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tions of F~ centers.
F2 centers become ionizable, and their optical-

absorption band is measurable when the electron
ejected from an E~ center becomes permanently
trapped. The electron trap is a halogen (V) center
core which forms an excess electron center called

here the g center.
E, centers were also ionized by the so-called

M& light. It is reasonable, therefore, to assume
that there are g~ bands associated with E3 centers
just as there are M& bands associated with E2
centers.

~Preliminary results were presented at the Philadel-
phia, March 1969, American Physical Society Meeting.
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The stability criteria developed by Max Born are applied to investigate the mechanical
stability of body-centered-cubic (bcc) and face-centered-cubic (fcc) Morse-function crystal
lattices ( i.e. , lattices in which the atoms interact via the morse interatomic potential
energy function y (r) =D[e " "0 ' —2e " '" "0']). It is shown that the conditions for stabil-
ity can be expressed uniquely as a function of na, where a is the lattice parameter of the
crystal. The fcc lattice is stable for all values of ea, while the bcc lattice is stable only
for values of &a which are less than 4. 8. The possibility of using Morse-function lattices to
represent cubic crystals with particular values of elastic moduli CI& and C~2 is investigated.
The Morse function can serve quite well for this type of representation for fcc crystals.
For bcc crystals, however, the ratio C&I/C&2 does not exceed about 1.36; thus the represen-
tation is inherently fairly poor.

INTRODUCTION

Max Born' investigated the conditions under
which a crystal lattice will be thermodynamically
stable. Necessary conditions for the thermodynam-
ic stability of a crystal lattice are that the crystal
be mechanically stable with respect to arbitrary
(small) homogeneous deformations. Born' derived
mathematical expressions for these stability re-
quirements (referred to as the Born stability cri-
teria) for cubic lattices of the Bravais type on the
assumption of central forces of a very general
type.

In the present paper, the stability of cubic crys-
tal lattices, in which the atoms interact via the two-
body Morse interatomic potential function, is in-
vestigated in terms of the Born criteria. This
study was prompted by the fact that empirical two-
body interatomic potential functions such as the
Morse or the inverse power functions are often
used for representing interatomic interactions in
investigations of a wide variety of phenomena. For
example, these functions have been applied to stud-
ies' of elastic moduli of metals4' ' and alloys, 6

lattice distortion .at surf aces, ' shock wave pro-
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pagation in cubic crystals, equations of state,
and the defect structure of solids, including point
defects" ' "and d1slocat1ons. "'"

A factor which bears upon the general applica-
bility of a particular two-body interatomic poten-
tial function in studies such as those indicated
above' is whether or not the crystal lattice (consid-
ered to be made up of pairwise interacting atoms)
is inherently stable. Thus the question of whether
or not such crystal lattices are stable, in terms of
the Born stability criteria, is of both practical and

theoretical interest.
For two-body central forces, Born~ suggested

that the face-centered-cubic (fcc) crystal lattice is
completely stable, the body-centered-cubic (bcc)
lattice is only stable under certain conditions (long-
range shallow interatomic potentials), and the sim-
ple-cubic (sc) lattice is always unstable. Misra'e
investigated numerically the stability of cubic lat-
tices with a particular form of interatomic interac-
tion, viz. , the inverse power or Mie'~ potential
y(r)= -ar "+br "(n&~). He foundthat a fcc
crystal lattice always satisfies the Born stability
criteria, a bcc lattice only satisfies the Born cri-
teria for values of n & 5 (hence the lattice is me-
cha, nically unstable if I is larger than 5), and the

sc lattice is always unstable. These results have
been of interest to studies concerned with applying
the Mie potential function to calculate particular
properties or behavior of cubic crystals.

In recent years, applications of the Morse inter-
atomic potential function have become increasingly
widespread in the descllptlon of the solid
state. ' ' ' '3 Thus it is also of interest to study
the mechanical stability, in terms of the Born cri-
teria, of cubic crystal lattices in which the atoms
interact through the Morse interatomic potential
function (such a crystal lattice is referred to,
herein, as a Morse-function lattice).

