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The introduction of wave-function components from the region of the Li, E1, and U1 points of the lowest
conduction band into the ground-state wave function of the shallow donors As, P, and Sb is shown to
improve substantially the agreement between the calculated Fermi contact constants for identified ENDOR
shells and the experimental Fermi contact constants measured by Hale and Mieher. This wave-function
admixture is the band-structure analogy to configuration mixing in atomic physics, and is calculated here
employing first-order perturbation theory, the total impurity potential being the perturbing interaction.
If one considers the low-energy L1, E&, and U& regions as subsidiary minima (strictly correct only for the
L1 region), this approach represents a logical extension of the Kohn-Luttinger formalism. This admixture of
subsidiary minima is donor dependent (largest for As, intermediate for P, smallest for Sb) and is able
to explain satisfactorily the numerous observed donor anomalies, even including the inverted-order cases.
The calculated results indicate the positive identification of two new ENDOR shells, shell C as site (5, 5, 5)
and shell Ii as site (2, 2, 0), and suggest the tentative identification of nine other ENDOR shells with
lattice sites. Matching experimental Fermi contact constants and calculated values versus ko/k „for posi-
tively and tentatively identified ENDOR shells yields ko/k „=0.87+0.01. A noninversion component
of wave function has been introduced, resulting from the tetrahedral potential admixing 4f-nf wave function
(satisfying A1 symmetry) into the solution of the single-valley Schrodinger equation. This addition makes
only a slight improvement in the over-all agreement. The subsidiary-minima-admixture approach has
also been attempted for the deep donor S+, yielding an improved qualitative agreement between theory
and experiment. The admixture of subsidiary minima has a number of other physical consequences: (1)
The donor-nucleus hyperfine interaction can be reasonably accounted for, including the donor dependence,
without employing the sharply peaked Whittaker function and a cutoff radius; (2) the "shear" deforma-
tion potential determined by ESR or optical experiments using the 1s-A1 donor ground state may not
yield the true "shear" deformation potential of the 5& minima; (3) the energy of the 1s-A1 state contains
an important second-order correction from the subsidiary minima which can account for between 25 j&
and 50% of the energy correction to the effective-mass value. It is shown the valley-valley coupling terms
account for nearly all the energy correction of the 1s-A1 state, and that the single-valley correction is very
small, contrary to previous work. Analysis of the location of the lattice sites positively and tentatively
identified with ENDOR shells yields evidence that the three-dimensional appearance of the wave-function
density of the 1s-A1 state significantly rejects the tetrahedral symmetry of the atoms surrounding the
donor.

I. INTRODUCTION

The generally accepted treatment of the energy
levels and wave functions of shallow donors and
acceptors in semiconductors has been that developed by
Kohn and Luttinger. ' This elegant theory has been
very successful when applied to the excited states of
donors and acceptors; however, marked deviations
have been observed' for the 1s states (particularly in
silicon), most notably for the 1s-A & ground state. These
deviations have been attributed to central-cell correc-

tions' and a number of attempts of several different
types' ' have been made to calculate the corrected
energy of the ground state. Efforts to correct the wave
function have been made by Kohn and Luttinger4 and
also Muller' in an e8ort to explain the much larger
wave-function density at the donor nucleus obtained
from the hyperfine interaction with the donor nucleus. '
Recently, a substantial amount of remarkable experi-
mental data concerning the shallow donors As, P, and
Sb in silicon has been reported by Hale and Mieher"
(hereafter designated as HM I) using the ENDOR
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technique. These data, consisting of an additional
15 shells (Fermi contact hyperfine constants and
dipole-dipole constants composing the hyperfine ten-
sors), in addition to the original five shells measured by
Feher, " give a large amount of information on the
wave function of the donor 1s-A» ground sta'te. These
new data give much more information on the nature of
the corrections required for the ground state than
either the energy deviation or the magnitude of the
wave-function density determined from the hyperfine
interaction with the donor nucleus. It is these results
that have provided the primary motivation for the
corrections to the wave function of the ground state
proposed in this paper.

In Feher's original ENDOR study" of As, P, and Sb
donors in silicon, in which the hyper6ne tensor com-
ponents of five shells (at lattice sites occupied by Si"
nuclei) surrounding the donor were determined, a
theory of the Fermi contact hyperfine interaction for
the 1s-A» ground state based on equal admixtures of
wave function due to the six 6» conduction-band minima
was employed" to account for the data. The expression
for the Fermi contact constant a(ri) contained k, , the
wave number at the 6» minimum, as a parameter.
Feher was able to assign correctly three of the five
observed ENDOR shells for the three donors and
the analysis yielded an average value ko/k, „=
(0.85&0.03). Nevertheless, the fit of shells A [identified
as (0, 0, 4)] and 8 [identified as (4, 4, 0)] required
different ko values, the difference being greatest for As
and smallest for Sb, the same order as for the deviation
of the ionization energy from the effective-mass value.
Feher's results did provide evidence for the strong
interference involved in the wave-function density

~
ik(ri) ' since the Fermi contact constant a(ri) for

shell E [identified as the nearest-neighbor shell (1, 1, 1)
by the magnitude of the dipole-dipole constants] was
approximately an order of magnitude smaller than
those for shell A [identified as (0, 0, 4), the fourth
nearest neighbor].

