I
o, x)
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%e shall simplify somewhat this definition of
a „((d) by replacing T~2 with its average &'T~2&,„
over-all orientations of the axis of the pair AB:

&y, x o,x ++

&O, X[I@. [&,A&&j, w[T. Tx'IO, X&)
y, x;0,~

(16)
Applying the approximation scheme discussed in
Sec. I, we obtain finally

where Q~(0) = 3 vg &op

v„and O.o„refer to the parameters introduced ear-
lier as defined for atom A. Because of the pres-
ence of v„ the above definition emphasizes the ef-
fect of the higher excited states, as is also appar-
ent from the fact that n„(0) is positive. There-
fore, this definition does not apply to atoms or
ions in which the effect of the higher excited states
is unimportant as, for instance, in the two-state
model.

It is to be noted that (17) has the same frequency
dependence as (xo„(&o), given by

(19)

For the purpose of later use, we introduce the new
parameter

P~ =1-o~(0)/no~, (2o)

The explicit result is obtained by expanding through
linear order in Fo„and by substituting the matrix
elements of U„' as given, for instance, in I. This
gives

1 2

3 (0,AIP, g I O, A)

so that

+04(+~ (xA((4&) PA+ OA (4A)/((4&A &d ) ~ (21)

In the case of (13) we have P„=2 whereas in the
case of (17) P„=1——,v„. Judging from the success
of the Kirkwood method in calculations of atomic
polarizabilities and of van der Waals interaction
constants2~ we may expect (17) and (18) to give a
reasonable estimate of n„(~), at least as far as
the calculation of An~((d) is concerned. Thiswill
be especially true for systems whose polarizability
in a low-lying excited state differs strongly from
Eq. (13).

We now turn to the explicit reduction of (A.6) us-
ing the approximation scheme discussed in II" and
in Sec. I. Accordingly, me replace ~„and +~ as
well as all excitation energies from the ground
state of A and 8 by (d„and (ds, respectively (these
are the analogs of (do in Sec. I), and we use the
closure relation. As noted earlier (in II) we drop
all terms in the last five lines of (A6) which involve
energy differences between two excited states.
This is done for reasons of consistency of our
approximation scheme with the general theory
of I, at ur = 0. Further simplifications follow from
Eqs. (7) and (9) which enable us to show that all
ground-state expectation values arising in the
course of approximating (A6) reduce to the value

(& o, alp,'„ I o, a& )'T'
except two of them which are

&»~lp~ ' T~ ' hl 0»& =& o ~It'~I»~&»T~

&o,alp. (p~ T~ p~)p. lo»
= 6& 0,Alp, „p„l0,A&[(TrT~)l+2T~] .

Finally, using (1), (11), and (21) we obtain from
(A6)"

Q Q
2

+&~((d) =
8 (

a 3p [( )3 y] 2[((d~ + (4)s ) —(d ] ((4)g —(4) ) + 3(4&g —
(4&

Q7g + COg

~+~) (~&+~s)((dA+~s +&d)+((dg —(d) ((dg+(ds)((d„+(0 —(0)+2(347 —(d )[((0 +(0 )

-& ]] T~B 5vAO~A+~) (~A+~s)(~++(Os+(0)+((Og (0) ((dg+(gs)

x&txx+td —tx)+4&|xx —& )[&tx + t0a) —t0 ]] [&TTT' )) TT~]) . (22)

The correction &ns„((0) is obtained from (22) by
interchanging A and B.

In the following we shall be concerned exclusive-

ly with problems involving cubic crystals which
will be either pure diatomic crystals or monatomic
crystals containing impurities at substitutional
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1 Q Q

2 R~ (0~ +g
1

(+ &A) [& (&A+&B) j

X (kAB CO +kAB(d + kAB ) (23)

where the quantities k'„'~, k~, and k~ are de-

fined by

~AB 3PA+A/(+A ++B) 2 ~A + 4
o

(24)

AB 3 f+A + (p A ++B ) J PA +A /(+A + +g )

13+A 3+B 4+A+B + ~A(+A ++B )3
2 2 2 2 (25)

&AB= ~A'(~A+~B)'f»A~A/(~A+~B)+»- »AJ (28)

In the following sections we shall examine three
different types of applications of these results.

III. APPLICATION TO THE POLARIZABILITY OF

ALKALI HALIDE IONS

We shall first discuss in detail the static polar-
izability of alkali halide ions, but later on we
shall also consider the frequency-dispersion ef-
fects. These problems are of considerable inter-
est for the following reasons. It is well known

from the classic paper of Tessman et al. ' that in
the alkali halides the polarizabilities of the cat-
ions (A) and anions (B) nearly obey an additivity
rule of the form

sites. In the latter case we shall concentrate on
the effects of the surrounding matrix on the im-
purity states. In these problems, the correction
in the polarizability of the atom A due to the inter-
actions with its neighbors is isotropic. In partic-
ular, the contribution to &@A(~) due to a given
shell of neighbors 8 will be equal to the number of
atoms in that shell multiplied by the average of
(22) over all orientations of the axis AB. Thus for
our purposes, we may replace Eq. (22) by its
orientational average using (15). The result is

parently disproved by their more careful treat-
ment. Another very interesting feature of the work
of PK is the evidence they obtain for the existence
of a correction term to (27). In their work they
chose this term phenomenologically to be of the
form A.Q„Q~, so that

Q~ QA +QQ +~QgQg ~ (28)

—1! —3 „~13)
Pl Qog 3
4 Rr6 2 A A (28)

The parameter X is positive and changes discon-
tinuously with the crystal structure. ' The relative
magnitude of the correction term in (28) varies
roughly between 1 and 10%%u& for the alkali halides.
The existence of the correction term in (28) has
later been confirmed by a similar empirical analy-
sis of frequency-dispersion effects in the polariza-
bility. This suffices to demonstrate the particular
interest of making a detailed comparison of the
present theory, which is based on the individual
(free) ion model, with the above-mentioned results
for alkali halides. For completeness we mention
two previous theoretical studies of polarizabilities
of alkali halides, "which differ both in emphasis
and in presentation from the present work.

We now turn to the calculation of the total static
correction in the polarizability for the alkali ha-
lide ions. In the case of halogen ions, the second-
neighbor halogen ions give large contributions in
b n„(0) because of their large polarizabilities.
Therefore, in order to obtain a reasonable approx-
imation for the total correction in the polarizabili-
ty of an ion A in the crystal, we have to sum (22)
over two shells of neighbors. We denote by n and
R the number and distance of first neighbors of a
given ion; respectively, and by rn and R' the same
parameters for the second neighbors. Using (15)
we then obtain the following expression for the to-
tal correction in the polarizability of A due to the
interaction with first (B) and second (A) neighbors:

Oooo„(3) oo o'o o'o 1 ( o

)n,„2 R' 1+x ~( "1+x

Q~ —Qg + Qg (2'7)
where the notation

This result follows also from the classical I orentz
field theory which leads to the Clausius-Mossotti
equation. ' Moreover, the individual polarizabili-
ties n„(nB) determined by means of (27) from the
knowledge of the experimental values Q» are re-
markably close to the polarizabilities npA (lnpB ) of
the free ions. This is demonstrated very convinc-
ingly by the improved empirical analysis of Pirenne
and Kartheuser (PK). An assertion that is often
made, and according to which in the crystal the
cation polarizability is larger and the anion polar-
izability is smaller than for the free ions, is ap-

x = &A/~B y =~B/&A (30)

mill be used throughout in this paper. The same
results could be obtained, of course, by starting
from Eq. (23). Numerical values of R, R' are giv-
en in Table I while free-ion polarizabilities and
values of ~„are listed in Table II. For the alkali
ions we have chosen ~„ to be the excitation energy
of the first excited 'P state of the free ion. For
the halogen ion the values of Table II correspond
to average values of the lowest absorption frequen-
cy of the five corresponding alkali halides, as ob-
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TABLE I. Distances between neighbors in alkali
halides iu units of A, taken from the work of C. Kittel
Ltntroduction to Solid State Physics (Wiley, New York,
1956)]. The first number is the nearest-neighbor dis-
tance and the second number the distance between second
neighbors. All values are for crystals with the NaCl
structure except those for CsCl, CsBr, and CsI which
are for the CsCl structure.