Girifalco and seizer studied the applicability
of the Morse function to the description of cubic
metals. In their study, the requirement that the
Morse-function lattice be stable, in terms of the
Boxn criteria, was a principal condition for the
applicability of this potential function. They found
that for each case (which includes six fcc and nine
bcc metals) that they investigated, the Morse-
function crystal lattice satisfied the Born cxiteria.
Thus they concluded "that for cubic metals, the
Morse potential can be applied to problems involv-
ing any kind of lattice deformation, that is, either
homogeneous expansion or contraction, or shear
deformation. "

The following questions are stimulated by the
results of Girifalco and Weizer's study: (a) Does
a Morse potential always result in stable'8 fcc and
bcc lattices ? (b) If the answer to the above ques-

tion is negative, what are the conditions under
which the Morse-function crystal satisfies the Born
criteria' In particular, can the requirements for
the stability of the Morse-function lattice be ex-
pressed in simple terms'P That is, can results be
obtained which are analogous to those of Misra in
which the fcc lattice is always stable and the bcc
lattice is unstable for values of the repulsive ex-
ponent n &5 (for two-body interactions of the form

ar-"+br")?
In addition, the Morse potential has been applied

to the calculation of first-order and higher-order
elastic constants of cubic crystals. Thus, one is
led to ask (c) are there restrictions upon the
values of elastic constants which Morse-function
cubic crystals may possess (i.e. , restrictions
other than those resulting directly from the condi-
tion of central forces, such as C,e = C«) '? In other
words, can the Morse-function cubic crystal have
arbitrary values of C» and C», or are the values
constrained to lie within certain natural limits 'P

The present paper answers the above questions
(a)-(c).

THEORY

A. Born Stability Criteria

The Born stability criteria are discussed in de-
tail in Chap. III (on elasticity and stability) of Born
and Huang. ' Briefly, in order for a simple crys-
tal lattice to be mechanically stable, the quadratic
form representing the strain energy function,

u C~a C~3 C~c C1s C1

m C22 C~s C& Cas C

C"
I
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I I
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must be positive definite so that any combination of
small strains 8& will result in an increase in energy.
The C;& are the elastic constants.

According to an algebraic theorem, the above
quadratic form is positive definite if the determi-
nants of the matrices of successive orders (theprin-
cipal minors), as marked out in the following
matrix, are all positive:
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For crystals of cubic symmetry, there are only
three independent elastic constants, say, C», C,~,
and C44, in addition, for central forces, the Cauchy
relations yield C» = C44, so that the above matrix
of quadratic coefficients reduces to

C~a& 0,

and Ct& & Cza or Ct&/Cta & 1 .
(1)

(2)

In order to relate the stability of cubic lattices
to the nature of the interatomic force law for the
idealized case of pairwise interatomic interactions,
Born' developed formulas which express C&& and C&2

in terms of the interatomic potential p(~). These
formulas may be written as

C„=—ZZZ14q" (~)11
Sy S& l3

and C )a = —Z Z Z lq l2 g" (r)
l

g l2

where r = (a/2) (l + l + l )

(dr')' .

(3)

(4)

(6)

n is the number of atoms per unit cell (4 for fcc and

2 for bcc), the'lattice parameter a is the length of
a cube edge of the unit cell, and x is the distance
from a lattice site, chosen as the origin, to a
given lattice site with coordinates specified by
three integers l» l» and l3. The summations in
Eqs. (3) and (4) are over alla lattice sites (except
for the origin lt = l~ = ls = 0) in the crystal; these
summations are accomplished by summing over
integer values of l&, l» and l3 subject to the re-
strictions that lq + l2 + l3 is an even integer for a
fcc lattice, and l» l» and l3 are either all even or
all odd for a bcc lattice. p is of course the pair-
wise potential energy for two atoms as a function
of their mutual separation r. It is noted that al-
though the atoms interact through a "two-body"
potential function p, each atom interacts with all
of the other atoms in the crystal; the contributions
of these interactions are taken into account by