Hale and Mieher" (hereafter referred to as HM II)
have used a similar theoretical analysis in an effort
to explain their extensive experimental results. They
have been able to show that the distribution of observed
shells in the four different symmetry classes of shells is
in good agreement with the calculated distribution,
but they have been able to match only one new shell,
namely, shell E as (0, 0, 8)."They have concluded that
the present theory is sufhciently inaccurate to justify
matching other shells. Thus, only four shells, A, 8, A,
and E, of the 20 or more observed shells have been
positively identified. HM II concludes there are three
major difficulties with the theory of the Fermi contact
constant: (1) The shells cannot be matched with a
single value of kp, (2) the wave function should not, in

general, have inversion symmetry; (3) the numerous
observed donor anomalies [the order of the a(ri)
values not descending from As to Sb, as do the ioniza-

tion energies] cannot be explained by the present wave
function. In an effort to obtain more experimental
information to assist in the matching of the observed
shells with specific lattice sites, Hale and Castner"
(hereafter designated as HC) have applied uniaxial
stress along a cubic axis and observed shifts and
splittings of most of the shells reported in HM I. The
{110{-plane class of shells [shells for sites (n, ii, m),
m&0; most of the unidentified shells are in this class]
all show different linear splittings with uniaxial stress,
while the (111)-axis-class shells showed quadratic
shifts with stress. This uniaxial stress work has sug-
gested the identification of one new shell, namely, shell

Q, as (1, 1, 5). However, this study has also indicated
that the calculated stress-induced shifts based on the
present wave function cannot explain very much of the
uniaxial stress data. '"

It is the donor anomalies (observed in the Fermi
contact constants, the dipole-dipole constants, ""and
also to some extent in the piezo-hyperhne constants
determined by HC) which suggest that significant
components of the is-A» ground-state wave function
are missing in the simple theory and that the amount
of these missing additional components are donor
dependent. In this paper we suggest that the admixed
components are from the region of the higher sub-
sidiary "minima" of the lowest conduction band at
points I. and K and also from the "saddle point" at
U(E') in the same band. '9 The admixture of wave
function from these other points in the lowest conduc-
tion band is similar to the con6guration mixing noted
in atomic physics" and is calculated in this paper using
first-order perturbation theory. The mixing interaction
is the impurity potential, the central-cell portion being
more important than the weak Coulombic potential.
This approach represents a logical extension of the
Kohn-t. uttinger formalism for a many-valleyed con-
duction band and introduces only one new donor-
dependent parameter per "minimum" admixed, as-
suming the shape of the band (the mass tensor) is
known in the vicinity of the admixed point.

There has been some previous theoretical interest" "
in the question of subsidiary minima. (A formal
treatment of the effect of secondary extrema in the
band structure on impurity states has recently been
given by 8assani, Iadonisi, and Preziosi. '4) This
interest centered on the question of the existence of
bound states associated with subsidiary minima.
Kaplan" and also Peterson" have concluded that bound
states may exist, providing the impurity potential is
slowly varying. However, this paper presents, to the
best of our knowledge, the first evidence for the ad-
mixture of wave-function density from subsidiary
minima into the ground-state wave function of shallow
donors. The possible extension of this idea to deeper
donors" such as S+ is also considered in this paper. It
has been the numerous band-structure calculations on
silicon by the pseudopotential method, " " the k y
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method, " and the Fourier series expansion approach"
which have given an indication of the location of these
subsidiary "minima" and their approximate energy
above the A1 absolute minima. Refinement of the
calculations presented in this paper may permit the
direct determination, using the ENDOR data, of the
energy differences between the absolute minima and the
subsidiary "minima" within the lowest conduction
band.

In Sec. II the technique for adding wave-function
components from subsidiary minima is developed.
Section III explores the various physical consequences
of the admixture of subsidiary minima into the donor
ground-state wave function, including the effect on the
determination of the "spin-resonance value" of the
shear deformation potential constant. " Section IV
presents the results of detailed calculations of the Fermi
contact constants for approximately 25 shells for the
As, P, and Sb donors in silicon, and suggests the
identification of several new ENDOR shells with
specific lattice sites. A brief discussion of the application
of the method to the ENDOR results for the S+ donor
is given in Sec. V. Section VI discusses some additional
situations where subsidiary minima might be considered
and presents the major conclusions of this study.