Cl

2.31
3.267
2.815
3.981
2.98
4.214
3.23
4.568

2.67
3.776
3.14
4.441
3.295
4.66
3.525
4.985

2.82
3.988
3.27
4.625
3.425
4.844
3.665
5.183

3.005
4.25
3.559
4.11
3.715
4.29
3.949
4.56

tained in Ref. 24. This latter choice is motivated
by the fact that, as noted by PK, the first excited
state of the free anions (which lie apparently at the
bottom of the continuum) is expected to be strongly
shifted by crystal-field effects. This then leaves
the anion absorption frequencies in the crystals as
the most meaningful values of excitation energies
for the present calculations. 34

The major remaining task in applying Eq. (29)
to the alkali halides is the determination of the
parameter v„given by (11). For the H atom the
exact value of v is 7. 5 while an approximate value
of 6. 25 is found for He atoms by using Slater or-
bitals. In II we have introduced a Gaussian model
to determine this parameter for the heavier rare
gases, which leads to v = 5. Although this value
seems quite reasonable, it suffers from the objec-
tion of being determined unphysically. Therefore
we have now undertaken a more realistic calcula-
tion of the parameter v for the free alkali and halo-
gen ions and for the rare-gas atoms. The expec-
tation values involved in v are obtained from an
explicit calculation of the contribution of the outer-
most shell of electrons (ns nps). The ground state
is represented by a Slater determinant of Slater
one-electron orbitals. ~ Some further details of
this calculation are given in Appendix B. The fi-
nal result is obtained by substituting (B10) and
(Bll) in (11), which leads to

4(n* + 1)(48ne + 232n +149) + 25(2n +1)
10(2n* +1) (2n* + 3)' (»)

1s Slater s effect1ve pr1Dclpal quantum number
whose values are listed in Table II. For later use
we note that the values of n* for the sequence Ne,
Ar, Kr, Xe are the same as for the isoelectronic
sequence F, Cl, Br, I, respectively. The
values obtained for v from (31) are also listed in
Table II which shows that they lie, in fact, sur-
prisingly close to the Gaussian-model result v = 5.

Finally, for the excited-states polarizability to
be used in P„we have to make a choice between
Eels. (13) and (18). In the case of the rare gases
we have chosen Etl. (13)' which led us to small
negative corrections hn„(0), in reasonable agree-
ment with the density dependence of the refractive
index of these crystals. The use of (13) would also
lead to small negative corrections for the alkali
halide ions, while the empirical corrections of PK
are positive. s With Eg. (28), on the other hand,
the correction &n„(0) becomes positive. The PK
results thus suggest the use of this latter expres-
sion, but this requires further justification if we
want to make theoretical predictions rather than a
fit to the empirical results. Fortunately, there is
a physical reason for preferring (18) to (13) in the
case of the halogen ions, which clearly contribute
the dominant effect in the total correction to the
additivity formula for the polarizabilities (except
for the fluorides). Physically, the fact that all the
excited states of these ions l.ie practically in the
continuum suggests that the polarizabilities n„(0)
will depend rather strongly on the virtual transi-
tions between excited states. Now, as seen earlier,
this is typically an effect which is included in Eq.
(18), which should therefore be preferred for the
halogen ions. A further reason for adopting this
expression is the fact that it corresponds to an op-
timum approximation for the perturbation expres-
sion of &o.„(0), as suggested by Kirkwood's re-
sults. ~ For these reasons we have carried out the
calculations of the relative corrections ho. „(0)/no„
for the alkali halide ions on the basis of Etl. (18)
for o„(0). In Tables 111 and IV, we present the nu-
merical results for cations (A) and anions (B), re-
spectively. For the crystals of the NaCl structure

TABLE Q. Values of parameters defined in the text. The polarizabilities no~ and the excitation energies v& are
taken from Refs. 8 and 24, respectively.

&hi@')
~~ (eV)

n'

&a ~&4

1.0
9.5
2
5.218
0.049

3.5
7.6
3
5.116
0.0766

4.15
6,6
3.7
5.075
0.1015

6.37
5.6

5.062
0.141

0.152
32.85

2
5.218
0.0041

0.9
20.15

3
5.116
0.0109

1.7
15.68
3.7
5.075
0.018

2.7
15.23

5.062
0.0191



526 JE AN HE INRI C HS

TABLE III. Relative polarizability corrections
&a~(0)/npg for A ions in percent. All values are for
crystals with the NaC1 structure, except those for CsCl,
CsBr, and CsI which are for the CsC1 structure.

F
Cl
Br
I

Na

1.02
0.54
0.41
0.34

2.24
2.24
1.83
1.68

3.81
3.87
3.21
2.9

Cs

4.92
5.6
4.7
4.31

n=6 and m =12 while for those of the CsCl struc-
ture (CsCl, CsBr, and CsI) n=8 and m =6. A fea-
ture which emerges from these tables is that the
correction for a given ion stays relatively constant
in the four alkali halide crystals, especially inthe
case of the anions. In Table V, we compare the
total relative corrections calculated in the present
work with the values obtained empirically by PK. '
It is seen that except for the sodium compounds
the agreement is quite good both in sign and in

magnitude. The theoretical results for the correc-
tion in the polarizability range from 2. 4/p for the
least polarizable crystal to 8. 5/o for the most po-
lariz able one.

At this point we would like to discuss briefly the
variation of the dipole-fluctuation effect in the po-
larizability with the frequency co. More specifi-
cally, our aim is to compare the frequency-disper-
sion effect which results from this correction with

a similar effect derived empirically by PK~4 from
an analysis of frequency-dispersion data for the
alkali halides. By postulating the empirical cor-
rection to be of the same form at nonzero frequen-
cy than at co= 0,~ it follows that the contribution
K '~ of the correction term to the frequency-dis-
persion effect is given by

the experimental refractive indices have been mea-
sured. These values can be used to compute
K ~ (&uo) for the alkali halide ions.

Similarly, the correction in the polarizability
due to dipole fluctuations leads to a contribution
&~ to the frequency-dispersion effect given by

Sn „((o)—&n „(0)+ ans((o) —&ns(0)K~ Q7) =
5npg (Qr) + 5aps ((d)

where

5noc(ur)=ape(v) noc C —= A, B

(34)

(35)

x (48. 5+3P„—12. 5v„)+0(ar )

and from (19) we have

5aoc(ur)=(u& /&oc)aoc+0(&o ) C —= A B.
Note that

&ns(&o) —nns(0)

(36)

(3'I)

Now, since for the alkali halide ions the ratio
~o/&o„ is in most cases less than 0. 1 (see Table
II) it will be quite sufficient to approximate the
numerator and the denominator in (34) by the first
term of series expansions in powers of ur /&o„and
&P/+so. Carrying out these calculations in (22) and
summing the results over the first two shells of
neighboring ions of A (and similarly for B) we ob-
tain, after some algebra,

~a A(+) ~a A( ) aOAn OB + 3

np~((0) 2 R Q7g y+1

x 20+ " —(v„—1) p + +3
1 2

1+y y +2y+1 y+1 ]
2 2

SPY Qo g CO

4~&
8 pie (0 g

X [n „((o)5ns(ur) + ns((o) 5n „(~)]
5a „(op) + 5n, ((o)

(32)
is obtained from (36) by interchanging A and B and

where

5nc((o) = n c ((o) —a c (0), C =- A, B . (33)

TABLE IV. Relative polarizability corrections
4nz(0)/O. pz for B ions in percent. All values are for
crystals with the NaCl structure, except those for CsCl,
CsBr, and CsI which are for the CsCl structure.

