
THERMODYNAMIC SUBSTATE VARIABLES FOR A SOLID

expression for BDyo/itVrr ~

itD„/BV„=-',p(D' "@~&.e+D' "@o.b.e

+,D(-its) b +Di-&ls) b ) (3 24)

Finally, from (3.7), (3.8), and (3.24), we have

r„,——PJD(-s/s)„, (3.25)

where 7=p/p as in (3.13).
Even when the stress is not hydrostatic pressure, if

the stress system is such as to preserve the eigen-
vectors of D, then the thermodynamic tensions are
related to the stress through the expression obtained
by substituting from (3.24) into (3.7).

As a special case, the initial state may be chosen to
be a natural unstressed state, in which case X;=a;,
Rnd D;~ Rnd p in thc preceding formulas become C;~

and ps. However, it is interesting to note that ttrty

hydrostatically compressed state may be chosen as the
initial state, and the cnthalpy as de6ned here will
reduce to U+p/p for all pressures, while with the V;;
in (3.17), the thermodynamic tensions at the initial
state will be equal to the initial stress.

In thc special CRsc of cubic CI'ystRls Rnd lsotroplc
media under hydrostatic pressure, D;; remains spher-
ical, and the substate varia, bles and thermodynamic
tensions reduce to

V;;= -', Vb, t, r„=—pb„. (3.26)

The simpli6cation already mentioned at the end of the
Introduction results from the fact that in this case
constant pressure corresponds to constant thermo-
dynamic tensions for all pressures.
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Using a recently developed local-orbital theory of the author' s, the ground-state eigenfunctions of the
Libel crystal in the Hartree-Fock approximation have been obtained. Using these functions to form the
crystal charge density, the one-electron energy bands have been computed in essentially the Hartree-
Fock approximation using the mixed-basis technique. Various levels of approximation within the local-
orbital approximation are investigated. Polarization corrections to the energy bands are included by the
method of Fowler. Finally, using tight-binding interpolation for the valence levels and empirical pseudo-
potentials for the conduction bands, the density of states for the valence and conduction states are obtained,
and a joint density of states is computed. Extensive experimental comparisons are made. The principal
results are the following: (1) The valence bands are very wide (3p band is about g eV wide). (2) The soft
x-ray spectrum can be interpreted in terms of the band structure. (3) Polarization corrections are
signi6cant.

I. INTRODUCTION

In recent years, energy-band calculations on the al-
kali halide crystals have become common. %bile these
calculations are extremely useful for qualitative inter-
pretation of optical-absorption measurements and also
electron energy-loss data, the theoretical situation is not
fully satisfactory. Firstly, there is no general agreement
as to how one chooses a model potential for computing
alkali halide band structures, and different types of
potentials can yield greatly di8ering results. ' Secondly,
w'hen one chooses a model potential for such a calcula, -
tion, Koopma, ns's theorem is violated, and the resultant
one-electron eigenvalues are not the electron binding
energies. ' Thus the agreement of such a calculation with

experiment is fortuitous. Most recent band calculations
are of this nature. ' ' Other recent calculations have
attempted to use the correct Fock exchange. v ' In the
cases in which the Fock exchange was used, no attempt
at self-consistency was made, In addition, in the case of
Oyama and Miyakawa~ the Fock exchange was con-
sidered in an approximate wa, y.' In the calculations by
Kucher, Tolpygo, Tomasevich, and Evseev (KTTE),s
the tight-binding method was employed for the con-
duction band, and so few states were included in the
tight-binding expansion so that the accuracy of such
calculations is in doubt and the d states are neglected.

Only KTTK attempt to include polarization CGccts
in their energy-band calculations. An excellent dis-
cussion of these techniques has been recently given by
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Fowler. ' This technique involves considering the
polarization effect which an extra charge such as an
electron or hole has on the surrounding ions using
classical techniques. " Fowler has shown that this
approximation is adequate for insulators. "

In this paper, a band calculation is performed for
LiC1 which avoids the difFiculties associated with the
previous calculations. The nonlocal Fock exchange
operator, with only slight approximations as outlined
in the text, is used, and thus difhculties with Koop-
mans's theory are essentially avoided. ' The method of
computing the energy band is the mixed-basis method
recently described by the author. " In this method we

expand the one-electron wave function in terms of
Bloch functions formed from the core eigenfunctions
and plane w'aves. Thus the limitations of the tight-
binding method wI ich limits KTTE are avoided.
Using the local-orbital method of Adams" and Gilbert"
as developed by the author" the calculations are carried
out in a self-consistent manner. The effects of self-
consistency and of various levels of approximation to
the localized orbitals are investigated. In Sec. II these
theories are summarized and the various approxima-
tions are discussed in detail. In Sec. III the numerical
results are given and in Sec. IV the inclusion of polariza-
tion e6ects is discussed and a Anal LiC1 band structure
is presented.