Cgg Cgg Cgp 0 0 0

Cg2 Cgi Cga 0 0 0

Cg~ Cg~ Cgg 0 0 0

0 0 0 C»0 0

0 0 0 Cg2 0

0 0 0 0 C~

The principal minors of this matrix are Czz, Czz,

C12 C12 Cll C12 (Cff C$2), and C,a(C„—C,2)

(Ct~ + 2C&a). The conditions for all of these terms
to be positive can be expressed simply as

summing over all" of the lattice sites in the ex-
pressions for C~~ and C&2.

For a given two-body interaction p, the lattice
parameter a (i.e. , the equilibrium value of a) is
determined by the condition of equilibrium of
forces for the crystal, viz. ,

(Z Z Z l,' q' (~) = o,
ll ta ls

where dp
(8)

Thus, for a cubic crystal consisting of atoms or ions
which interact via a two-body interatomic potential
function p(r), the condition for equilibrium of the
lattice is that the lattice sum of Eq. (7) be equal to
zero; the conditions for a stable equilibrium (with
respect to small homogeneous deformations) are
that the lattice sum of Eq. (4) be positive and the
lattice sum of Eq. (3) be greater than that of Eq.
(4), i.e. , Ctt & Cta & 0. These conditions express
the Born stability criteria for a cubic crystal with
two-body central force interactions.

Misra studied the stability of the general in-
verse power potential cubic lattice in terms of
these conditions, and Girifalco and Weizer ap-
plied these criteria to study the stability of some
specific Morse-function fcc and bcc lattices. The
present paper applies the Born criteria to investi-
gate the stability of the general Morse-function
fcc and bcc lattice.

B. Morse Interatomic Potential Function

I'=De

and @=2De "0

Then, for the Morse function, Eqs. (8) and (6)
yield

t'(t~) = —(I'c'/~) e ""+(g~/2r) e
Q Q

and g" (r) = P —,+, e-""
P

Q Q

4r' 4r'

(lo)

(11)

(12)

(13)

In the following section, expressions (12) and

(13) are used together with Eqs. (3), (4), and (7)
to investigate the stability of the general Morse-
function fcc and bcc lattice. It is shown that the

The Morse function expresses the potential ener-

gy y(r) between two atoms separated by a distance
was

~ (&) D [&
-2n(t-ro} 2 a&r ro)]--

where D and Q are constants with dimensions of
energy and (distance) ', respectively. The poten-
tial has its minimum at r = ro, and the dissocia-
tion energy of the two atoms is D, since y(r, ) = D. -

For brevity of notation, let
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In order to perform the lattice summations in-
dicated in the previous section, and to demonstrate
that the stability criteria can be expressed uniquely
in terms of & a, it is convenient to define the di-
mensionless variable

p = r/a = —,
' (I', + E', + l,') "', (14)

and to express Eqs. (12) and (13), respectively, as

(p( )
P 2na g~pp Q na

2a 2at p - -p

and

P= —
2 2 f (lg, lp, l~; 2na)+

2 2 f (lg, I» l~; na)
(»)

u i

~pp ( )
P 2na 2na 2mpp

4a p p.
—(Q/4a') [(na/p)'+ na/p']e "'

4g (l~, I» I» 2na) — 4g (l„ l~, l» na). (16)
P

4a' ' ' ' 4a4

The meaning of the functions f and g is clear from
usage.

