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Recombination and Trapping Processes of the Injected Carriers
in Gold-Doped Silicon at Low Temperatures
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Steady-state recombination and trapping processes of the injected carriers in gold- and phosphorus-
doped silicon have been studied for the case that the doping and temperature range are such that the
equilibrium carrier densities are small compared with the impurity density. The fluctuation of the charge
in the impurity centers as a result of injection is taken into account in the charge-neutrality condition.
The relationship between the injected carriers (electrons and holes) for charge neutrality is established
in the form of power laws (i.e., hp= 1'ae ) that hold in different ranges of injection. Numerical analyses
of 5p versus d,n and 7 „versus hn are presented for the case of n-type silicon overcompensated and under-
compensated by the gold impurities.

I. INTRODUCTION

In steady-state injection, the emission and capture
of carriers (electrons and holes) by impurity centers
cause the charge states in these centers to change from
their thermal equilibrium value. Therefore, the density
of carriers trapped in the Qaws is, in general, a function
of the injection. If the density of impurity centers is
larger than the injected carrier density, then the charge
in them will play an important role in preserving charge
balance under steady-state injection. In the present
paper, we shall show that the charged impurity centers
are dominant in controlling charge-neutrality except
at very high injection.

The Shockley-Read' (SR) and the Sah-Shockley'
(SS) statistics are used to interpret the interaction of
the phosphorus and gold impurity centers with the
injected carriers in silicon at. low temperatures (below
100'K). The trapping of the injected carriers in these
centers is included in a generalized charge-neutrality
equation for arbitrary injection levels and Raw densities.
The formulation yields the relationship between in-

jected hole and electron densities that preserve charge
neutrality.

Speci6c results of the trapping and recombination
processes as a function of injection are obtained for the
case of e-type silicon doped with gold impurity at low
temperatures. It is shown that a simple power-law
relationship between injected electrons and holes can be
-de6ned over specific injection range.
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FIG. 1. Localized states introduced by gold and phosphorus
in the energy-band gap for silicon. EA„- denotes density of nega-
tive gold acceptor centers, NA„ for neutral gold centers, and
Eg„+ for positive gold donor levels.

development, Shockley and Read found the probability
of occupancy of a single level impurity under steady-
state injection. This gives the density of electrons in
the phosphorus level as'

~onrs+ CvDP1D
(eg) ——Ag)

C n(rs+rsrn)+&, n(P+prn)
'

where C„~ and C„~ are the electron and hole capture
rate at the donor level, respectively; rsto and pro are the
electron and hole density when the Fermi level coincides
with the donor level, respectively; e and p are electron
and hole density, respectively.

II. GENERALIZED CHARGE BALANCE

The assumption of charge neutrality is vahd when
the actual net charge density necessary to satisfy the
requirements of transport is very small compared with
the total opposing variable charge densities. In order to
describe these, we need to consider 6rst the details of the
Inodels for the 1mpuI'1tles.

In Fig. 1 we show the energy-band model for silicon.
The impurity centers for gold and phosphorus are shown

in their possible charge states.
The emission and capture statistics of the phosphorus

level can be characterized by the SR model. ' In their
2

There is experimental evidence' suggesting that the
cross section of electron capture by phosphorus is about
1000 times larger than that of hole capture. This is
reasonable, since electron capture by phosphorus is by a
Coulomb attractive center requiring small energy
transfer, whereas hole capture is by a neutral center
requiring a large energy transfer. These considerations
allow us to neglect the interaction of the phosphorus
level with the valence band by setting C„~ to zero. The
resulting density of electrons in that level is then
reduced to

NnN n[ej(n+rstn) ].
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Sah and Shockley's statistics' give the ratios of the den-
sities of a multilevel impurity in consecutive charged
states. Applied to gold in silicon, this gives

&~. /&~:=(~C +pv~C. )/(~u2C +pC. ) (3)

Xg+/Xg *=(e iyC++pC, *)/(nC„++p ipC„*), (4)

where C„and C„- are the electron and hole capture
rate at the gold acceptor level, respectively; C„+ and
C~ are the electron and hole capture rate at the gold
donor level, respectively; @i~~ and pi~2 are the electron
and hole density at the gold acceptor level; e ~/2 and

p ]/Q are the electron and hole density at the gold donor
level, respectively. These two ratios, along with the
requirement that

+A ++A ++Au +A (~)

can be solved for the densities of the individual charged
states of thc gold ccntc1S. These dcnsltlcs arc functions
of the injected carrier densities.