Experimentally, the situation of LiCl is rather inter-
esting. LiC1 is hygroscopic and quite dificult to work
with. Thin-film optical absorption data are available, ' '~

as are reAectivity data. " In addition, there are soft
x-ray data relating to absorption from the lithium E
shell and the 1.23 edges in the chlorine ion."' In the
early work of Eby, Teegarden, and Dutton" no exciton
transition is found preceding the onset of optical
absorption. Thus LiCl was thought to be an anomaly
and theoretical models were devised to explain the
peculiar behavior of this substance. ' "The more recent
optical work finds that LiCl does have an exceptionally
sharp exciton peak preceding the onset of band-to-band
absorption, '~' and thus the early theoretical models
are not satisfactory. Experimentally LiCl is still some-
what different from the other alkali halides, excepting
perhaps LiBr and LiI, in that the exciton peak is of the
same strength as the band-to-band transitions and seems
to immediately precede them. The band gap is not
accurately known and a determination of it using two
quantum techniques or photoconductivity would be of
great value. In a previous paper, the author suggested
that the great strength of the band-to-band absorption
may be explained by the near degeneracy of the F and I-
absorption edges. 4 In Sec. V the available calculations
are compared to this calculation and the 6nal band
results are used to interpret the available experiments.
Densities of states for the various bands are obtained
and a joint density is computed. In the final section
(Sec. VI) the theoretical advances included in this
calculation are discussed. Suggestions for further in-
vestigations are given.

II. HARTREE-POCK AND LOCAL-ORBITAL
THEORY

In this section we summarize Hartree-Fock theory as
it applies to energy-band calculations, summarize the
results of local-orbital theory and discuss the several
levels of approximation available. In doing this we
remind ourselves of the fact that for insulators in the
one-electron limit the Bloch and the Heitler-London
picture are equivalent. "We shall make extensive use of
the extended Huckel theory in obtaining the various
levels of approximation. A recent review of this theory
as it applies to solids has recently been given by Gil-
bert. " The excited or conduction-band states will be
obtained using the invariant core approximation. This
method is generally successful when applied to systems
with many electrons'4 and is implied by Koopmans's
theorem.

Using density-matrix notation we write the Fock
operator for a solid in the form

B,j
Here the Fock operator is in rydberg units. The sub-
scripts 8 refer. to the nuclear coordinates and the sub-
scripts j refer to the electronic coordinates. The summa-
tions over 8 are for all nuclei in the lattice and the sum
over j involves all occupied orbitals about site B. In the
sum we include only one of a spin-up, spin-down pair of
orbitals. Appropriate factors of 2 have been included in
the summations to account for this. It is assumed that
in the ground state only filled subshells occur and we
write the Fock operator in the Heitler-London scheme
using local orthonormal orbitals. Methods of obtaining
the orbitals will be discussed a little later in this section.
All occupied orbitals are included in the above repre-
sentation of the Fock operator in the form of localized
functions.

Having obtained the Fock operator in self-consistent
form we must obtain its eigenvalue and eigenvectors.
To do this, the mixed-basis method is used. "Here we
write the one-electron eigenfunction P„&(k, r) as

P.- (k, r)= Z~...- PC,.- (k)e, ,„(k, r)
,j l m

+ P d. &P b ~
~ expI i(k+h) ~ r]. (2)

In Eq. (2) the functions P, ~ (k, r) are Bloch func-
tions formed from those nonoverlapping local orbitals.
which are used in F (i.e., the Li+ Is, Cl Is, 2s, 2pshells).
The C~ & are chosen so that the Bloch functions trans-
form according to the yth row of the ath irreducible
representation of the group of the wave vector k. The
vector h& is a reciprocal-lattice vector. It is required
that I (k+h&) I

be constant for all t. One chooses b,p & so
that the plane-wave part of the basis has the correct
symmetry. The coeKcients A„,p& and d„p& are varia-
tional parameters. The quantities l and m refer to the
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angula, r momentum and its Z component for the atomic
states from which the Bloch sums are formed.

Thus the problem at hand is to evaluate the matrix
elements of the Pock operator and the overlap matrix.
These fall into three general classes of element, which

& = fC, IO&*O„C,'I"&dr,

8= JC, IN&*O„SP &dr,

C= JSp&*O,S; &dr,

(3)

C;I "= 2 «-"4»1-(lr, r)

Sp&= p b«"& expLI'(lr+h, ) r].

In Eqs. (3) when O„=1 one obtains the overlap
matrix D, and when O„=F one obtains the Pock
matrix F. Thus we must evaluate Eqs. (3) and solve
the matrix equation

Ff= FAP. (5)

The techniques to be used in evaluating the D matrix
are straightforward and need Do discussion at this time.
Thc diSRcujtics lnvolvcd Rlc dlscUsscd ln pI'cvloUs %'ork

by the a,uthor. "When 0„=P the classes of elements A

and 8 are also simple and straightforward to evaluate
and the technique used is discussed in Appendix A.
The evaluation of elements of class C is somewhat more
dificult and involves an approximation, These elements
are given by substituting F of Eq. (1) into the third of
Eq. (3) . We note that in practice the local orbitals used
to form the Fock operator are not orthogonal. In actual
calculations these Donorthogonalitics are corrected to
first order in ovcI'lRp Rs described ln Appcndlx A fo1
e]emcnts of type A and 8 and as follows for those o&

type C:
F-""=fS "*(r)