Equations (15) and (16) may be substituted into
Eqs. (3), (4), and (7), and the lattice summations
may be performed over the allowed values of the
integers l» l2, and l3. The following lattice sum-
mations are functions only of aa and of the particu-
lar lattice type, i.e. , fcc or bcc:

ZZPI,'f(I„I„I,; .)=F( ),
&i &a 3

(i7)

g g Q I, g(l„ I„ l„na) =G (na),
li &8 !3

P P Q l,' &,'g(l „&„I„na) = H (na)
1 la l3

(is)

The equilibrium condition, Eq. (7), may now be
expressed as

PF (2na) = QF ( a)n

and the elastic constants may be written as

C»= (n/32a )[PG (2na) —QG (na)]

and Cga= (n/32a ) [PH (2na) —q H (na)]

(20)

(21)

(22)

The equilibrium condition, Eq. (20), is satisfied
if the coefficients P and Q are in the proper ratio;

Born stability criteria can be expressed uniquely
as a function of the dimensionless parameter &a.
Explicit numerical results are obtained and are
compared with the results of others, where appro-
priate.

CALCULATION OF LATTICE STABILITY

Eq. (20) shows that this ratio is determined unique-
ly by the value of the parameter na. If Eq. (20) is
substituted into Eq. (22), C~2 may be written as

C„=, G (2na) — G (na)
nP, F (2na)

(23)

Since nP/32a is positive for the Morse function,
the first stability condition Ci2 & 0 is satisfied if
the function in the brackets in Eq. (23) is positive.
In the present study, this function was evaluated
for bcc and fcc lattices for values of &a from 0. 5
to 20.0, and was found to be positive throughout.

Thus the question of whether a bcc or fcc Morse-
function lattice satisfies the Born stability criteria
is reduced to the question of whether relation (2),
C»/Cq2 & 1, is satisfied. This relation can be ex-
pressed uniquely as a function of O,a, viz. ,

C G (2o a) —[F (2na)/F (na)]G(nn)
C„H (2na) —[F (2na)/F (na)]H(nn)

The above expression for C,~/C~z results from
combining Eqs. (20), (21), and (23).

From the above discussion, it is seen that the
conditions for the stability of the Morse-function
cubic lattice with respect to homogeneous deforma-
tions may be expressed uniquely as a function of the
dimensionless parameter &a. The appropriate
lattice summations were eva1uated upon an elec-
tronic computer for bcc and fcc lattices, and the
ratio C»/Cq2 was determined as a function of na.
The results of these calculations are presented in
the following section.

RESULTS AND DISCUSSION

Since the Born stability criteria for the Morse-
function cubic lattice can be expressed as the con-
dition C»/C, 2 & 1, and since the ratio C»/C fa
depends only upon Q.a and the type of lattice, it is
convenient to present the results of the present
calculations as curves of C»/C&3 versus na for the
fcc and the bcc lattices. These curves are shown
in Figs. 1 and 2, respectively, for fcc and bcc
lattices.

Figure 1 shows that Cqq/C~a is evidently greater
than unity for all values of na for the fcc lattice.
Thus the fcc Morse-function lattice always satis-
fies the Born criteria. For the bcc lattice, how-
ever, C»/C, ~ is less than unity for values of na
greater than 4. 8; thus the bcc Morse-function
lattice is unstable for aa greater than 4. 8. From
the discussion in Born and Huang (pp. 140-144),
one concludes that the bcc lattice will be stable
only when the distance (rz-ro) is relatively large;
(rz ro) is the-distance between the inflectionpoint
at x= x& and the minimum at x = ro of the poten-
tial curve cp(r) For the M.orse potential function,
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FIG. 1. Ratio of elastic constants C&&/C&2 versus ea
for Morse-function fcc lattices. Experimental values
of C&&/C&2 are indicated for seven fcc metals. The
Born stability criteria are satisfied for all values of ea.

rr ro=(ln 2)/&- (28)

Dividing Eq. (25) by the lattice parameter a and
requiring that aa & 4. 8 leads to the conclusion that

r, —ro & (a ln 2)/4. 8 (28)

for the Morse-function bcc lattice to be stable.
The above results are in agreement with Born's

suggestion that the fcc lattice with two-body central
force interactions is stable throughout while the
bcc lattice is stable only when xi- xo is relatively
large. The present results are also complementary
to those of Misra, discussed earlier in this paper.

