PHYSICAL REVIEW B

VOLUME 2,

NUMBER 12 15 DECEMBER 1970

Self-Consistent Theory of Second-Order Elastic Constants
with an Application to Noble-Gas Crystals

M. L. KLEIN
Division of Chemistry, National Research Council, Ottawa 2, Canada
AND
G. K. HortoN aND V. V. GOoLpMAN
Department of Physics, Rutgers University, New Brunswick, New Jersey 08903
(Received 18 September 1970)

Formal expressions for the first two strain derivatives of the first-order self-consistent free-energy density
are rederived, and presented in a form suitable for numerical computation. The first strain derivative
is the first-order self-consistent stress tensor and the second derivatives are the corresponding elastic con-
stants. Because of the self-consistency condition, these elastic constants contain thermally averaged third-
and fourth-order force constants. Special reference is made to an approximation first introduced by Horner
in 1967. The expressions are applied to solid Ne, Ar, Kr, and Xe using a (12-6) Mie-Lennard-Jones potential.
Calculations are carried out for the temperature range 0°K to their respective melting points at zero pressure.
The calculations are presented for the 0°K volume, the experimental volume at zero pressure, and the
volume produced by first-order self-consistent theory (SC). The volume effect is often large. However,
at the same volume, the bulk moduli derived from Figc and Fgc differ by at most a few percent. This is

taken to indicate the probable accuracy of our results.

I. INTRODUCTION

In a recent paper,! second-order elastic constants
were calculated from the strain dependence of the
quasiharmonic energy density. Numerical results were
presented for noble-gas crystals. It was found that this
work had certain unsatisfactory features that made a
more complete theory desirable.

First, it turned out that the quasiharmonic free
energy was not a reliable concept for Ne, except at
absolute-zero temperature, because of large anharmonic
effects. Second, a detailed study of the temperature
dependence of the isothermal bulk modulus of Ar
showed clearly that higher-order anharmonic effects
cannot be ignored above about half the Debye tem-
perature. By analogy, it was argued that this result
applied to all the noble-gas crystals and to the separate
elastic constants as well. Third, in our earlier work it
was found that if the quasiharmonic approximation was
used in the whole calculation, including the volume of
the crystal, it provides a poor description of these solids.
For all except the very lowest temperatures, the zero-
pressure lattice constant was too large, and con-
sequently quantities like the second-order -elastic
constants, which are very volume dependent, were
much too small. This last problem was remedied,
somewhat artificially, by calculating the elastic con-
stants at the experimental volumes and at the 0°K
volume. A fair description of the elastic constants of
noble-gas solids was obtained in this way over a reason-
able temperature range.

It is well known that the lowest-order self-consistent
phonon theory? (SC) (based on first-order cumulants
only) gives an improved description of the zero-pressure
lattice constant compared to the quasiharmonic
approximation. It seems natural; therefore, to examine
elastic constants derived from an SC free energy.
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The self-consistent theory of second-order elastic
constants was first outlined by Choquard?® through his
general results for the first- and second-order thermo-
dynamic derivatives of the free energy. A comple-
mentary theory using the functional derivative method
was presented by Horner,* including a numerical
application to He. This paper, however, contained an
approximation which has generally been found to be
unsatisfactory for the bulk modulus, and which we will
examine here again for the individual elastic constants.

In a subsequent paper, Gétze and Michel® generalized
Choquard’s and Horner’s results to nonprimitive lattices
and emphasized the importance of vertex renormaliza-
tion effects on SC elastic constants. Finally, Werthamer®
has rederived earlier SC elastic constants using a varia-
tional approach. None of these earlier papers, except
Horner’s, reported any numerical work.

It is the purpose of this paper, then, to present a
calculation of the isothermal elastic constants of fcc Ne,
Ar, Kr, and Xe based upon the lowest-order self-
consistent free energy and a nearest-neighbor Lennard-
Jones (12-6) potential. These elastic constants are the
self-consistent generalizations of the quasiharmonic
elastic constants referred to earlier. We emphasize that
these elastic constants explicitly contain the effect of
both cubic and quartic force constants.