&&i—~I'—Z(2~s/I r» I)+4K f I
r12 I 'O~'(»)d»J

B B,j
&& S'"(rI)«I—2 Z JJS:"*(rI)Its;(rI)

I
r» I-'

Bj

Xps;~(r~)
~
S,"&(r2)drIdr&. (6)

In this element, C, the nonorthogonality of the local
orbitals, has been corrected for using the technique of
symmetric orthogonaHzation. The 6rst term on the
right-hand side of Eq. (6) involves only the kinetic-
energy term Rnd the local part of the potential. This
part ls caslly cvR1URtcd Using standard tcchnlqUcs Used
in orthogonalizcd plane wave calculations. "The second
term on the right-hand side is the exchange term which
lnvolvcs two plRDc wRvcs. This ls to bc approximated.
The plane waves are decomposed into cubic harmonics"
and the evalua, tion proceeds quite easily. This is dis-
cussed in Sec. IH. It is noted that states of all wave
vectors k enter into the exchange calculation here. A
SUScient number of terms is included to ensure reason-

able accuracy. ID any event, the time involved, in con-
sldcrlng RddltlonRl exchange terms ls SUScicntly costly
to be impractical at this point.

The starting point for obtaining the appropriate
localized orbitals to be used in forming the rock
operator is the Adams-Gilbert equation of the form"

L&~+ ~~ sf/~—ugly =~~A~;. (7)

In forming this equation one removes the restriction
that the orbitals centered on different sites be orthog-
onal.

As Eq. (7) Is I'R'thcl' dlfflcult to cvaluR'tc exactly we
shRll make R slnlpllfylng assumption thRt terms lD thc
equation which are of second or higher order in inter-
'tomic overlap may be neglected. In this case the
resuming cqURtlon ls

t F~+&~ ~~~]4~,= Q'4~&(&&
~

&~
~

&I'), (8)

F~4~ = I:—~I'—2~~/r~I+4 2 flap(r~) ~
ru ~-Idr2&yg;

—2 2 4~I(rI) J4~;*(ra)@~,(r~) I rI~ ~-'«2 (9)

(10)

Equation (8) is solved by the technique described in
Appendix B.

There are a number of additional approximations
wlllcll ollc mIght make to Eq. (8). Tllcsc CRI1 bc ap-
proached in a, systematic way using the extended Hiickel
theory as it appbcs to local orbitals in polyatomic
systems. " ID the spirit of the HQckel theory one may
replace Ug as given by Eq. (10) with the point-ion
potential for the lattice V~PI. In this case one Ands

%c see that the above result is particularly convenient
in that for R diatomic system the two subsystems have
become decoupled and thus one need solve only a pair
of Hartree-Fock equations only slightly more diS.cult
than those for a free ion.

It may be possible to take the Hiickcl theory one
step further and use a relation given by Gilbert when
thc wave fuDctlons Rre ccDtclcd about R sltc of high
symmetry. "In this case

since iWk, Thus one reduces Eq. (11) to

L.F~+&~"—~~;]4~;=0. (13)

It is noted that several years ago Wahl and Gilbert
investigated. several of these ideas in the case of diatomic
molcculcs formed by the alkali halidcs. ~ %ahl and
Gilbert computed the potential-energy surface for these
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TABLE I. The valence bands of LiCl are given here. In column

I the state is speci6ed. In column II the bands obtained from
solutions to Eq. (13) are given and in column III the bands ob-
tained from solutions to Eq. (12) are given, Finally in column IV
the bands revised according to polarization corrections are given
relative to FIS. Because of its small effect, spin-orbit corrections
are neglected. The BSW notation is used. Results are in eV.
The difference in polarization correction for alkali and halogen is
included in result of column IV for Li+1s state.

Cl is
Cl 2s
Cl 2p
Li+ 1s

—2860
—287
—218
—66.4

—2854
—287, 7
—218.5
—66.74

—2846
—279.7
—210.5
—54.49

3s valence band

F1
XI

—31.6
—28.6
—29.2

—31.56
—28. 79
—29.45

—23.56
—20. 79
—22.45

3p valence band

F15

X5'
X4'

L2'

—7.3
—9.9

—14.5
—8.2

—15.2

—8.00
—10,44
—15.25
—8, 69

—15.96

—0.00
—2.44
—7.25
—0.69
—8.96

systems using free-ion Hartree-Fock wave functions
for the alkali and the halogen ions, and also using solu-
tions to Eq. (13) for these systems. They were able to
conclude that for the alkali halide diatomic molecules
the free-ion wave functions produced better results
than the solutions to Eq. '(13) . The author would note
that this need not be the case in an alkali halide crystal.
This may be seen by remembering that for an alkali
halide molecule, neither the nuclear position of the alkali
ion or the halide ion is a point of high symmetry and
hence the reduction of Eq. (11) to Eq. (13) is not valid
'for a diatomic molecule. However, in a crystal, the
alkali and halogen ion sites are points of high symmetry,
and one expects that Kq. (13) may be vahd.