Morse functions have been used to investigate the
elastic constants of solids, and are often used to
calculate other properties of solids which are in-
timately connected with elastic properties.
Thus, it is of practical interest to determine
whether or not a Morse-potential cubic crystal,
which is intended in some sense to represent an
actual crystal, can possess the proper (i.e. , ex-

FIG. 2. Ratio of elastic constants C~~/C&2 versus G.a
for Morse-function bcc lattices. An experimental value
of C&&/C&~ is indicated for potassium; values of Cff/Cf2
for other bcc metals do not lie within the range of values
attainable with the Morse function. The Born stability
criteria are satisfied for values o«a less than 4. 8 only.

perimental) values of the elastic constants C,i and

C~2. Figures 1 and 2 show that a cubic Morse-
function crystal lattice cannot take on arbitrary
values of the elastic constants C&& and C&z. In
particular, for the fcc lattice, C„/C, a appears
constrained to lie within about 1.14 and 2. 00.
whereas for the bcc lattice, Cqi/C&a does not ex-
ceed about 1.36.

Girifalco and Weizer, in their study o& the
application of Morse functions to cubic metals,
determined the Morse-function parameters +a,
o.'ro, and D (for several metals) from the equilib-
rium condition, Eq. (7), and from experimental
values of cohesive energy and compressibility.
The values of na which they determined and the
resulting values of C»/Cqa are listed in the last two
columns of Tables I and II. It is noted that the
values of Cq, /Cia calculated by Girifalco and Weizer
are in agreement with the values determined from
the curves of Figs. 1 and 2, for the particular
values of aa used in their study. The second,
third, and fourth columns list experimental values

TABLE I. Values of 0'.a for Morse-function fcc crystal lattice and experimental values of elastic constants
C)] and Cip for fcc metals. Elastic constants (Refs. 22, 23) are for O'K.

Metal

Al
Ni
Cu
Ag
Pd
Pb
Au

C(i
(10" dyn/cm2)

1.143
2. 612
1.762
1.315
2. 341
0.555
2. 016

C(2
(10 dyn/cm )

0.619
l. 508
1.249
0.973
1.761
0.454
1.697

C„/C„
Expt

1.847
1.732
1.411
l. 351
1.329
1.222
l. 188

G.a determined from
expt value
of Cit/C

10.979
8. 766
4. 842
4, 183
3.929
2. 534
l. 944

Q.a, as determined
in Ref. 4

4. 694
5. 000
4. 900
5. 576

5. 842

C&~/C&2

calculated in Ref. 4

l.398
l.425
1.416
1.478

1.502
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o.a, as determined
in Ref. 4 calculated in Ref. 4

4. 520
4. 736
4. 450

Cr
Mo
W

V
Fe
Ta
Nb

Na

K

3.5
4. 80
5.326
2. 324
2. 432
2. 663
2. 48
0.95
0, 0416

0.7
1.65
2. 049
l. 194
1,381
1.582
1.53
0.62
0. 0341

5. 0
2. 91
2. 599
1.946
l. 761
1.683
1 62
1.53 '
1, 220

l. 026
l. 016
1, 032

2. 534
2. 586

l.232
l. 2232. 606

TABLE II. Values of na for Morse-function bcc crystal lattice and experimental values of elastic constants C«and
C&2 for bcc metals. Elastic constants (Refs. 22, 23) are for O'K except as noted.

Qa determined from
C~2 C~~/C~2 expt value

Metal (10~2 dyn/cm) (10 2 dyn/cm) Expt of C~~/Cq2

l

Elastic constants are at room temperature. bElastic constants are at 80'K.

of C», C~a, and C» /C~~; the fifth column gives the
values of &a which correspond to the experimental
values of C~~/Cqa. These points, i.e. , (C»/Cqa,
o'a), are also indicated on the curves of Figs. l
and 2; the values of &a should be of interest in
applications of Morse functions involving calcula-
tions of the behavior of a crystal in the presence
of uniaxial stresses or strains (see, e.g. , Refs.
V-9), i.e. , in cases where it is important that the
linear stress-strain relations of the Morse-func-
tion crystal be in agreement with the experimental
relations.