The PK analysis provides us with a set of values
for n„(&o) and 5n„(e) for the alkali halide ions, for
the frequency ar = AD of the sodium D line at which

TABLE V. Comparison of total relative theoretical
and empirical corrections in the polarizability for the
alkali halides ( in percent). The first number is the
correction [AQ&(0) +An&(0))/(Q~+ Qpgy) calculated in the
present work; the second number is the empirical cor-
rection (~a~nz)/(0'~+nz) as obtained from the results
of Ref. 8. All values are for crystals with the NaC1
structure, where X=0.076A3 except those for CsC1,
CsBr, and CsI, where &=0.046A3.

F
Cl
Br
I

2.6
6.49
6.12
8.4

3.21
5.96
5.56
7.18

Rb+

3.93
6.87
6.33
7.63

Cs

4.06
8.17
7.62
9.38

Cl

2.39
1.66
6.24
2.01
6.05
2.07
8.21
2.11

2.75
3.61
5.2
5.82
4.9
6.26
6.49
6.71

3.86
4.3
5.88
7.83
5.43
8.65
6.63
9.53

Cs

4.69
3.04
7.05
6.46
6.47
7.42
7.87
8.54
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Cl

Br

7.01
2.43

14.67
2.42

13.5
2.38

17.86
2.34

9.46
7.44

17.28
9.17

16.11
9.11

19.66
8.89

11.26
9.07

20.4
13.9
19.31
14.2
22.7
14.1

Cs'

14
6.35

23.79
12.67
23.13
13.6
28.41
14.1

TABLE VI. Comparison between relative theoretical
and empirical frequency-dispersion effects in the po-
larizability, as defined by Eqs. (32) and (34) in the text,
respectively. Both numbers are given in percent, the
first one being the theoretical value and the second one
the empirica1 value. All values are for crystals with
the NaC1 structure (where &=0.0762 ) except those for
CsC1, CsBr, and CsI which are for the CsC1 structure
(where A, = 0.04643).

&s = —Ts~ [np~(~) 1+ An~(~)] ' &~ .
This system has solutions only if

det ~T- T~ [n p„((o) 1+&n~ (~)]

(38b)

ment requires only the knowledge of the effective
polarizability of an individual atom, which has been
studied in Sec. II. Since the spectral shifts which
result from the interaction between the impurity
and the matrix atoms are additive, their study may
be reduced to that of a single pair of unlike atoms
A and B, one of them being the impurity (A) and
the other one an atom (B) of the surrounding ma-
trix. When the pair is in an excited state, the am-
plitudes of the local fields acting on A and 8, as a
result of the induced dipolar interaction, satisfy
the pair of coupled equations

F„=—T~ [nps ((o) 1 + &n~ ((o)] k~, (38a)

replacing y by x. The numerical estimate of (34)
and (38) for the alkali halides at &o =~~ is carried
out in a way similar to the calculation of &n„(0)
using the values of Tables I and II and determining

P„ from (1&). In Table VI, we compare the values
of K~ (urn) to the values of tc~(&uD) obtained from
the PK results. ~4 It is seen that both values agree
in sign while the theoretical values are larger by
a factor of 2 or less than the empirical PK values

(except for the sodium halides). No special signif-
icance can be attached to this discrepancy in mag-
nitude because of the unknown effect of experimen-
tal uncertainties on the PK results on the one hand

and the simplified nature of the present theory on

the other hand.

IV. DEEP IMPURITY STATES IN RARE-GAS SOLIDS

In this section, we would like to discuss the ef-
fect of the dipole-dipole interactions on the elec-
tronic excited states of impurity atoms or nonpolar
molecules which are trapped at substitutional sites
in nonyolar crystal matrices. The treatment could
be readily generalized, of course, to the case
where the matrix is a nonpolar liquid or a com-
pressed gas. In general, the surrounding matrix
has several kinds of effects on the optical proper-
ties of the impurity center; shifts of its energy
levels, changes of intensity, and width of its ab-
sorption lines and production of new sidebands oc-
curring at combination frequencies of the impuri-
ties and the atoms of the matrix.

The problem of the dipole-dipole interaction ef-
fects on the impurity states can be formulated
quite generally in terms of the self-consistent equa-
tions for the effective local fields acting on the in-
dividual atoms and on the impurity when an optical
excitation is present in the system. This treat-

~ [n ps ((o) 1 + an s„((o)]
~

= 0, (39)

n, ((g)(b,n ((o))„]=0, (40)

which is considerably simpler than (39). We note
that an alternative averaging procedure which
would consist in averaging directly the whole ma-
trix in (39) does not seem correct to us because it
gives rise to some unphysical results: In particu-
lar, the use of these results in the monatomic lim-
it leads to an energy shift which differs slightly
from the correct value as obtained in II. The rea-
son for this difference is that

which determines the frequencies of the excitations
of the impurity-matrix-atom pair. Clearly, for
an isolated pair we expect normal-mode oscilla-
tions parallel and perpendicular to the axis of the
pair, which differ slightly in frequency as a result
of the difference between the longitudinal andtrans-
verse local field perturbations. On the other hand,
in a matrix of cubic symmetry the contribution of
a particular shell of neighbors to the energy shift
of the impurity corresponds to a certain average
of the above frequency perturbations (multiplied
by the number of atoms in the shell). This average
frequency shift yer atom is defined by a dispersion
equation of the form (39) suitably averaged over
orientations as follows. First, instead of Eqs.
(38) we introduce fictitious local fields, P„and
Fs, defined as the fields which are induced when
the polarizability of each member of the pair is
replaced by the average over orientations (isotrop-
ic part). The resulting dispersion equation is then
further averaged, replacing the tensors T„~ by
(T~P)„. To lowest order, the equation to be
solved thus becomes [using (15)]

1 (2/R~)[np~ ((d)nps ((0) 1 p n ((g)( 6n (pp))
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Finally, we note that Eq. (40) does not allow us to
study the effect of the isolated impurity on the lev-
els of a neighboring matrix particle because this
latter effect is obviously quite anisotropic.