In this paper these relations are studied for the I.iCl
crystal. The energy bands are computed for points and
lines of high symmetry in the first Brillouin zone in
several approximations. Firstly, wave functions w'hich

satisfy the free-ion Hartree-Fock equations are used,
secondly, solutions to Eq. (13) are used, thirdly, solu-
tions to Eq. (11) are used, and finally solutions to Kq.
(3) are used. In presenting these results the group-
theoretical notation of Bouchaert et e/. is used. '8 These
results are contrasted to previous calculations of I.iC1
where e6ective exchange approximations were used. '
A halogen ion site is used as the origin of the coordinate
system.

At this point a review of the principal methods is
useful, Firstly the self-consistent Fock charge density
in terms of local orbitals is obtained for the crystal to
first order in interatomic overlap. These local orbitals

TABLE II. The conduction bands of LiCl are given. In column

I the state is specified. In column II the bands obtained from
solutions to Eq. (13) are given and in column III the bands
obtained from solutions to Eq. (12) are given. Finally, in column

IV the bands are given relative to the F15 valence level after
polarization corrections are made. Spin-orbit eGects are ignored.
The BSW notation is used. Results are in eV.

IV

F,
F~5'

F15

X1
X3
X5'
X4'

X2
LI
L3
L2'

L2'

L3

3.5
11.4
14.2
14, 2

5.5
5.5

14.2
12.7
17.6
4.5
7, 9

13.8
16.5
18.7
12.0

3.47
11.22
14.07
3.98
5.37
5.31

14.04
12.60
17.41
3.84
7.55

13.61
16.42
17.28
18.51

7.69
15.44
18.29
18,20
9.59
9.53

18.26
16.82
21.63
8.06

11.77
17.83
20.64
21.50
22. 73

are nonorthogonal on di6erent sites and are linear
combinations of the Bloch orbital solutions to the Fock
operator for all wave vector k. Thus the Fock matrix
formed of these local orbitals is nondiagonal. The Fock
matrix is next put into diagonal form. In forming the
Fock operator, Eq. (1), the nonorthogonality of the
local orbitals is taken into account properly. '4" All the
local orbitals computed are included in the formation of
Ii, and hence all occupied levels in the crystals are
included. Next the Fock matrix is diagonalized. This is
done by using the more compact local orbitals which are
formed into Bloch functions, and plane waves are used
to represent the more diffuse of the local orbitals (these
correspond closely to the 3s and 3p Cl orbitals). Since
this is not a minimum basis, virtual levels are obtained
as well as the occupied levels, when the Fock matrix is
diagonalized. Using Koopmans s theorem, we identify
these virtual states as the conduction levels. It is stated
that in evaluating matrix elements of the Fock operator
between two local orbitals or a local orbital and a plane
wave, terms to first order in interatomic overlap are
retained as is described in Appendix A. In evaluating
matrix elements between the Fock operator and two
plane waves, only the exchange integral is approximated
as is described in Sec. III. It is believed that none of
these assumptions is serious in that only those local
orbitals which were very compact (do not overlap) are
retained in the basis and the expansion used in the case
of the plane waves seems well converged.

It is observed that the matrix elements connecting
two local orbitals on the same site, Table IV, are almost
zero and hence the local orbitals for the lower states,
Cl 1s, 2s, 2p, and Li+, should when formed into Bloch
orbitals, be essentially the eigenfunction of the Fock



operator for these levels. By checking the eigenvalues of
Eq. (5) this was confirmed to be the case. This is
additional reason to believe the solutions are self-
consistent.

III. CALCULATION

1"

l»

2»

X
20.0

)0.0

1»
I

'= Q 4»r(21+1)

»(I/») I+I—» I/g I+I

» I/» 1+1 (15)
In this calculation we used only the 6rst 6ve terms in the
expansion given by Eq. (14). In order to test the ac-
curacy of this, the calculation was repeated using only
the first term of Eq. (14) and using only the first three
terms of Eq. (14). Band points changed by as much as
several volts in going from one term to three terms in
the expansion. However, in going from three terms to

Initial calculations of thc L1Cl cnclgy bRnds %'cre
made using free-ion Cl function of Lowdin and Appell 9