%C can now write the generalized charge balance
equation for gold- and phosphorus-doped siheon:
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or, subtracting the thermal equilibrium contributions,
we have excess density

hp+ EX'„+=hn+ hmg)+ EX'„,
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FIG. 3. hp versus Ag in I-type silicon overcompensated with
gold at low temperatures. The assumed values are E~= 10'6 cm 3

Eg&=2&10' cm, and g«g=10' cm . curve for y«/2=100,
y 1/2=0. 1; & curve for y«/2=100, y 1/2=1," + curve for y«/2=500,
V «/2=0. 1.
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where p= po+hp and e= ~+he. Each term in Eq. (7)
is a function of hp and he only; therefore the equation
gives an implicit relationship that the injected carrier
densities have to satisfy for charge balance.

The procedure outlined above applies to e-type
silicon either overcompensated or undercompensated

by gold, In fact, this approach could be applied in any
case 1n semlconductoI's where a shallow 1mpu11ty ls
compensated by a deep single or multilevel impurity,
The details of the results are very sensitive to the level
of compensation and the capture parameters. There is
a general tendency which can be very useful. Under
certain conditions, one can de6ne ranges of injection
where the excess carrier densities satisfy the charge-
balance equation by obeying a power law. In other
words, one can de6ne the parameters r and n such that

8 . 9 10 11 12 13 14 15 16 17
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FIG. 2. Ap versus AN obtained from the charge-balance condi-
tion in n-type silicon undercompensated with gold at low tem-
peratures I',1'.e., no((E~,). The assumed values are ND -—2&10»
cm ', Sp„=10', and @0=10" cm '. curve for y«/2

——100,
y «/2=0. 1;+ curve for y«/2=100, y «/2=1; + curve for y«/2

——500,
p-«/2 0 1 0 curve 4 for +1/2 —5 p-«/2=0

holds with I' and n approximately constant within a
specified range of he and hp, and n is either 1 or 2.

III. RESULTS AND DISCUSSIOÃ

A. Undercomyensated Case

Consider the undcrcompensatcd case at temperatures
low enough that the material is extrinsic n type and the
equilibrium electron density is small compared to the
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gold concentration. This can be achieved with X~„)
10"cm ', and XD)S~„, at temperatures below 30'K.
At these temperatures, the equilibrium carrier density
is given by4:

tpp Nc[(ND —NA )/NA„] exp[(ED Ec—)/kT].
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Here we let E~ represent the degeneracy of the donor
level in the manner described by SR.' Also, at these low
temperatures, e&~p, p&~p, e i~p, p i~&, and pp are negligibly
small and n~L can be expressed in terms of no. Using the
definition of niD and Eq. (9) we 6nd that'

+1D 'LNA. /(ND NA ) ]imp (10)

From Eqs. (3)—(5) we find tha, t

NA„——NAu[ehP/(hP'y g(p+nhP+n'/y, )p) j. (11)

Finally, realizing that at thermal equilibrium

(ND —riD) ~t ..q. =NA

(NAu ) ~th. eq. NAui

the charge-balance equation can be rewritten as

26PPp i(p+itAP
&p+NA

Ap'V vp+&Ap+-&'h v~

Xg)
—1

= Dm+NA„hn eP+ Ae
XD—Xp„

where

yi)p ——C„ /C„'

(12a)

(12b)

(13)

is the ratio of the hole and electron capture rate at
negative and neutral gold acceptor levels, respectively,
and

y—i(p = Ct,'/Cu+

is the ratio of the hole and electron capture rate at the
neutral and positive gold centers.

Equation (13) can be solved for hp as a function of

he, with the impurity concentrations and the capture
rate ratios as the parameters. This solution has been
computed for assumed values of the y's and the results
are plotted in Fig. 2. In this graph, we can identify five

ranges of injection as follows:

(1) At low injection, the equilibrium distribution is
perturbed only slightly, and we obtain a linear range.

(2) The low-injection nonlinear range occurs when
the injected carrier densities are comparable or greater
than the equilibrium density. In this range the density
of electrons trapped in the Qaws changes strongly with
:injection.

(3) The intermediate linear range results when the
donors become saturated with electrons. In this range
the change in the gold centers remains invariant with
respect to injection, maintaining a constant ratio of
free carriers.
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(4) The high-injection nonlinear range results as the
injected carriers themselves begin to contribute directly
to charge balance.

(5) In the high-injection linear range, the carrier
densities are simply so large that they dominate and the
charge-balance condition is Ap= An.
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3. Overcompensated Case

I.et us consider the overcompensated case (Xs,„)En)
at low temperatures. The thermal-equilibrium densities
are

(14a)

and

Au ~theq. +Dq

/+Au ~th. eq. +Au +Dq

'4u+ ~eh. eq. = 0

(14b)

(14c)

(14d)
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The case of compensation by a single-deep-level
impurity can be obtained by setting y 1~2 to zero. Curve
4 in Fig. 2 is plotted with this assumption. This case
differs from the two-level impurity in that the inter-
mediate linear range is eliminated. The high-injection
linear range remains unchanged, showing that the gold
donor level has negligible effects in this range of injec-
tion.