Goldman et al.” have recently presented an improved
self-consistent free energy (ISC) which contains the
leading correction to SC. This theory gives a much
better account of many thermodynamic properties of
noble-gas crystals than does SC. Anticipating our
results, we find that the elastic constants are very
volume dependent. Nevertheless, we find that the SC
bulk modulus and the one derived from the ISC free
energy differ, at most, by a few percent when calculated
at the same volume. We shall conclude (and extrapolate
to all the second-order elastic constants) that although
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ISC and SC elastic constants at their respective zero-
pressure volumes are substantially different, this
difference can be traced to the fact that the ISC free
energy predicts a different crystal volume to the SC
free energy. Since neither ISC or SC predicts reliable
values for the zero-pressure lattice constant, and
because of the strong volume dependence of the elastic
constants, we decided to list isothermal elastic constants
for Ne, Ar, Kr, and Xe evaluated at approximately the
experimental zero-pressure crystal volume, and for
clamped crystals at the 0°K volume, in Table ITI-V at
the end of this paper. At these volumes, the ISC cor-
rections are reasonably small for all temperatures.

The integral equations for the SC elastic constants are
rederived in Sec. I using a space representation that is
particularly useful for numerical work. The necessity of
working with the full integral equation has recently
been stressed by Klein ef al.8 in a study of the bulk
moduli of Ar and Ne. The calculations are outlined in
Sec. ITI. The various approximations to the complete
SC elastic constants that have been proposed are dis-
cussed in Sec. IV. In Sec. V, we discuss our results at
various volumes and make an estimate of higher-order
contributions. Our paper should be regarded primarily
as an investigation of the usefulness and range of
validity of special dynamical models. Thus no attempt
is made to confront our calculations with experiment.

II. ELASTIC CONSTANTS IN FIRST
SELF-CONSISTENT APPROXIMATION

Elastic constants can be conveniently defined as
suitable strain derivatives of a free-energy density. In
this chapter, we chose the SC free energy and outline
the analytical procedure for taking the required strain
derivatives.

A. Self-Consistent Equations (SC1)

Following Choquard, let us introduce the first-order
self-consistent equations

Das(q)= (ZM)_IZ ﬂp(Q)np*(Q) eXP(%)\p:VV)‘Paﬂ(Rp)y

where 7,(q)=exp(iq-R,)—1, and
Nag?= (MN )™ 2 1,(q)n,*(q)
qJ

XLe(95)/wai*Jea(qs)es(a),

where €(q7)="7fwqi(nq+31). we? and e, (qj) are the
eigenvalues and eigenvectors of Ds(q), respectively.
#qi=[exp(fiwq;/kT)—1]". The self-consistent Helm-
holtz free energy in first order then becomes

F= -1 InZ= —%N Z %)\a‘gpq’ga"-F%N Z [0
) )
48713 In2 sinh}fiwg8. (1)
qJ

PP, B,r, Boe°, etc., are the smeared force constants
exp(5M:VV)e(R,),  exp(3M*:VV)ea(R,),

exp(37*:VV)eas(R,), etc.
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We also define
lep(0)= 2 €a(q))e(q7)/we*Tes(a7),

in terms of which
Aag?= (MN )3 n,(q)n,*(q)las(q).
q

Let us also note the convenient representation

lsg(Q)= 2 Gg,*= ¥ [(2mv/HB)*+D T8 (2)

We further define K=3N 3 ,®*, and we note the useful
relation

0K /dlag(q) =5Das(q). 3)

B. First Derivatives of Free Energy

To obtain total derivatives (space) we shall assume
the set Jo5(q) to be intermediate variables and then we
shall use the chain rule. Thus consider a variable ¢,
which is a spacelike variable (i.e., it does not depend on
temperature). Then

dF/de= (0F/3¢) (1, + 22 Zg [9F/0l.s(q) L dlas(q)/de].

Using Eq. (1) for F, we obtain after much cancella-
tion of terms (see Choquard?)

dF/de= (0K/0¢) 1,5(a0)-

This cancellation is due to the self-consistent con-
dition imposed upon the frequencies and is peculiar to
the first derivatives of the free energy. As we shall see,
such simplification does not occur for higher derivatives.

C. Second Derivatives of Free Energy

Now we are concerned with

dZF/d€2d81= (d/d&‘.g) ((9K/3€1)(za3)

~( _6_2£> 0 oK dly(q)
Jde905y (lag}  qoB alap(q) der  dee

_ 2K
de208y

ad dK dlaﬂ ( q )

9e d&z

aas 951 9lap(q)
Using Eq. (3), we obtain
dZF/d82d€1= 62K/652651+% Z (E)Dq’"ﬂ/aa)[dl,,,g(q)/deﬂ.
qaf

Now with the help of Eq. (2) consider
dlop(q)/des= 2 (dGq,**/des)

v

=2 (=82 quml[dpa’ﬁ’(q)/deﬂcqvﬂﬂ’

alf!