and Li+ free-ion wave functions computed by the
author. In computing the bands the Cl 1s, 2s, and 2p
functions and the Li+ is function were included in the
basis. The plane-wave part consisted of 113 plane
waves at F and an appropriate number elsewhere.
Convergence was adequate. The calculation at F was
I.cpcRtcd using 59 plane %aves Rnd Rbout 300 plRne
waves. The conduction levels, including the dificult to
converge d levels" and the 3s valence level, remained
essentially unchanged in these calculations (changes
were about 0.05 eV at most) . The 3p valence level was
less well converged although its position should exhibit
less than an absolute error of 0.25 eV. This calculation
was repeated using functions which are solutions to
Eqs. (11) and (13).The results of these three calcula-
tions were in good agreement, and in Tables I and II the
results for the functions which satisfy Eq. (11) are
given. A halogen ion is used as the origin here as is the
BSW notation. '8 YVC note that the valence bands are
extremely wide (7.84 eV for the 3p band and 3.03 eV
for the 3s band) . This result is consistent with that of
Howland for KC1,"in that when the mixings of the K+
band were neglected the Cl 3p band was about 3 eV
wide and a considerable increase in width in going from
KCL to LiC1 may be expected owing to the change in
lattice constant. It is noted that KTTE found a width of
5 eV for the LiCl 3p band' using a somewhat approxi-
mate tight-binding method. Their KCI results were
narrower than those of Howland. The correlation of
these results and x-ray emission studies will be per-
formed later in this paper. '~ "

In evaluating the exchange terms which occur in
matrix elements of type C of Eq. (3) we used the usual
expansion for

I
r»

I

' given by Hartree, ll

,-IOO
5

-20.0

Fro. 1. Se1f-consistent Hartree-Fock energy bands for LiC1. Spin-
orbit effects are neglected and the HS% notation is used.

five terms the change was of the order of 0.1 CV. There-
fore the author condudes that the first five terms of
Eq. (14) Rlc sufflclent Rnd Rll remalnlng CRlcllla'tloIls
are made using five terms. It should be noted that owing
to the nonlocal nature of the exchange integral the time
required to compute a Hartree-Pock energy band is
considerably greater than that required to compute an
energy band using a local exchange approximation.

The orbitals which are solutions to Eqs. (11) and
(13) are obtained by analytic Hartree-Fock tech-
niques. "~ This is described in Appendix B. Free-ion
C1 and Li+ functions were obtained by this technique
and the Cl results compared with those of Watson and
Frecmans" and Hartree and Hartrce. "The Li+ results
werc compared to those of Fock and Petrashen, " In
all cases agreement was satisfactory.

Finally, Eq. (8) was solved self-consistently. In
doing this only nearest neighbors were included in the
short-range part of the potential. In forming the crystal
Fock operator„ the overlapping of the wave functions
was taken into account by symmetric orthogonalization.
The energy bands were evaluated at the points F, X, J,
the midpoints of 6 and of A. These results are presented
in Tables I and II and the resultant energy bands are
shown in Fig. 1. The band gap is computed to be 11.47
cV, tile 3p band ls 7.96 CV wide Rlld the 3$ band ls 2.77
eV wide. The photoemission threshold is 8.99 eV and the
electron afFinity is —3.47 eV. Polarization corrections
to thc bRnd gRp Rrc dlscusscd in Scc. IV.

IV. POLAMZATION CORRECTIONS

In this section wc follow thc wolk of Fow'lcl. Polall-
zation cprrections to this Hartrce-Pock treatment occur
for several reasons: (1) All electronic correlation is
neglected except for that which arises from a totally
antisymmetric wave function; (2) during an optical
excitation we assume that the orbitals at the site from
which the excitation occurs remain unchanged; (3) we
assume the surrounding change bands remain un-
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TABLE III. The tight-blndlng and pseudo-HaDBltonlan pa-
rameters used for LiCl are given. The notation of Ref. 46 is used
for the tight-binding parameters.

evaluates the amount of ground-state or excited-state
wave function contained within the ionic radius of the
I.i+ ion. The remainder is associated with the Cl
sublattice. One uses Fowler's tables to compute the
polarization correction according to the formula

V&

V&&{V

V~

Vyy

e(000)
y(111)
e(200)
e(220)
e(311)
e(222)

—29.5
—0.713

—10.0
1.05

—0.15
1.383

-15.87
6.59

—3.76
—0.845

2.17
—1.03

changed during an excitation; (4) we assume the ionic
posltlon remaj ils UDchanged during excltat ion. Of
these assumptions only (4) is justified. The method of
Fowler allows us to include type (l) and (3) corrections.

The Fowler theory is a re6nement of the theories of
Haken arid Schottky and of Toyozawa. "Fowler shows
that for the insulators these theories reduce to a static
limit, and this is evaluated using a Mott-Littleton
approach '~ This result which we apply in an appropriate
manner lowers the conduction bands with respect to the
valence bands by about 3.78 eV. As we apply this theory
here the polarization correction is not k or energy
dependent. This has been seen also in calculations by
I,ipari and Fowler4' for solid argon. This technique is
essentially similar to that employed by KTTE.' Having
done this, the band gap reduces to 7.N eV, The revised
results measured with respect to the F{~3p valence band
are given in Tables I and II. For transition from the
Li+ 1s shell the polarization correction is to decrease
the energy by 5.03 eV,

The method of application is quite simple. One

Here E~,~ is the polarization correction and the plus
sign is used for the occupied levels and the minus sign
foI' the coDdUction levels. The qUantity A ~ t; is the
correction due to an extra electron on an alkali ion and
Eh„~, is the correction due to a hole on a halogen ion'0;

d(+) is the wave-function density about the alkali ion
and d( —) = 1—d(+).