We now proceed with the solution of (40) where
we substitute (19) and (23) explicitly. By defining
the classical excitation energies (d, , which are the
solutions of (40) in the absence of the quantum cor-
rection in the polarizability, the equation becomes

(Cd —(dA )(G7 —(d B )[(d —((dA + Q)B ) ]((d —(d+ )((d —(d )

+ & (aoA aoBIR~)~B ~A [~A(~'- ~A)

&& (&B'A~ + kBA e +kBA)+same Ai —8] =0,

(41)

in the solutions of the symmetric equation, one
sees that the solution of (42), through first order,
will simply be ar„+ t„, Id B + tB, (vA + +B ) + tAB

IDol e, tBA, (d+ Rnd QP„are obtRlned f

lorn

and co" by interchanging A and I3.
In order to solve (45) one formally factorizes

the polynomial on the left-hand side in terms of
Its loots IOA + tA, (MA +(OB) +tAB RIll itdq +Id',

+(d" to linear order in X. Next one expands the
factorized form, retaining only linear terms, and
one equates the coefficients of the same powers
of Id in these terms and in the & term of (45). The
so-obtained system of four linear inhomogeneous
equations for t„, t», (d', , and ~" is easily solved
analytically by means of a judicious use of the
properties of determinants. The final results
through O(R~S) are

+OA+OB ~8 x+1 ' (42) aoAaoB 2 2x +11x+5
~+ — ~6 (dA 2 2 (45a)

Q7~ = g (d A +4)B + (dA —GAB

+ 8(o'oA II-'OB ~RAB)IO AIO B] (43)

In the present case of a pair of unlike atoms, the
expansion of (43) to lowest order is

(d2 ~2 1+2 OA OB +0 g12

1 —2 --
6 2 +OBAB . 44b

x

We note, incidentally, that in the limit of identical
atoms the excitation energies (43) include the usu-
al so-called resonance interaction which is pro-
portional to RA'B. Since the corrections

(tl ( )&„(«()&., )

in (40) have been restricted to the lowest-order ef-
fect proportional to AAB, we only require the cor-
rections linear in X in the solutions of (41). These
can be determined by means of an iteration proce-
dure which will be discussed after introducing a
simplification, which reduces by one the degree of
the equation to be solved. Namely, we observe
that through first order in X the solutions of (41)
are obtained from those of

((O' —ld2A) [(O2- (IOA+ IdB )~] ((O' —(uB )((u2 —a)')

co' =same A B, x y

A. 1 4 II 2
(IOA4B +dAKB +KB) ~

Q)A (dB (OB + BOA

p„+OA +OB 1

RAB ((dA + 2ildB)((OB + 2i(OA)

(4V)

[(+A + +B) AB +(+A + +B) AB +~AB] i

whereas one finds that (d," and (d" are both of

O(R~ ). Thus the absorption frequency QA of the

1IDpul lty, 1ncludlng the ol lentRt1onRlly averaged
effects of the diyolar interaction with a matrix
atom at a distance 8», is given by

, aoAnoB 2 2x +1lx+5
QA ——A' 1+2 —

~6 2 1+2 2 3 1
-VA

(49)

through O(R„BB). The restriction to the lowest-or-
der contribution of the classical term in (43) is a
very good approximation here since the numerical
value of the expansion pax'ameter

oIOAOIOB /R'AB (x 1)

does not exceed Q. Q1 for any of the systems con-
sidered below.

For the purpose of later ayylication, it is con-
venient to write down the explicit expression of the
average polarizability of the pair, which is defined

by

+X 6 (OACOB (@ABIO +kAB (0 +kAB) = 0 (45) ( ))., @.= ( )& +, ( )&, , (50)

and of the symmetric equation A. —B. Denoting

by t„, tAB, ~', , (d" the corrections linear in X in

the solutions of (45) and by tB, t», ~", , &u' those

where nA((o) 1 = n,A((o) 1+«aAB(IO))..
and 0„, 0, which are parallel to Ro,
of the fictitious fields which correspond to the
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average values of the polarizabilities. To obtain
the expression of F„we thus first replace the
polarizabilities in Eq. (A2) by the averages over
orientations n„(~) and oa(~). Furthermore, since
the denominator in (A2) determines the energy
shifts, which for individual atoms in a cubic crys-
tal correspond to averages over all orientations,
we replace T~a by its average (T~ ),„, as dis-
cussed before. This would not be correct, how-

ever, for the study of the frequency shift of a ma-
trix atom interacting with other matrix atoms and

with a nearby substitutional impurity because the
dipole field is then quite anisotropic. But it is val-
id for the ions in a perfect cubic diatomic crystal
since any shell of neighbors of a given ion includes
only one species. Therefore, we emphasize that
the expression given below [Eq. (52)] is only use-

( TR )1/3 o (~)
A p

1 —(T,',),„&a(»~a(~)
(51)

and by using (15) we obtain to lowest order

ful for applications concerning perfect monatomic
or diatomic crystals. To complete the definition
of F„(Pa ) it would then be tempting to replace T~
in the numerator of (A2), also by the average value
(%~a)„=0. But this is incorrect for applications
to crystals since the Lorentz field is proportional
to R~, to lowest order, and therefore the suscep-
tibility also includes terms of this order. On the
other hand, the averaging of T~ suggests to re-
place T„a by (T„a),„,which circumvents in princi-
ple the above mentioned difficulty. We thus write

( / (~)) +OA(+) ~~+OA (+)+oa (+)RAa +( + AB (+))av + same /
2[&op(&A&pa 4A+o'og(QP)(&nag@&))g, + &oa(I'd)(+&m(I'd)) ]Rga

(52)

Unfortunately, this expression cannot be used for
the study of the terms proportional to R~ in the
total susceptibility of an infinite crystal because
the summation over neighbors g a, „R„'adiverges
This is not surprising because it is well knownthat
the angular factor in the dipole-dipole interaction
is essential to obtain the finite ~3~ value of the Lor-
entz factor. The same remark applies to the R~
correction in the classical frequencies (43) in the
limit 'of identical atoms; . it leads to a divergent re-
sult for the otherwise finite effect of the Lorentz
field on the exciton energies in monatomic crys-
tals. '2 However, we shall not attempt to improve
the treatment of the terms proportional to R~ be-
cause their effects are well known in the classical
Lorentz field theory and are thus of little interest
here. It must be emphasized, however, that our
treatment of the R~e terms as applied to cubic
crystals is strictly rigorous both intuitively and

mathematically, as shown by the comparison of the
various results with those obtained exactly for mon-
atomic crystals. '

We now proceed with the determination of the
roots of the numerator of (52). There are four of

ta —fa +O(R~), (54)

~ &o~ xo(x+2)
2 va (1+2x)[oo„x'(x+2)+ ooa(1+ 2x)

x [(tdg +(da ) kaa + (47g +Ma ) kaa + k~]
+same A -8+0(R~P), (55)

2

a
~

o'o~+o'oa —2~2 s (55)
o +OX +OB

+OA + + +OB

X GOB 1
2 &a (no/ x + np )[(a(dg + Q)a) f ]

2 2 2

x (t k~ + f k'„a + kza)+same A 8+O(R~).

(5V)

them which we denote by ~„'+ f„', &oa + f'a, (&„
+&@a) + t/[a, and to+ t', and where the second terms
are the first-order corrections to,be determined.
These corrections may be obtained by a calculation
which is exactly similar to that described above.
The results are
f„'= „f+O( -R' ), (53)

The final expression of (52) in terms of the roots of the numerator and of the denominator is then, through
O(Rx~),

~a(~o~x +~oai 12 2 ~ QP~ k~ X+GOB
2

2(OB (XPg X + (XPB

[od —(odg + Qua) —f/[a ] (Q7 —f —f )
[V (MA +Ma) fAa](M R K )(M A M )

(55)
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Before using these results in detailed applications
some further comments are in order. First, a
very important feature of the frequency shift in
(49) is its independence on the parameter P„, de-
scribing the polarizability of an atomic excited
state. From this we may infer that calculations
of frequency shifts of impurities based on (49) will
be less model dependent, in general, than the re-
sults for the correction in the polarizability [Eq.
(29)], which depend directly on this parameter.