The assumed values of the y's were chosen according
to the following criterion. Ke assume y1~&)1 because it
is the ratio of an attractive to a neutral capture rate.
Similarly, we assume that p &~2&1.' However, the ex-
perimental data available do not establish these ratios
accurately. Therefore, we arbitrarily chose a low and a
high value for the y's (yt/s ——500, 100; y t/s

——1, 0.1) in
our solutions. The y's determine the boundaries and
the factors of proportionality for each range of injection.
This can be observed in Fig. 2 and mill be substantiated
in the power laws obtained later in this paper. The
exponents of the power laws are not affected except for
the extreme case where the range is too restricted to
make a power law valid. This situation can be observed
in Fig. 2 for F1~2= 100 and y 1/2= 1; the nonlinear range
following the low-injection linear range is not a power
law of 2 as in the other cases.

10
I

1010
I

1012
I

1014
I I

10 = hn {cm )

FIG. 5. Density of the charged and neutral gold centers as a
function of excess electron concentration for the overcompensated
case. The assumed values are 2Ã~=$~„=2)&10"cm 3, II~=10"
cm ', y1~2=100, and y 1~2=0.2.

%ith this we write the charge-balance equation for this
case as follows:

(Xa +En) hp'p t/s (Sg ¹))An'/e/t/s+N&bnhp

5p p t/s+Bnkp+An /&t/s

=An+Snhn(nrem)+An) t. (15)

The equilibrium carrier densities are essentially zero
because the Fermi level is locked at the gold acceptor
level and it is not practical to represent n» in terms of
n0 in this case.

We have obtained numerical solutions of Eq. (15) for
b p versus b,n for assumed values of the parameters. The
results are plotted in Fig. 3. Again, five ranges of in-
jection can be identified and the y's have the same effect
as discussed for the undercompensated case.

The low-injection range in this case is limited by n».
For An small compared to n1D, the equilibrium distri-
bution is only slightly disturbed, resulting in the low-
injection linear range. %hen An becomes comparable to
and larger than n», the trapped carrier densities change
strongly with injection, and the low-injection nonlinear
range is obtained. For higher injection, the donors
saturate. The explanation for the intermediate linear
and the high-injection ranges follows the same reasoning
as for the undercompensated case.

%e can obtain approximate solutions of the charge-
balance equations, giving 5p in terms of hn in some of
these ranges. These approximations take the form of
power laws, i.e.,

015 hp= I'hn'. (16)
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The values of the constants F and a are listed in Table I,
along with the boundaries of the corresponding range
injection.

The small signal quadratic ranges have a single
representation valid from zero injection to the upper
bound of the quadratic range. These are

FzG. 4. Density of the charged and neutral gold centers as a
function of excess electron concentration for the undercompensated +p = [(%& Jt/Au)/+DV1/2][+n+ (+n /'ns)] for +D+ +Au
case. The assumed values are ED=2X10"cm-', %~„=10"cm-',
n0=10" cm ', y1g~=100, and y 1~2=0.2. (17)
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R=/An/r.
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Flo. 6. Normalized electron lifetime r„/r * as a function of
excess electron density for undercompensated case and for diGerent
values of r '/r„~, y1/2, and y 1/2. The assumed values are ND ——2&(
10"cm ', $~„=10"cm ', and g0=10'0 cm '.

We have obtained the relationship between the
injected electron and hole densities for charge balance
and have shown that there exist different ranges of
injection where this relationship reduces to a simple
power 1aw (i.e., hp= Fd,n ). The exponent in this law
varies between about —,

' to 2, and under certain condi-
tions a power law can extend over more than one order
of magnitude of injection.

IV. RECOMBINATION

The recombination rate through the gold centers is
given by2

(NA„+NA„*) C„C„E= (np n2)—
C„*(n+n,)2)+C„-(p+p, ( )2

and

lip [(NA ND) /NDVl/2]+n+ (NA /NDnlDY1/2) +n

for ND(NA„. (18)

I
- I

solid curves

100» Y 1/2 0.1

dashed curves

Yl/2 100, y

T I T
X X
n p

~ 10TX X
n p

2

yl/2
~ 500

y-1/2 0'1

X X
T ~ T

n p

where r„'=1/C„*NA„ is the electron lifetime at the
neutral gold acceptor level and r„'= 1/C„'NAu is the
hole lifetime at the neutral gold donor level.