One may estimate the correction due to correlation
on the ion at which the transition takes place using the
pair correlation theory of Allen e$ al,4' They do not have
results for the breaking of an orbital pair of 3p electrons;
however, in the case in which a 2p electron is the outer
electron, the energy per 2p electron pair is about 1.7 eV.

U

h3

Z

I IG. 3. Density of states for the 3p valence band. The zero of
energy is arbitrary.

Thus the eRect of this intra-atomic correlation is to
increase the band gap over the Hartree-Fock value. This
trend is in qualitative agreement with the present result

since the computed gap is about 1 eV too narrow.

FIo. 2. Density of states for the 3s valence band and emission
spectrum of this state to the L23 sheB in Cl according to Ref. 44.
The zero of energy is arbitrary.

The experimental situation for I.iCl is not completely
satisfactory. Thin-61m optical-absorption measure-

ments have been made by Kby, Teegarden and Button'6
and by Teegarden and Saldini, '~ In addition a reAec-

tance spectrum has been obtained by Baldini Rnd

Bosacchi."Soft x-ray absorption for the lithium K shell

have been measured by Haensel, Kunz, and Sonntag"
and by Brown and Gahwsller" and for the I.23 edge by
Sagawa'0 and by Brown and Gahwiller. " In addition,
x-ray emission data from the, 3s band. in I iCl have been
studied by O'Brian and Skinner along with other
salts. '4 4' Two quantum-absorption experiments or
photoconductivity experiments have not been per-
formed for I,iC1, Rnd as a result the optical band gap is
Dot known. In the measul ement of TeegardeD RIll
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Baldini the exciton peak is at 8.6 eV at 10'K and strong
absorption immediately follows the exciton. Thus the
computed band gap is too small by about 1 eV or about
10%.This is not an unreasonable error.

In order to facilitate comparison of theory and
experiment the 3s and 3p valence band have been fitted
with tight-binding functions to permit interpolation of
these bands throughout the zone. The conduction bands
were fitted with a pseudo-Hamiltonian of the form

X~,=n(P/2m)+ P v(k) exp(ik ~ r). (17)

CA

C

I
I

I
I

I
OI

I
I

I
J

I

0.0 2.0 4,0 6.0 8.0 IO.O 120 I4.0 16.0 I80
ENERGY (eV)In Eq. (17) n is an adjustable parameter as are the

e(k). k is a vector in the direct lattice. The n(k) were
scaled from those given by Fong and Cohen for NaCl. 4'

Slater and Koster theory was employed for the valence
bands using tight-binding interpolation. " The tight-

FIG. 5. Density of states for the conduction band. The zero of
energy is arbitrary.

agreement with those obtained previously for the
alkali Auorides. 33

In Fig. 4, the computed joint density of states is
shown as is the measured absorption spectrum of
Teegarden and 8aldini. " It may be seen that if the
theoretical structure were shifted about 1 eV to the
high-energy side, there would be fair correspondence
between the maxima and minima in the theoretical
curve and those of the experimental curve except that
the third theoretical peak lies about 0.33 eV on the low-

energy side of where it should. However, the heights are
in poor agreement. This is most likely due to the
complete neglect of transition matrix elements in
the theoretical calculation. The theoretical peak at
8.6 eV arises from transitions from L3'—+L~ and the
surrounding region. The peak at 9.4 eV arises from
transitions A3 to A& at the center of the line A and
the surrounding areas. The peaks at 10.0 eV and
higher arise primarily from transitions to the regions
around X3, Xi, and L3 and Ei. It is possible that some of
the strong absorption measured at about 9.0 eV is due
to excitonic effects associated with the conduction-band
minimum at Li.

In Fig. 5, the computed density of states for the con-
duction band is shown. In Fig. 6, the I i+ E shell absorp-
tion after Brown and Gahwiller is shown, 43 and in Fig. 7

L0
Cli
DL0

0

I I.O9.0 IO.O

ENERGY (eV)

I2.08.07.0

FIG. 4. Joint valence- conduction-band density of states and
optical-absorption spectrum of Ref. 17. The theoretical band gaphas not been adjusted to agree with experiment.
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ENERGY (eV)

FIG. 6. Absorption from the Li E shell in LiCl (Ref. 43).

binding and pseudo-Hamiltonian parameters are given
in Table III.

The 3s and 3p valence bands and the conduction
bands were evaluated at 505 equally spaced points in
1/48 of the first Brillouin zone. In order to obtain
reasonable results for the conduction bands 65 plane
waves were used in the expansion. The pseudopotential
bands 6t the computed bands quite well up to 15 eV or
so above the conduction-band minimum. In Fig. 2 the
density of states for the 3s valence state is shown along
with the emission spectrum for this state measured by
O'Brian and Skinner. 4' It is noted that the final state in
this emission is spin-orbital split and we also show the
resultant emission to only one member of the final state.
In general we see that the emission band is broader
than the theoretical band. This may be due to lifetime
broadening, and in general the agreement is reasonable.