=— 2 2 BlGa*¥Go,® T [dDap (q)/der]

alfl oy

=— %ILaﬂa’ﬁ’q[dDa’ﬂ' (q)/de2],
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where

(4)

Using Eq. (2) and the well-known method of sum-
mation (see, for instance, Morse and Feshbach?), one
can show that

Logorprd= 2 €a(qj1)es(q72) e (q71)es (q72)

a2

X {6(qjl)/‘*’qjlz""(Qj2)/wqi22} (wai—wqis?) ™
We shall also use the space representation of L,
Laparg?#?= (4M°N )™

X Z Laﬁa’ﬁ’qﬂpx (q)ﬂal*(q)npz(q)"lm* (q)
q

Logorg 1= b Gq,*¥Gq P,
v

Thus we can now write
@F / deydey= 8°K /de201
-3 3D Z (aanﬁ/aal)Laﬂa’ﬁ’q(dl)qa,ﬂl/ds2)'

q af a/f/

If we go over to the space representation, we obtain
- by substituting the expression for D,s(q)

@*F [ desdey= 3°K / 9e10¢,

_%N Z Z (a‘baﬁ“/ael)Laﬂa’ﬂ'mn(d(ba'ﬂ’n/d52)- (5)
p1p2 aBalp!

The problem now is to find an expression for
d@a:g'”/dezz

APy P/ dey=0Bap??/ e,
+ qua [9®up#/3lys(q) ILdlys(q)/dez].
Going back to Eq. (4.), we obtain
Ay 2/ dey= 0Py *?/ e,
— 2 2 [0%uwp?/3lys(q) ILysys[dDys (q)/de].

Qs y/8’

Now
Parp??/0l45(q) =[0/0115(q)] exp(3A*2: VV)parg (R,,)
= (ZMN)“lnn(Q)npz*(Q)‘I’a'ﬂ'w”’-

1 ——
Fic. 1. Diagrammatic repre-

sentation of Eq. (8). The first term

corresponds to the frequencies 3
occurring in Eq. (1). The second
term was first discussed by Horner.

T 8 88
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TasLE I. Contributions to the elastic constant Hy; (kbar) of
successive terms illustrated in Fig. 1. The term labeled 1 cor-
responds to the first term on the right-hand side of Eq. (8). The
terms labeled 2-15 are the successive terms obtained from the
series expansion of [14C7J. Horner’s approximation neglected
all terms beyond the second. All calculated elastic constants are
given at the experimental volume.

Neon Xenon

Term 0°K 23.5°K 0°K 160°K
1 21.55 19.19 56.64 46.88
2 —7.20 —12.53 —1.88 —28.48
3 +2.10 +7.00 +0.05 +14.70
4 —0.63 —3.99 —-7.74
5 +0.20 +2.29 +4.13
6 —0.06 —1.33 —-2.22
7 +0.01 +0.78 +1.21
8 —0.46 —0.66
9 +0.27 +0.36
10 —0.16 —-0.19
11 +0.10 +0.11
12 —0.06 —0.06
13 +0.03 +0.03
14 —0.02 —0.01
15 +0.01

Total

2—15 —5.580 —8.072 —1.829 —18.815

Also

ADyy (q)/des= (2M ) Ep_;. 0a(U)55™ () (dByr207/ der).
Thus
Ao/ dey= 0B g 2/ dey

— X X (4MN),(q)n,0*(q)

qy8v/8’ p3

X q’d’ﬁ' ¥3P* Mg (q)npa* (q) (dq’v’é' "3/0,'32)
or

d@arﬁf "2/0352 = a@arp' "2/652

— 2 X Bargrys”Lysys P2 (dD 5/ dey).  (6)
p3yd y/8/
Equation (6) is an integral equation which could be
solved by successive iteration.
It is useful now to symbolize the various tensor
contractions by the symbol ®. Further, we define
Caﬁw””: Z d’aﬁv’ﬁ’plLv’b"y&“”~
Y
® is defined as a lattice sum and a sum over two
Cartesian coordinates, so the Eq. (6) can be written

dq)a, , P2 aq;a, , P2 dd\r2
o <C® —~>
dsz 652 d82

alf!

or
dPurp??/der= ([14+CT'®@0%/dc2)arpr**
= ([1=CH+C*—C%++ - - @D/ des) .
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TaBrE II. Sensitivity of the second term on the right-hand
side of Eq. (8) to the number of q points used in the scan of the
Brillouin zone for Ne at 0°K.