From the charge neutrality, Eqs. (13) and (15), the
density of the charged and neutral gold centers can be
computed as a function of excess electron density. This
is demonstrated in Figs. 4 and 5, assuming that the
hole and electron capture rate ratio at the gold acceptor
center yj/2=100, and the hole and electron capture
rate ratio y y/2=0. 2 for both undercompensated and
overcompensated cases. The curves in these figures
were obtained numerically during the computations
leading to Figs. 2 and 3. Note that the charged and
neutral gold density versus injection curves (Figs. 4
and 5) are insensitive to the change in the values of
py/2 and '1/

The electron lifetime r„as a function of excess elec-
tron density can now be computed by using Eq. (20).
The result is shown in Figs. 6 and 7, assuming that
pl/2 ~00 and y ~/c2= 0.1 and for different 7. and 7 „

(NA *+NA +) C„+C„*
)C„+(n+n „,)+C„*(p+p v2)

I

10

X 10 x'nj p

log Iln
10

In the previous charge-balance analysis, we found the
density of impurities in each charged state. Therefore,
charge balance gives all the information we need to
evaluate the recombination rate. At low temperatures,

Fzo. 7. Normalized electron lifetime r„/r„* as a function of
excess electron density for overcompensated case and for diGere~~t
values of r */7„*, y1/2 and y &/2. The assumed values are Ep,„=
2ND=2)&1016 cm 3, n~1=10'0cm 3.
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ratio. It is interesting to note that the 6ve injection
ranges appeared in Figs. 2 and 3 are also apparent in

Figs. 4—7. In the low-injection linear range, most of the
gold centers are in the thermal-equilibrium con6gura-
tion and the lifetime is constant. In the quadratic
range, the charge in the gold centers changes and most
of these become neutral in the upper end of the range.
The decrease of the lifetime is mostly due to the increase
in hole density. In the intermediate linear range the
distribution of charge in the gold centers and the lifetime
are essentially constant. In the high-injection region the
charge distribution changes to the high-injection linear
range values and the electron lifetime again reaches a
constant value. It is also noted from Figs. 6 and 7 that
the normahzed electron lifetime r„/r * versus injection
(Art) depends strongly on the ratio of r„*and r„*.

V. CONCLUSIONS

The Shockley-Read and the Sah-Slmckley statistics
were used to describe the interaction of goM and
phosphorus centers with injected carriers in sihcon, The
most signi6cant effect of these centers on the injected
electron and hole densities is that their equality is
destroyed by the charge-balance requirement. The

*Present address: Bell Telephone Laboratories, Inc. , Allen-
town, Pa. 18103.

'%. Shockley and %'. T. Read, Jr., Phys. Rev. 87, 835 (1952).
'C. T. Sah and %. ShocLley, Phys. Rev. 109, 1103 {1958).' J.M. Brown and A. G. Jordan, J.Appl. Phys. 3V, 337 (1966).

relationship between the injected carriers for charge
neutrality is established in the form of power laws
(i.e., Ap=Fhst ) that hold in different ranges of in-
jection.

The power-law relationship between hP and Is.rt is
linear (i.e., n= 1) in three ranges: at very low or very
high injection and in an intermediate injection range.
The low and intermediate ranges are joined by a well-
defined quadratic range (i.e., u=. 2). We have found
the constants I' and 0. that de6ne these power laws in
four defined ranges of injection. Also, numerical analysis
was used to plot hp versus Itn for all injections satisfying
the neutrality condition (Figs. 2 and 3) . Application of
the present theory to the photomagnetoelectric effect in
gold-doped silicon at low temperatures has shown good
agreement with experimental observation. ' Another
application of the present theory to the diffusion of
photoexcited carriers in semiconductors will be reported
lIl a latei publlcatloIl.
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The energy distribution function of carriers in n-type cadmium sulphide is calculated considering acoustic
(both deformation-potential and piezoelectric), impurity, and polar optical modes of scattering. The
drift velocity obtained from a rigorous solution of the Boltzmann equation is compared with the high-
carrier-concentration case where strong carrier-carrier scattering imposes a displaced Maxwellian distribu-
tion on the carriers.

I. IÃTRODUCTIOÃ

The transport properties of e-type cadmium sulphide
at high electric 6elds have received the attention of
several workers. ' ' The scattering process in this semi-
conductor is quite complex; in addition to the electron-
electron and electron —ionized-impurity scattering, the
carriers also interact with the acoustic phonons (both
deformation- and piezoelectric-potential modes) and
the polar optical phonons. In materials of low resistivity
the application of a high electric 6eld results in an
appreciable disturbance in the acoustic-phonon distribu-

tion. This gives rise to an acoustoelectric current,
which Rows in a direction opposite to the normal drift
current and gives rise to current saturation and oscilla-
tion when the applied held exceeds a certain critical
value. For higher-resistivity materials, however, the
phonons remain in equilibrium, and the experimental
results should be explained satisfactorily by conven--
tional hot-electron theory neglecting the acoustoelectric

effect.

Hot-carrier conduction phenomena in semiconductors
can be studied theoretically by solving the Boltzmann