In Fig. 3 the density of states for the 3p Cl band is
given. The x-ray emission spectrum for this state is
unknown. However the shape of this curve is in good
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FIG. '?, Absorption from the
I 3 shell of LiC1 (Ref. 43), and
a joint density for this transi-
tion obtained from the theoreti-
cal conduction density,

duced mass, and eo is the static dielectric constant. Here
eo is 11.05 and E~ is 28 meV. This value is consistent
with the previous experimental interpretations and also
with the measured exciton binding energies of other
large dielectric constant substances. 4' Using the polaron
theory of Lee, Low, and Pines, "the polaron masses for
both the valence hole and the conduction electrons are
found to be 0.64 electron masses.

VI. CONCLUSIONS

0.0 4,0 8.0 I 2.0
Energy (eV)

the Cl L~,3 absorption is shown along with a theoretical
joint density of states for this transition. In forming the
theoretical curve, a value of 1.6 CV is used for the spin-
orbit splitting of the Cl 2p shell. A constant transition
matrix element is assumed in these comparisons. Ke
suggest that the peaks labeled. 8, C, D, E in the E
absorption correspond to the peaks in the density of
states labeled 8, C, D, E and shown in Fig. 5. The dif-
ferences in relative heights in both theory and experi-
ment are probably related to differing transition matrix
elements. It is possible that transition matrix effects
due to electron-hole interaction cause the experimentally
strong absorption near the fundamental edge. The peaks
are gcncI'ally coIIlplcx ln terms of w'hat, type of states ale
included in their composition and generally include
s, p„d states as well as states of higher angular momen-
tum. In any event, density-of-states considerations
alone, without additional exciton hves, seem to provide
a satisfactory explanation of the x-ray spectra, the
principal excitonic effects being in the matrix elements
for the transitions. The rising absorption after the L23

edge probably is due to a p—+d transition resonance. +
It is possible to compare these results to those of a

previous calcula, tion using an effective exchange approxi-
mation. 4 The conduction bands in the present case agree
well with those obtained using a model potential.
However, the agreement for the valence bands is ex-
tremely bad. The present calculation produces valence
bands w'hich are about four times broader than those
previously obtained. ' However, as has been noted, the
present valence results are probably consistent with
t.hose of Howland" and of KTTE.S

Using numerical diQ'erentiation, we have computed
the effective mass for an electron at 7~in the conduction
band and 6nd it to be 0.5 electron masses, and for a
valence hole at Fi5 in the 65 direction and 6nd it to be
0.5 electron masses. If one uses these values and a
hydrogenic model and the static dielectric constant,
the exciton binding energy is given by4'

&a=13.64/~0'), p=m, mal (m.+ma) . (1&)

E& is the binding energy in volts, p, is the exciton re-

It has been possible to obtain nearly exact self-
consistent Hartree-Fock energy bands for the LiCl
crystal. Polarization corrections have been included by
the technique of Fowler. '0 Such a technique produces a
band gap which is in reasonable agreement with experi-
ment (10%). In general the density-of-states curves for
3s and conduction bands are in agreement with available
experiments and the joint valence conduction density
is consistent with the optical spectrum.

The most significant results are that the valence
ba,nds are considerably broader tha, n effective exchange
approximation calculations lead one to believe. The
soft x-ray absorption data may be satisfactorily ex-
plained in terms of band-to-band transitions. Polariza-
tion corrections are large and essential. The effects of
self-consistency are small but not negligible.

The method of including polarization corrections
should be extended to include cfkcts due to relaxation
of the ion from which absorption takes place. Efforts
should be expanded on making calculations of this type
more economical since the quality of the results tends
to justify the effort expended.

There is a need for experimental studies on this
system. Two photon spectroscopy or photoconductivity
experiments should be performed to determine the
band gap accurately, Cyclotron resonance measure-
ments of the effective mass of conduction electrons
would be useful. The x-ray emission spectrum of the
3p band of I.iC1 should be measured either to confirm or
deny the broad valence-band results of this calculation.
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APPENDIX A

Here we discuss the evaluation of the matrix elements
of Eq. (3). We are concerned with the case in which

Thus, the operator in question is the Pock operator for



ENERGY BANDS AND THE OPTICAL PROPERTIES OF LiCl 5023

TABLE IV. The energy parameters, defined as 2„„'=(ifi~
~
FA+UA

~
ifi„l, are given for a variety of cases. In column 1 the particular

parameter is specified. In column 2 the parameters for the solutions to Eq. (14), in column 3 for the solutions to Eq. (13'1, and in

column 4 for the solution to Kq. (12) are given. In column 5 the free-ion parameters computed by the author are given. In column 6
the results of Fock and Petrasken (Ref. 39) are given for Li+ and of Hartree and Hartree for Cl (Ref. 38). In column 7 the results
of Watst)n and Freeman (Ref. 37) are given for Cl .