For all fcc metals for which experimental values
of C» and Cqa were available, the ratio C»/C», , was
greater than 1.14 and less than 2. 0; i.e. , this

ratio falls within the range of values of C»/Cq2
attainable in Morse-function fee crystals. Thus,
for each of these cases a Morse-function fec lat-
tice can be devised (i.e. , values of o.'a, D, and

&xo may be specified, +a being determined by
Fig. l) which exhibits the experimental values of
C&z and C&3. For the bcc metals for which experi-
mental values of C&& a.nd C&3 could be found, how-

ever, only potassium has a ratio C» /Cq~ which
lies within the range attainable with Morse func-
tions. Thus, in general, the Morse-function bce
lattice is not capable of exhibiting the correct (i. e. ,

experimental) elastic constants C~~ and C~z for bcc
metals, potassium being an exception.
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The general theory of the electronic dielectric constant of crystals, developed in a previous
paper in the framework of an individual-ion model, is analyzed for diatomic systems. Use
is made of an effective two-state model for the individual atoms. An exception is made, how-
ever, for certain terms in the polarizability which depend very strongly on the higher excited
states, whose effect is thus taken into account, in an average-excitation-energy approxima-
tion. The final result of this analysis is a simplified expression for the frequency-dependent
polarizability of an individual atom in the crystal, which includes explicitly the quantum cor-
rection arising from the induced dipole-dipole interaction. In R first application of these re-
sults, we carry out a detailed study of the static polarizability of alkali halide crystals, on
the basis of a reasonable assumption for the polarizability of a free ion in an excited state.
The dipole-dipole correction in the po1arizability is found to be positive and to vary from 2
to 8%. This effect is in good quantitative agreement with a correction which has been de-
rived from an empirical analysis of dielectric-constant data for the alkali halides. For the
effects of frequency dispersion in the polarizability, we also find reasonable agreement with
similar empirical results for the alkali. halide ions. As a second type of appbcation, we con-
sider the problem of deep impurity states in crystals. An explicit expression for the elec-
tronic frequency shift of a substitutional impurity is obtained from the study of the singulari-
ties of the polarlzablllty In particular this 16Rds to R simple expression for the van der
Waals constant for an excited impurity interacting with a matrix atom in the ground state. Ap-
plication of this formula to rare-gas and molecular impurities in rare-gas matrices leads to
surprisingly good agreement with empirical results, as obtained from an analysis of experi-
mental shifts in terms of 6-12 potentials. As R last application we study the oscillator strength
of two-quantum excitations (double excitons}, which arise as a consequence of the quantum
dipole fluctuations. For the alkali halides we find that this oscillator strength ranges from
4.5 to 20% of that of the ordinary one-quantum excitations in the NRC1 strocture, while rising
to 30% in the CsC1 structure.

I. INTRODUCTION

Theoretical and experimental studies of elec-
tronic excited states of the alkali halides and rare-
gRS solids seem to indicate that the model of tight-
binding excitons, as developed originally by
Frenkel, does not provide an adequate description
of the electronic states in these systems. Most of
these investigations were started, in fact, after
the unexpected finding that the electronic spectra
of the pure rare-gas solids can be interpreted
rather well in terms of the Wannier model, which
describes the opposite limit of loosely bound exci-

tons of large radii, ' This provided strong evidence,
of course, for non-negligible effects associated with

the overlap of the charge distributions of neighbor-
ing atoms or ions in these crystals, especially in
excited states. It has led to numerous attempts
to improve the extreme tight-binding approxima-
tion by taking overlap and exchange effects into ac-
count, in addition to the Coulomb interaction. In
this improved form, the tight-binding approxima-
tion has been rather successful in predicting exci-
ton energies in the pure rare gases2' as well as
excitation energies of impurities in solid He, Ne,