Second, we note that the shift of the impurity ab-
sorption frequency in (49) includes both a classical
and a quantum term at O(R„BB). We normally ex-
pect the classical correction to be dominant be-
cause it is the only one which is present in a har-
monic approximation for the atoms (Drude model),
whereas the quantum correction arises purelyfrom
anharmonicities of the real atoms. "'" This is
found to be the case in the examples discussed be-
low which indicate, however, that the quantum
term is usually rather large also. Among previous
discussions of electronic spectral shifts arising
from dipole-dipole interactions of nonpolar mole-
cules in nonpolar matrices, the most detailed and
closest to the present approach is that of Longuet-
Higgins and Pople. 8 All of these discussions have
been based on quantum-mechanical second-order
perturbation theory, whose drawback is, however,
that it does not allow a natural distinction between
classical and quantum effects to be made. Con-
sidering the Longuet-Higgins-Pople treatment, we

note that the final result [Eq. (14) of Ref. 28j in-
volves no parameter which depends in an essential
way on the higher excited states, as does, for in-

stance, our parameter v. If we apply the effective
two-state model to the final formula of Ref. 28 we

obtain for the absorption frequency

~A, L-B-P +A {1 2 +OA+OB /RAB ) ~ (59)

which is derived for x «1.2 Comparison with Eq.
(49) in this limit shows that agreement in sign and

in qualitative form exists with our classical cor-
rection; which is, however, about eight times lar-
ger than the correction in (59). Therefore the nu-

merical coefficient in (59) appears to be rather un-

realistic. The quantum correction is very small
for x «1 and has therefore little effect on this con-
clusion.

As a check of the present calculation, we note
that in the monatomic crystal limit the summation
of the quantum correction in (49) over all neighbor-
ing atoms of A, using (12), coincides with the low-

est-order results obtained in II.
Turning to applications, we note that Eq. (49)

could of course be used to estimate the effects pro-
portional to R~ in the tight-binding exciion frequen-
cies of perfect diatomic crystals, like the alkali

halides. Here, we prefer however to illustrate its
application to impurity states in the rare-gas sol-
ids, for which many experimental data are now

available. Furthermore, these data have recently
been analyzed in a form which is suitable for di-
rect comparison with the present theory. To this
end let us introduce two van der %'aals interaction
constants, oC(A, B) and ' C(A*, B), where oC{A,B)
characterizes the interaction —oC(A, B)/R~~ of a
slllgle pall. A Bln t-lie gl'olllld state slid 'C(A, B)
the interaction —'C(A*, B)/RBAB in the case where
A is in an excited state (and B not). From Lon-
don's approximate formula, discussed in Sec. I,
we have

C(A., B)= —, noAo. oBolA1/(x+1),

which may be combined with (49) to yield

1 2 2x +llx+ 5C(~ yB) 2 +OAaOB+A 2 1
+

2 2x —1 2x +3x+l

Roncin" has recently carried out an empirical
fit of the experimental shifts of electronic absorp-
tion frequencies of rare-gas and simple molecular
impurities in rare-gas matrices39'3O in terms of
6-12 pair potentials, thereby obtaining a set of
values for the parameters eA+ B (potential-well
depth) and o„*B (separation at which the potential
vanishes) for the interaction between the excited
impurity (A) and a matrix atom {B)in the ground
state. This is probably the simplest way of sep-
arating the contributions due to van der Waals
type of interactions from the short-range exchange
interactions. Boncin' s results are based on the
assumption that the Lennard- Jones parameters c
and o are not very different for the same impurity
in different matrices but that their variations upon
excitation of the impurity are much more appreci-
able. Using the results of Ref. 15 and applying
the usual combining rules which relate the Len-
nard- Jones parameters of the interaction between
A. and B atoms to those of the interaction between
two A atoms and two 8 atoms, "we obtain the val-
ues of Tables VII and VIII for &„+~ and o„+„~, for
various excited rare-gas and molecular impurities
in rare-gas matrices. From these results we then
compute the empirical van der Waals constants of
the interaction of the excited impurity with an atom
of the matrix,

'C(A ~, B), , = 4eA* Bo„s B .
It is thus interesting to compare the empirical

values obtained from (62) with those calculated by
means of (Gl). The ground- and excited-state, as
well as the free-atom (molecule), parameters in-
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TABLE VII. Lennard- Jones parameter e~+ —B for
excited states of impurities (A) in rare-gas matrices
(B), in units 10 eV. For Xe impurities the results
are given for singlet and triplet excited P states. The
excited states for Kr, Hg, CO, and N20 are P, P,
Ai7l, and B, respectively.

TABLE IX. Ground and excited states of various at
oms and molecules and numerical values of parameters
defined in the text. The values of the excitation energies
~A for the rare-gas atoms are averages of excitation en-
ergies to the singlet and triplet P states. The polariza-
bilities for CO and N20 are averages of parallel and per-
pendicular molecular polarizabilities.

Xe

Kr

0.775

1.441

1.955

Xe

0.749('P)
0.702 (iP)
1.392('P)
1.304('P)
1.723('P)
1.615('P)

Hg

1.485

2.758

3.415

3.741

CO N20

0.857 0.554

1.593 1.03

1.971 1.275

2.161 1.397

Ground
state

Excited
states

(A3)

(eV)
VA

Ne

3p ip

0.4

16.725

5.218

Ar

3p ip

1.64

11.725

5,116

Kr

3p ip

2.48

10.295

5.075

Xe

4.04

5.062

Hg

ip

5.03

6.698

CO

xt

A'x

NRO

1.95 3

8.026 7.386

TABLE VIII. Lennard-Jones parameter 0~* B for
excited states of impurities (A) in rare-gas matrices
{B), in units of A. Excited states are the same as for
Table VII.

Kr Xe Hg CO N20

Xe

3.72

4.035

4.355

3.795('P)
3.895 (iP)
4.11 ('P)
4.21 ('P)
4.205('P)
4 305(iP)

3.52

3.835

3.93

4.155

3.27 3.77

3.585 4.085

3.68 4.18

3.905 4.405

volved in (61) are listed in Table IX for the systems
which have been analyzed by Roncin. " The polar-
izabilities of the rare-gas atoms are taken from
Ref. 31, those of Hg, CO, and N~O from Ref. 32.
In the case of the rare gases we take for co„ the
average values of the excitation energies to the
triplet and singlet P states as listed in Ref. 29
for Ar, Kr, Xe and in Ref. 33 for Ne. The values
of co~ for CO and N20 are from Ref. 34. The val-
ues of v~ for the 'rare gases are those calculated
from (81), while for Hg, CO, and NaO we use the
Gaussian-model result as a rough estimate, ne-
glecting molecular anisotropies. In Table X, we
compare the theoretical values 'C(A*, B) obtained
from (61) to the empirical values given by (62).
In the case of Xe we have listed the averages of the
empirical values obtained for the triplet and sin-
glet states. It appears that, theoretical and empiri-
cal excited-states van der Waals constants have
the same sign and agree surprisingly well in mag-
nitude, in the cases of Ar, Kr, and Xe matrices.
This is especially true considering that theoretical
results for the ground-state van der Waals con-
stants C(A, B) in pure substances are usually
smaller by a factor of 2, or more, than the em-
pirical results. " A similar discrepancy has been
found also for the excited-states interaction con-

stants of impurities of Ca, Ar, and Na in com-
pressed rare gases. ' These constants have been
obtained empirically from collision-broadening
data and theoretically from a formula which is not
directly related to (61).'s For completeness, we
note that a theoretical value 'C(A*, B)= 60.69
eV A6 for Ar in Ne has been found previously by
Gold' using the Buckingham variational method.
Furthermore, for an excited Hg atom interacting
with an Ar atom in the ground state a value
'C(A*, B)=82 eV As has been obtained by Margenau
in an early calculation based on perturbation the-
ory and the use of spectroscopic data. " This
value agrees less well with the empirical one than
the result of Eq. (61). Finally, in Table XI, we
compare the three different additive contributions