No. of
q points Hozon Hezyy Heyay
256 —5.587 —3.664 —2.542
2048 —5.580 —3.668 —2.536

Thus we have now our desired result:
dZF / d€2d€1= 32K / (962661
—3N 2 2 (0Pus?/de1) Logyse?

p1p2p3 afalflvé

X4CT ywp 20 (0Pap**/de2), (6”)
with
1a375“p2= 0109007085
and
Caame: Z ‘I’aauv“Luvya‘"”-
By
D. Application to Elastic Constants
We define
Hpim= (Nv)™1(8°F /OuixQttim), (7)
where the #;;’s are homogeneous strain parameters;
/uw= 2>, Rp?(3/R").
p
H ;31 are the elastic constants.
NEON
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F1c. 2. Test of Horner’s approximation for Ne. The upper
curve corresponds to the complete evaluation of Eq. (8) (all
the terms shown in Fig. 1). The lower curve corresponds to setting
C=0in Eq. (8) (the first two terms in Fig. 1). All results are for
the volume for which pgc=0.
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Thus, if e=wuy and e=uim, we can use Eq. (6")
immediately to obtain

@F ) du i@t 1= K | d%45:0% 1
—3N > (0Dug?/ it ) Lagys™tP?

p1p2ps; afyby/8!

XAHCT 5y 7205(0B 45073/ i)

Substituting for K=4NY_,®" and using Eq. (7), we
obtain

NvH iim=3N 3 RipPR,,PD
P

—-%N Z Rk“';’iaﬂ’"Laﬁya'"”
p1p2p3; aBydy/é!
)([1+C]—1757,8,P2p3@7,5,lpmepa_ (8)
A
0 RGON
%
<
> ok sc
2
-4
<
=
o |
b4
5]
© Hy
o
’J, 20
P4
)
(3]
\
10—
Hiz
L | L | L | )
(o] 20 40 60 80

TEMPERATURE °K
F1c. 3. Like Fig. 2 but for Ne—Ar.

The structure of Eq. (8) is illustrated in Fig. 1. The
first diagram corresponds to the first term on the right-
hand side of Eq. (8). Successive terms occurring in the
expansion of the last term in Eq. (8) are illustrated in
the remaining diagrams.

Before leaving the section, we recall that elastic
constants as defined by Eq. (7) do not have the full
symmetry properties of usual second-order elastic
constants unless the solid is under zero stress, i.e.,

H ;= (N'l))_l(aF/auik)=0.

Strictly speaking, then, one cannof use Voigt’s notation,
Hg,-,,-n'—" Hu, H,zw=H12, and HWW= H44, since fOI'
example, in general, H.,s H,,,. Nevertheless, for
convenience, the above notation has been used in the
figures for labeling the various curves.
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Fic. 5. Like Fig. 2 but for Ne—Xe.
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Fic. 6. Illustration of the volume dependence of the elastic
constants.

III. OUTLINE OF CALCULATIONS

All the calculations reported on in this paper have
been carried out using a nearest-neighbor Mie-Lennard-
Jones interatomic potential

¢(R,)=¢[(Ro/R,)"*—2(Ro/R,)"], )

where the parameters ¢ and R, have been taken from
Horton’s review article.’ Near the origin Eq. (9) is cut
off so that the smeared force constants derived from
this potential [see expressions after Eq. (1)] are well
behaved. We believe that our results are not significantly

ARGON

ELASTIC CONSTANTS (kbar)

o]

20 40 60 80
TEMPERATURE °K

Fic. 7. See Fig. 6.
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F16. 8. See Fig. 6.

affected by this procedure. The arguments for this
choice have been presented elsewhere.!*

The method of solving the self-consistent equations
for the frequencies and eigenvectors and the force
constants, e.g., {¢asy)sc, has been discussed elsewhere.”

60

XENON

ELASTIC CONSTANTS (kbar)

Visc

) S L ! L L1
0 20 40 60 80 100 120 140 160 180

TEMPERATURE °K
F16. 9. See Fig. 6.
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The only new feature of the present calculations is the
explicit appearance of the fourth-order force constants.