&ls, Is

&2s, 2s

&3s,3s

&Is,2s

&Is,3s

&2s, 3s

&2p, 2p

63p, 3p

62p, 3p

&ls, ls

—209.9
—21.14
—2. 151

0.0
0.0
0.0

—16.06
—0.9857

0.0

—4.875

—209.9
—21.14
—2. 19
21X10 z

—5X10 '
21X10 '

—16.06
—0.9852

—159X10 z

—4.875

Cl
—210.0
—21.16
—2. 162
11X10 z

18X10 '
17X10 z

—16.07
—0.9965

—155X10 '

Li+
—4.910

—209.2
—20.48
—1.473

0.0
0.0
0.0

—15.39
—0.3035

0.0

—5.597

—209.0
—20.46
—i.454

0.0
0.0
0.0

—15.39
—0.2970

0.0

—5.56

—209.0
—20.46
—1.471

0.0
0 ~ 0
0.0

—15,40
—0.3036

0.0

the crystal. The case in which O&=1 need not be in-
cluded, as has been considered previously. 4 The essential
matrix elements are of the form

ffB l(r) (FA+ UA) rl'A '/' (r)dr,

8'= f exp[i(k+h) r](FA+ UA) tfA„2(r) dr, (A2)

C'= f exp[i(h —h') rj(FA+UA)dr.

These matrix elements are evaluated using the Eq.
(7) defining local orbitals, and if we retain terms linear
in interatomic overlap one has

theory. ' Thus one evaluates the kinetic-energy matrix
element between two plane waves and evaluates the
element of two plane waves and the local potential by
evaluating the Fourier coeScients of that potential.

APPENDIX 3

In this Appendix we describe the technique used to
solve the localized-orbital equation. The method used
is the analytic--Hartree-Fock method in the form used
by Watson and Freeman for Cl ".It is assumed that the
local orbital &A, (r) may be given in the form

[FA+ ~A)4»= eA~AAi+ Z tfiA& (Ak ~i IfA
I

A~')' (A3)

If one substitutes this result into A' and 8' of Eq. (A2)
one obtains

A'=eA„2 (Bnl
~

An'l')

+ Q' (Bnl
~

An"l")(An"l"
~

VA
~

An'l') (A4)

4A*(r)=RA'2(r) Vi (ff, d)

rRA, (= Q CA, 2, P2;(r),

P(, (r) = cv2, r'+'+A&~ exp( —z2, r),

y = [(2Z )2l+2AI'+2/(2i+2A +2) l]1/ 2

(B1)

and

8'=eA„2f exp[i(k+h) r]&A 2(r)dr

+ Z'(An'i'~ IlA
~
An»

n/, l/

X f exp[i(k+h) ~ r5&A„2 (r) dr. (AS)

These matrix elements do not depend in any way on the
orbitals being orthogonal and are valid for overlapping
or nonoverlapping basis functions.

The nonlocal part of element C' has been discussed in
the text. The evaluation of the local part is done along
the same lines as one uses to evaluate the matrix ele-
ment between two plane waves in the usual mixed-basis

The V~-'r are the usual spherical harmonics, n and P are
the spin-up, spin-down functions, and the parameters
A&, and Z&, were those used by Watson and Freeman.
The localized-orbital equation in its integrated form is
given, using the standard notation of Hartree" for the
1s shell of I,i+ as

er, =Krs+2F'(1$, 1$) —G'(1$, 1$)+Vt, i (B2)

for the ns shell of Cl as

e„,=K„,+2Fo(ns, 1s) +2Fo(ns, ss)+2F'(ns, 3s)

+6F'(ns, 2p)+6Fo(n$3p) Go(ns 1s) Go(ns, 2s)

—G'(ns, 3s) —G'(ns, 2p) —G'(ns, 3p) +V„„(B3)
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and for the np shell of Cl as

e„~=K„~+2F'(nP, 1s)+2Iis(nP, 2s)+2Fs(nP, 3s)

+6&(np, 2p)+6P'(np, 3p) —-', G'(np, 1s)
—sG'(np, 2s) —-', G'(np, 3s) —G'(np, 2p)

G'(np—3p) —0.4G'(np 2p) —0.4G'(np, 3p)+V~, .

(B4)

In this notation we use the term V„, to specify the term

V„.= ( x
i

V
i
nx). (Bs)

In Table IV the energy parameters e„, are given for
the various calculations. The computations were per-
formed using double-precision computer codes written
for the IBM 360-75 computer by the author.

In iterating to self-consistency, the charge density

from the t'th iteration and the (i 1)—st iteration was
averaged before obtaining the (i+1)st iteration. This
prevented the solutions from diverging. All pertinent
integrals were evaluated numerically since the author
had accurate, tested codes for this purpose. The in-
tegrals could have been evaluated analytically. The
author checked a number of matrix elements evaluated
numerically against the same elements evaluated
analytically and found the results to be in good agree-
ment. The computer codes generated by the author for
this problem did not seem to be particularly efFicient.
About five minutes of computer time were required to
obtain solutions for the free Cl and Li+ ions. Using
numerical integration of the same equations, only about
one minute would have been needed. Nonetheless in the
crystal problem the analytic expansion technique proved
tc be easiest to apply.
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