, in 'C(A~, B),
+OA +OB A

&Ccities= (63)

2x +11x+5''"""22 s i '")'
and cC(A, B), given by (60). It appears that al-
though the classical effect always dominates in
cases of heavy impurities trapped in lighter ma-
trices, the quantum effects are nonetheless large.
In most of these cases, in fact, the sum of cC(A, B)
and of the quantum correction in the frequency
shift (&C,„„,) is nearly equal to the classical shift
&C„,. We also note the difference in sign be-
tween the classical and quantum contributions for
the cases of lighter rare-gas impurities in heavier
matrices, which leads sometimes to negative con-
stants 'C(A~, B) and therefore to a repulsive inter-
action. This is partly in agreement with an ar-
gument of Margenau, 3' according to which the in-
teraction should be repulsive if the electronic
excitation energy of the matrix atoms is smaller
than that of the impurity. This is precisely the
case for lighter rare-gas atoms in heavier matri-
ces. The present treatment shows, however, that
the additional "detailed balance" criterion
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TABLE X. van der Waals interaction constants for impurities (A) in excited states in various rare-gas matrices (9)
0

in units eV A . The first number is the theoretical value given by Eq. (61) and the second one is the empirical value as
defined by Eq. (62). For the rare-gas impurities the empirical values are the averages of those corresponding to the
singlet and triplet excited I' states, respectively.

Ne

Ar

Ne

10.26

21.72

41.24

Ar

28.680
60.69

—73.57

31.71

34.09
80.02

257
248.72

—147.72

Xe

45.35
93.73

249
279.34

541.78
395.99

Hg

39.24
112.99
179.77
350.95

82"
294.84
503.28
553.41
769.97

CO

18.54
41.91
92.05

135.27

165.72
1S5.81
419.7
306.5

N20

25.66
63.62

121.8
191.45

206.95
272.04
429.09
408.26

'A. Gold, Ref. 4. "Reference 37.

b C„~,+ aC,„„,+ 'C(A, 8) & 0 (66)

must be satisfied in order for the net interaction
of the excited impurity to be repulsive. In a simi-
lar context we may observe that if we use the re-
sults of Tables VII and VIII to compute 'C(A"-8)
for Kr in Xe we obtain the value 532. 14, in clear
disagreement with the negative theoretical value
of —147.72 of Table X. This would suggest that
the empirical results of Roncin cannot be used to
predict interaction constants for lighter excited
impurities in heavier matrices. Such situations
have not been studied experimentally so far, which

would obviously be very interesting.
A last remark concerns the application of (61)

in the case of molecular impurities CO and N2O,
where we have neglected possible anisotropy ef-
fects by taking average polarizabilities. Of course

this may only be valid in first approximation.
Work is now in progress on the anisotropy effects
of the dipole-dipole correction in the polarizability
and in energy shifts of impurities by using a prop-
er generalization of the present treatment.

V, TWO-QUANTUM EXCITATIONS IN ALKALI HALIDES

A specific effect of the quantum dipole fluctua-
tions when the higher excited states of the individ-
ual atoms are taken into account is the existence
of a nonzero oscillator strength for two-quantum
absorption. In this process two atoms are simul-
taneously excited by one photon as a result of the
combined effect of the external field and of the di-
pole-dipole correlation. ' The present theory en-
ables us to calculate this oscillator strength for
pure diatomic crystals like the alkali halides.

TABLE XI. Comparison of the various contributions to the theoretical value of the van der Waals interaction constant
for impurities (A) in excited states, trapped in various solid rare-gas matrices (8). The first number is the classical
contribution b C~~„ the second number is the quantum contribution 4C«~&, which represents the quantum shift of the

impurity-absorption frequency, and finally the third number is the van der Waals constant C of the interaction in the
ground state (in units of eV A6).

Ne

Kr

—10.62
14.09
6.78

—10.11
22.35
9.48

—11.02
38.08
14.18

Ar

15.110
6.78
6.78

—160.57
53.55
33.44

111D3
92.41
50.6

16.450
8.17
9.48

182.85
40.72
33.44

—333.82
113.93
72.17

Xe

20.45
10.62
14.18

144.38
53.96
50.65

382.09
87.51
72.18

Hg

16.49
7.92

14.84
84.26
41.29
54.22

149.1
67.72
78.03

313.68
119.4
120.33

CO

8.13
4.06
6.35

48.34
20.87
22.85
99.02
34
32.71

309.95
59.63
50.13

N20

11.01
5.43
9.22

60.26
28,.09
33.44

113.07
45.88
48

274.6
80.75
73.74
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As noted earlier, and as far as the pair inter-
action effects are concerned, the absorption fre-
quencies and the associated oscillator strengths in
perfect cubic crystals can be discussed rigorously
by using the expression for the polarizability of an
isolated pair suitably averaged over orientations
Rs lll {58). Ill pRI tiClllRI, tile Calculation Of OSC11-

lator strengths is performed by reducing (n Aa((d))„
to the usual Kramers-Heisenberg form involving
a summation over all possible excitations of the
system, with the resonance energies in the denom-
inators and the corresponding oscillator strengths
in the numerators. This may be achieved with

(58) by means of repeated use of identities like

CO —Q 5 —Q
2

=1+
CO —5' (d -5

1 1 1
((p —u)((d —v) u —v (p —u pp —u $

'

where (66a) serves to remove the frequency depen-
dence in the numerator without modifying the pole
in the denominator. After a series of straightfor-
WRrd but tediolls 111RlllplllRtiolls, llslllg Eqs. (55) to
(58) and (24) to (26), we obtain

(roA4s x+(boa ~aA fAa 1 2(a~~(~))- =-()—
2 2 1 2 Il 2 w + 2 2/ 2 1) (+palea + +0A. gaA)

0A & + 0.0a ~&i&+2

x +SRIne A~B (o (o +f +
6 M n

v —op, —co, "~ idl()+mx) aP„(1+Ry) td' —(td~+tdq)' —4e }'

where
0A ™Oa

fAa = fax = —fAa = 2 2~Aa

(x+ 1)
x'(x+ 2)y + (1+2x)

~ y (4x+4x+I)(v„-1)x'(x+ 2)

+
2

(x'+4x+4)(va —1)
(2x+ 1)

(68)

Rlld, y = c(oA/c(pa

We notethatinthe classical limit [neglect of terms
(4@A)a((())) „Rtld (4(laA{(())) „]Olle Obtains

( nAa I {(p)) = 1+2))2
AB

2&oa {1—'yx } (IoA (()A

BAa (x —1) (d —(d+

+OA 2 +OA +08 2 2 2+ + ~l++ ~
gA& +2 gs A+ g6 A 2

y +2 2

yx'
2(x+ 1)(yx'+ 1)[x'(x+2)y +yo(y+2)]

3 Ayx x- 1 x x+2y +y +2

+2[2x + llx+ 5- vg(2x +Bx+ 1)]

+yox2[lsx'+26x'-4x+1- vA(sx'+6x'+2x'+ 1)]

,+yx [13xo+48x + 18x —4x

—S- v (5x' ~ )))x'+))x' —))]}). ,

Thus, for unlike atoms, the oscillator strength of
the ordinary classical excitons is modified by the
dipole-dipole interaction, while, of course, no
such effect exists for identical atoms, as can be
easily verified. It follows from (6V) that the ratio
$ of the total oscillator strength for double excita-
tion of a pair of nearest-neighbor atoms (two-
quantum excitation} and of that for the excitation of
the individual atoms in the crystal is given by

yX hA+ jg~

1+yx —(yx hA+ I(a)
' (72)

and h& is obtained by interchanging A and B. The
summation extends over nearest neighbors only,
and by using (68) we obtain

8 (roA (Ioa X(x+ 1)
2 Bo (1+2x)[(1+2x)+y(x+2)x']

„-y(x+2){4x'+4x+ 1)x'
{2x+ 1

(2x+ 1)(x'+4x+ 4) { (74)x(x+ 2}

Similarly, we may define the ratio $» (and $»)
which represents the relative oscillator strength
fol double excltatlon of a pair of second neighbors
AA (BB) in a diatomic crystal whose other atoms
are of type B (A). According to (67) and (68) this
is given by
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$~s = hg/(I —h~},
where hz = m(no+R )(v~ —1) .