The term involving [1+CT! can be evaluated either
by direct matrix inversion or by series expansion in
powers of C. We have used both methods in the present
paper.

The series expansion gives rise to the diagrammatic
representation shown in Fig, 1 starting with the second
diagram. Our isothermal elastic constants are directly
related to the quasistatic limit of the phonon self-energy
which is symbolically given in Fig. 1. We emphasize
that the vertices are fully renormalized and that the
lines are the first-order propagators. We stress that the
evaluation of each diagram in the first figure involves
only a single scan over the Brillouin zone, which was

NEON

B (kbar)

F1c. 10. Bulk modulus of Ne calculated in various approxima-
tions. The upper curve is derived from the frequencies occurring
in Eq. (1). The curve labeled SC is calculated from Eq. (8) and
the lowest one corresponds to Horner’s approximation [C=0 in
Eq. (8)]. The dashed curve is calculated from (V92Fygc/0V?)p.
All the curves have been calculated at the volume for which
Prgc=0.

carried out using 2048 q points in the full zone. For
selected points in reciprocal space we have also used 256
points in the full zone to check the accuracy of our
results. The convergence of the self-energy is illustrated
in Table I. We see that at most 15 terms are required
for the heavier noble-gas solids. From Table IT, we see
that 2048 q points give adequate accuracy and selected
results are contained in the figures.

IV. COMPARISON TO PREVIOUS WORK

Feldman ef al.! have carried out calculations using the
quasiharmonic free energy and the same interatomic
potentials. They presented no result for Ne. The present
isothermal constants agree quite well with theirs at low
temperatures. At higher temperature our isothermal
constants show a smaller temperature dependence.
However, through a fortuitous cancellation, adiabatic
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constants derived from both theories (at the experi-
mental zero-pressure volumes) are very similar at all
temperatures.

Gillis et al? calculated wave velocities using the
leading term only of Eq. (8). That this procedure does
not give useful results was pointed out independently
by Gétze and Michel® and by Goldman et al.” Horner*
truncated the series in Eq. (8) after the second term.
The necessity of using the full series was first pointed

Tasre III. Elastic constants at approximately the zero-pres-
sure volumes for various temperatures. Please note that H,pm,=
1ty Hazyy=cn—p, and Hayey=cu. Also note that p is the pressure
in the SC approximation and the bulk modulus B=— (Vap/dV)r.
All quantities are in kbar except for the lattice parameter a in &.

T a H;zzo Hazyy Hyyzy B b2
Neon

0.00 4.4640 15.97 7.10 8.25 10.06

7.00 4.4646 15.88 7.05 8.21 9.99 —0.16
10.00 4.4677 15.52 6.87 8.04 9.75 —6.12
19.00 4.4983 12.96 5.49 6.84 7.95 —51.16
23.50 4.5187 11.12 4.50 5.97 6.65 —95.25

Argon
0.00 S5.3111 39.78 19.16 20.12 26.00 —51.59
10.00 5.3117 39.58 19.05 20.03 25.87 —50.34
25.00 5.3235 36.91 17.50 18.77 23.95 —38.59
55.00 5.3801 29.24 13.04 15.16 18.41 —50.74
70.00 5.4209 25.19 10.78 13.24 15.52 —102.4
83.00 5.4259 21.47 8.76 11.48 12.88 —183.5
Krypton
0.00 5.6459 48.76 23.92 24.51 32.20 13.09
10.00 4.6469 48.40 23.70 24.34 31.95 13.59
25.00 5.6581 45.66 22.07 23.05 29.95 37.61
55.00 5.7003 38.85 18.06 19.87 25.04 55.90
85.00 5.7570 32.07 14.17 16.59 20.14 2.35
115.00 5.8331 25.00 10.31 13.31 15.12 -139.9
Xenon

0.00 6.1322 54.81 27.08 27.50 36.32 —5.55
20.00 6.1369 53.29 26.15 26.83 35.23 42.64
40.00 6.1545 49.86 24.06 25.17 32.72 88.26
80.00 6.2107 41.42 19.12 21.22 26.56 —8.02
120.00  6.2777 33.62 14.72 17.56 20.94 —123.5
160.00 6.3405 28.06 11.67 14.90 17.06 —116.26

out by Klein e al.” in a calculation of the compressibility
of Ne and Ar. The present paper extends their work to
the individual isothermal elastic constants. The effect
of taking the full series in C is compared to retaining the
first two terms only (Horner’s approximation) in
Figs. 2-5. We confirm that for Ne at all temperatures
Horner’s approximation is unreliable. While this ap-
proximation is clearly reasonable for Kr and Xe at low
temperatures, it again breaks down at higher tempera-
tures.

5001
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Fic. 11. Like Fig. 10 with Ne—Xe.
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V. VOLUME DEPENDENCE AND
HIGHER-ORDER EFFECTS

We have recently studied the thermodynamic
properties of solid noble gases” in both the SC and ISC
approximation. The SC approximation gives volumes
that are significantly too low, while the ISC approxima-

TaABLE IV. Temperature dependence of elastic constants of
crystals clamped at approximately their 0°K volumes. Listed
quantities are in kbar.

szzx szw H:W-’HI
T cu Cia—p Cag ?
Neon ¢=4.4640 &

0 15.99 7.108 8.262 2.02
10 15.82 7.021 8.173 20.57
19 15.26 6.699 7.885 152.02
23 15.11 6.599 7.797 242.05

Argon ¢=5.3111 &

0 39.78 19.16 20.12 —51.6
20 39.07 18.73 19.77 +51.9
40 38.42 18.16 19.39 444.6
60 38.59 16.07 19.37 909.0
80 39.08 18.22 19.50 1376.5

Krypton ¢=5.6459 &4

0 48.76 23.92 24.51 13.09
20 48.01 23.42 24.13 149.5
55 47.72 22.87 23.86 870.8
85 48.34 22.99 24.01 1517

115 49.20 23.32 24.28 2138
Xenon ¢=6.1322 A

0 54.81 27.08 27.50 —5.55
30 53.94 23.40 27.05 +284.7
80 54.27 26.14 27.03 1183

120 55.07 26.37 27.25 1877
160 56.02 26.73 27.55 2536
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TaBLE V. Some selected values of isothermal—adiabatic
correction in the SC approximation.

y*TC,/V
T (°K) a (R) (kbar)

Neon

19 4.502 0.96

23 4.529 1.28
Argon

60 5.400 3.50

80 5.464 4.04

Krypton

85 5.773 4.30

115 5.852 4.90
Xenon

120 6.283 4.73

160 6.364 5.35

tion predicts volumes that are somewhat too high.
Figures 6-9 show how SC H’s depend upon volume, and
we see that this is substantial effect.

In this section we want to discuss how reliable our SC
elastic constants are. That is, how big is the explicit
effect of AF not included in FSC? Since we have in-
formation on ISC elastic constants only for the bulk
modulus, we will discuss this case now. We show the SC
and ISC bulk moduli in Figs. 10 and 11 for Ne and Xe
at the ISC volumes predicted by the respective ap-
proximations. It is clear that the results are rather
close, even at high temperature. We conclude that (i)
the bulk modulus is substantially volume dependent
and (ii) the difference between the SC and ISC bulk
moduli is largely due to the failure of the SC model to
predict the volume of the crystal properly. We have
seen this directly by noting that the ISC contribution to
the first volume derivative is much larger than the
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corresponding contribution to the second derivative.
We will assume that the conclusions drawn from the
bulk molduli apply equally to the other elastic constants.
Thus, we believe that our SC elastic constants are
reliable to ~79%, or so as long as they are calculated at
the proper volume. For comparison with experimentally
measured elastic constants—not a primary concern of
this paper—we have listed in Tables IT and III elastic
SC constants calculated at the experimental volume of
the crystal.

Since experiments have been reported on clamped
crystals and others are in progress, we also present SC
elastic constants at the 0°K volume of the crystal
(see Figs. 6 and 7 and Tables IV and V). We see that
these are essentially independent of temperature.

VI. CONCLUSION

We have presented values of the self-consistent iso-
thermal elastic constants for solid noble gas as a function
of the volume and temperature. Our work is based on the
(12-6) Lennard-Jones potential with nearest-neighbor
forces. We show that SC elastic constants are likely to
differ little from ISC elastic constants as long as they are
both calculated at the same volume. We show that
vertex renormalization effects are very large, and so
Horner’s approximation is not generally satisfactory for
solid noble gases. We will present elsewhere a comparison
of our work based on the self-consistent phonon theory
with recent work employing Monte Carlo calculations!?
on classical systems of small numbers of particles.
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