(75)

(76)

TABLE XIII. Relative oscillator strengths (in per-
cent) for double excitation of pairs of second-neighbor
A ions in alkali halides.

We note that, like 'C (A*, J3), $ and $„s ($s„) do
not depend on P„, which leads us to anticipate,
again, that numerical calculations of this quantity
will be less model dependent than &u„(&o) itself.
In Tables XII-XIV, we collect the results of the
computation of $, $„s, and $s~ for the various al-
kali halide crystals. It appears that for the crys-
tals with the NaCl structure $ varies from 4. 5 to
20% while for those with the CsCI structure it rises
to 30%. The relative oscillator strength for double
excitation of a pair of second-neighbor halogen
ions is also fairly large because of the large polar-
izabilities of these ions. Finally, we note that in
the limit of monatomic cubic crystals the expres-
sions for $ and $„s reduce to Eq. (36) of II if the
summations over neighbors are performed by
means of (12). Since in this case there is only a
single frequency of double excitation, all neigh-
bors contribute additively to the oscillator strength.

The previous treatments of two-quantum excita-
tions in alkali halides have led to the very differ-
ent results $= 0. 01 (Hermanson'6} and $ = 1. 5

(Miyakawa"); those of the present work fall be-
tween these limits, being however much less than
1 as anticipated. In addition, the present results
illustrate a new feature of the two-quantum oscil-
lator strength which is its strong dependence on
specific parameters of the individual ions. This is
demonstrated by the large spread in the values ob-
tained for the various crystals.

Stephan et al. have recently observed peaks in
the reflection spectra of KBr and KCl at 27. 8 and
28. 5 eV, respectively, which they attribute tenta-
tively to double excitation of neighboring pairs of
ions in the crystal. We note that these energies
are very close to those at which the present anal-
ysis predicts the onset of double excitation (see
Table II).

VI. CONCLUDING REMARKS

In this paper, we have presented detailed calcu-
lations for several effects of practical interest

F
Cl
Br
I

Na

0.1
0.03
0.02
0.01

1.43
0.52
0.39
0.26

3.77
1.48
1.1
0.73

6.43
3.86
2.93
2.04

The general formalism described in I does not
aim directly at the calculation of the induced di-
pole-dipole correction in the polarizability of an
individual atom itself. Instead, it determines a

(correction in the polarizability and frequency-dis-
persion effects in alkali halide crystals, deep im-
purity states in solid rare gases, and two-quantum
excitations) from a unified point of view. This is
in contrast with the numerous discussions which
have been devoted in the past to each of these prob-
lems in particular. As a result, a variety of
points of view have been adopted to treat these
problems, and many different approximation
schemes have been developed. On the other hand,
because of the simplified nature of the individual-
atom model which forms the basis of the theory
which we have applied here, "we are omitting com-
pletely the effects arising from the overlap be-
tween neighboring atoms, which have been consid-
ered in more detail by other authors (the relevant
references are discussed in Sec. I).

The final analytical expressions of this paper,
particularly Eqs. (29), (36), (61), (72), (74), and

(75), can be expected to have more general validity
than the simple assumptions about the electronic
spectrum of the atoms which underly their deriva-
tion. This is because the physical parameters in-
volved in these expressions (polarizabilities, ex-
citation energies, and paramter v„) have a general
meaning. This may be especially true in the case
of Eqs. (61), (72), (74), and (75) which do not de-
pend on the parameter P„, which is the most sen-
sitive to particular models.

APPENDIX A

TABLE XII. Numerical values of oscillator strengths
for two-quantum nearest-neighbor excitations relative
to those of one-quantum excitations in alkali halide
crystals (in percent).

TABLE XIV. Relative oscillator strengths (in per-
cent) for double excitation of pairs of second-neighbor
J3 ions in alkali halides.

F
Cl
Br
I

4.52
4.36
4.05
4.16

9.36
13.03
12.76
14.47

11.4
17.92
17.45
19.66

Cs+

12.49
24.9
25.03
30.29

F
Cl
Br
I

4.34
17.91
17.7
27.81

1.78
8.53
8.97

14.78

1.28
6.63
6.97

11.41

Cs'

0.87
6.67
7.2

12.52
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certain energy correction (which reduces only. in
the static limit to the total induced polarization
energy) from which the correction to the polariza-
bility of the individual atoms may then be obtained.
Thie requires however the use of a separate addi-
tional argument. Namely, one assumes that the
susceptibility tensor g (&o), which determines the
total polarization P = g (~) ' Eo induced by the ex-
ternal fieM Eo, has the same formal structure as
the classical expression resulting from the Lorentz
local field theory. The corrections b.o.'A(u&) in the
indi. vidual polarizabilities are then obtained by
identifying the first-order change in X (&), result-
ing from small changes of the polarizabilities from
the free-atom values, arith the enex gy correction
just mentioned. The success of this procedure
depends on our ability to solve the system of cou-
pled equations fol the loeRl fieMs. In I, we Rp-
plied it in, the case of cubic crystals where the
local fields are the same at all lattice sites, so
that these equations may be readily solved indeed.
For an isolated pair of unlike atoms, the situation
is slightly different since the local fields acting
on the t770 atoms Rle different. Thex'efore, it
mould seem necessary to repeat an argument simi-
lar to that given above, in order to obtain the cor-
rection &FAa (&u} which arises when we are consid-
ering an isolated pair rather than. a &&hole collec-

tion of atoms arranged on a cubic lattice. This is
done below. The total polarizability of the pair is
defined by

oAa(~) * Eo=IFA(~) '
&A + aa((o) ' Fa, (Al)

where Eo denotes the Rmplitude of the extex'QR1

field

E =-', (Eoe' '+c. c.)

of frequency +and F„, F~ the amplitudes of the
local fields which are given by

E (A

and a similar expression for Pa. Note, incident-
ally, the reduction vrhich occurs for identical spher-

ically symmetric atoms. The polarizabilities
7cA(&o) (Fa(ar)) are assumed to be the sum of the
free-atom polarizability and small deviations
n, otAa(a&) and AVP»(&a) so that, for instance,

7(A(fo) = QoA(~)l+ &&Aa(~) (A3)

Next, we Write

F~ = Fo~ + ~F~

where Fo„ is defined by (A2) after replacing aA(~)
and 7ca(&) by QoA((o) and cloa(&d) resPecttvely and
AFA is chosen to be linear in the deviations (A3).
%e then obtain

~QB
~- &oa(~) ~oA(~) TAa

o'oa(~)~Aa ' ~o'Aa '
FoA —~o'aA '

Foa

'FoA+Eo' &oa(&) 'Foa

+FoA'~&Aa(&) 'FoA+Foa ' ~uaA(~)'Foa ' (A5)

The remainder of the argument followers the same
pattern as in I, and shows that the expression of
the correction &a»(&o) in the case of a pi»aB
18 obtRlned by the follo&ing Simple IQodlflcRtlons
of Eq. (3.45) of I: Replace XbyA, p, byB, and
delete the summation sign g»» multiply by 2

and delete the addition "sym term X p, ." Similar
modifications in the case of a pair of spherically
symmetri. c atoms must then also be introduced in
the 1esult obtained 1Q tile UDsoM approximation
Eci. (A2) of II. In addition, we already discussed
some further obvious modifications of Eg. (A2)
of 0 fox' R pRlr. The final result fox' the eorx'ec-
tion in the polarizahility of atom A due to its in-
teraction with atom 8 is, in the Unsold approx-
imation,

and a similar expression for 4F~. Finally, upon
substitution in (Al), we obtain through linear order

Eo ' o'Aa (~) ' Eo = Eo ' o-'oA(~)

("— "-' o" ' [~»(~)-~A(~)l I+—(g+ gy j (d~+ GPg —(d

(O, Al pAlk, A&((k, A lpAl O, A) TAa (O, A l pAI I, A&)(/, AlpAl O, A)
(RA, AlO, A M)(Rl, Al O, A M)

(O, Alp„la, A& 'T„',((u, Alp„lo, A&(O, Alp„lI, A&) ~ (I,Alp„lo, A)
(&P,A;o, A+ ~)(&i,A;o, A+ oo) Kg + (d g + (d

+ '(O, Alp„lu, A&((u, Alp„lo, A& T„,.(O, Alp„lI, A&)(I, Alp„lo, A&

(~a, ; , A+o~A)(~i, ; AA+o~)
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(O, A)pA)y, A& TA's((l'o, A)pA)O, A&(O, A)pA)l, A&) (l, A)pAI0, A& 1

(Mk, A; O, A ~)(O l, A;O, A COA+ (dg

x Q (p, A) p„)y, A)((k, A)pAI O, A) 'TAO)(O, A)pA) l, A)(. (f, A)p„)O, A))
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A. 0 A + (d (d l A; 0, A

—&

1
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1 1 1
x

(dA+(dg (dA+ (dg + (d (dO, A'k, A JtA; l, A

1 1
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A++S &A+&8 & (&O,A;k, A+&)(Ol, A; l, A+&)
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(A6)

Here the manifolds li, A& and ) i, 8& denote the
complete sets of eigenstates of the Hamiltonians
of the free atoms and

&0) &0)

are the energy differences between the states i,
j of atoms A and B, respectively. The pair exci-
tation energy (dA+(d& is the average value by
which the denominators in the original exact sec-
ond-order perturbation formula have been re-
placed. o.A(ol) and ns(lo) denote average polar-
izabilities of the free species in excited states,
which arise also in the framework of the Unsbld
approximation in the second-order perturbation
formula. Some details concerning the derivation
of (A6) from the exact general expression Eq.
(3.45) of 1 have been given in II and wi11 not be
repeated here.

APPENDIX B

In this Appendix, we sketch the calculation of
the parameter v [Eq. (11)] using Slater one-elec-
tron orbitals. We only include the effect of the
outermost shell of electrons whose spectroscopic
configuration is vs nP for all the rare-gas and

alkali halide ions, except He and Li' which are not
considered here. Thus the core electrons and the
nucleus are treated effectively as a static struc-
tureless entity. Each electron in this shell is
represented by a one-electron wave function of the
form

le.*,r. ..=e.+ (l') Yl, (&y) .

The functions Y, (Gy) are the normalized spher-
ical harmonics and the y„s (x) are the normalized
radial Slater orbitals
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y„s (r) =N(n* )(x/az)" exp [-(Z- S )r/az n*],
az = (Bohr radius) (B2)

1
N (n*)=(

),

2(Z S) zn* 1

gQ
(B3)

\e

depending on an effective quantum number n~ and
an effective nuclear charge (screening constant)
Z- S. The ground state of the external shell of eight
electrons is then represented as a Slater determi-
nant of one-electron functions (Bl), supplemented
by the appropriate spin functions.

The problem is to calculate the expectation val-
ues of the operators

1~ g2~ ' ' 4

(o~w,. x,. .. .a,. ~o& =
o o o p

sign
perm v+ ~ ~ . v+ 61.. .9„

1 n

where the summations in the second numbers ex-
tend over all different one-electron states occur-
ing in the Slater determinant. The last term in
(BV) evidently corr esponds to electron-exchange ef-
fects. It is not difficult to generalize these re-
sults to the case of an n-electron operator A~, A;,
..., A;„. One simply finds, in obvious notations,

p', =e' Q z, z,
fqf

(B4) of 0f1 ~ ~ ~ Q

(B5)
i~ f~kp l

in the ground state of the external shell of electrons
(we assume the atom to be centered at the origin).
The summations are over all electrons in this
shell. We note that (B4) contains sums of one-
and two-electron terms while (B5) involves differ-
ent sums of one- up to four-electron terms: More
explicitly, (B4) contains one-electron terms z,'
and two-electron terms z, z, (zcj ) whereas (B5)
has one-electron terms z, x„ four different kinds

2~
~

~ 2 2 2of two-electron terms; z; r; r&, z; z
& x&, z; ~&,

and z, z&r& ~ r&, three kinds of three-electron
'+ 2 w w I ~terms: z; r u

' r, , zczn&» z;znr& rr v'&k, k &l,
I 0 i), and finally, the four-electron term z;z&
xrz r, (all indices 0). The first step in the cal-
culation of the above expectation values consists
in transforming the original expectation values of
sums of e-electron terms into sums, over all one-
electron states, of matrix elements of just one of
the n-electron operators. In the case of one- and
two-electron. operators, the procedure is well
known. " Denoting, for brievety, the one-electron
states in the Slater determinant [ 0) by greek let-
ters a, P, y, . . ., one finds for arbitrary one-elec-
tron operators A &, 8&, . . . ,

&& [(n*+2)(2n*+ 3) +,—,' (2n*+ 1)(139n*+124)

-+( n2++ )I]z+ zz(2n++ I)') (B11)

x(o, ~ ~ a.„~A, A; g, ~
p„p, ) . (B8)

The next and most laborious task consists in the
identification, counting, and explicit evaluation of
all nonzero terms in the various sums over one-
electron states. This analysis is simplified by
choosing the representation

r
&

' rz = z [(x g + 2p g }(xz
—1y z ) + c.c. ] +z 1z z

which permits an easy use of the dipole selection
rules for the individual matrix elements. By fol-
lowing these lines carefully and making systematic
use of selection rules, the detailed calculation
turns out to be less formidable than it might seem
at first. Space limitation does not permit us to
go into more details here, and we shall simply
quote the final results. These are

(O~P, ~0} = —', e az (2n* + 1)(2n* +3)[n* /(Z —$)z]

(B10}

«IP'P'lO) =-',8'a'(2n*+ I) [n*'/(Z —S)']j(n*+ I)

af

Z (oi&, B, io)
i~/. ; jA)

(Be)
Finally, we note that the restriction to the effect
of the outermost shell of electrons probably af-
fects the accuracy of the ratio t to a lesser ex-
tent than the individual expectation values (for
which it is expected to be rather good, however)
themselves.
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