II. DONOR WAVE FUNCTION —EXTENSION TO
INCLUDE SUBSIDIARY MINIMA

A. General Considerations

The wave function for a bound state, P&, can always
be written as a linear combination of Bloch functions,
namely,

A(r) = Z Z a. (k)4-~ (1)
n k over BZ

where the Bloch function P„k——u„i,-(r) exp(zk r) is for
the eth band and k is the wave number; BZ stands for
Brillouin zone. This bound-state wave function is a
solution of the Schrodinger equation containing a
Hamiltonian H=HO+U(r), where U(r) is the im-
purity potential and Ho includes V(r), the periodic
crystal potential. For the shallow donors the bound
states have energies slightly less than the conduction-
band edge (or edges, as in the multivalley semicon-
ductors Si and Ge), and the wave-function component
associated with the energy minima located at kj in
the band n =0 is given by

fbj (r) = g ao (k—k, )uo~ (r) exp (ik r).

In (2) the wave function has been limited to a single
band, a very good approximation for donors in silicon
as justified by Kohn. '4 Using the procedure of Kohn
and I uttinger, this wave function is converted to a
function of real space by the introduction of the
envelope function F;(r), associated with this jth

minimum, defined as

F, (r) = P ao(k —k, ) expLi(k —k, ) r]. (3)
all k

The function F, (r) is just the Fourier transform of
ao(k —k;). A second approximation has been introduced
by extending the k summation over all k space, which is
justified by the very sharp peaking of ao(k —k, ) about
kj. The transformation of the Schrodinger equation
Hgq, =Fbi„by Fourier transforms leads to the single-
valley effective-mass Schrodinger equation for F, (r),
namely,

N, ( Vz)+U(r) jF, (r) =~F;(r), (4)

where the impurity potential U(r) is given by

U(r) = e'/ r—e+bU(r)

eo is the static dielectric constant, while 8U(r) is the
extra "central-cell" potentiaP' (attractive for As, P, Sb,
and Bi). Neglecting bU and assuming a quadratic
energy dependence for E, (zV) for a s-axis valley,
namely,

$2 g2 $2 ( g2 g2
E, (zV') =— ——

~

—+—, (6)
2m' Bs2 2m' (Bx2 BY2

Kohn and Luttinger' employed a variational wave
function and found the effective-mass eigenvalue
Eo= —29 meV. For silicon with its six A1 conduction-
band minima the bound-state wave functions have the
form

6

Pi, = g n, F(r) uk(r) exp(zk, 'r), (7)
j=1

where uk, . (r) exp(k, ' r) is the Bloch function associated
with the jth minimum. The aj are numerical coe%cients
determined by the tetrahedral symmetry. For the
1s-Ai ground state (totally symmetric in the sum over
valleys) the a, =g-,'. We also note that the overlap
between the different 6& minima has been neglected in
constructing Pz(r). This is justified by the rapid
decrease of ao(k —k, ) away from the minima.

As noted, the energy of the 1s-A& donor states deviates
substantially from Eo ———29 meV due to central-cell
corrections. In fact, the corrections to the energy of the
1s donor states present a very complex problem. "
Several attempts to correct the F, (r) using the single-
valley Schrodinger equation (the coupling between
valleys was not considered) in Eq. (4) have been
made. '' These e8orts resulted in a corrected F, (r)
that was substantially more peaked for small r than the
wave function (1/n a*')'iz exp) —(r/a*)] (assumed
isotropic here for simplicity; a* 20 A) associated
with E,.

A compact formulation of the wave function for the
unpaired electron of the shallow donors has been
achieved. The following assumptions were made:
(1) bands other than the lowest conduction band can
be neglected; (2) sums of k over the first BZ can be
extended over all k space; (3) the ao(k —k;) are only
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FIG. 1. Hand structure in the vicinity of the lowest conduction
band of silicon according to Refs. 26—32. While quantitative
differences exist between the various calculations, the qualitative
features are in reasonable agreement. (a) E(k) along 5, Z, O'E,
and 5; (b) E(k) along A, I.V, and U'X(z').

large in a small region of k space surrounding the
absolute minima of the lowest conduction band. This
third assumption is a direct consequence of assuming
E, (k—k, ) is quadratic in (k—k, ) and the weak
Coulombic potential. Consequently, for a multivalley
.Sem1conductor with conduction-band minima faI' apart
ao(k —k, ) is negligible midway between two minima.
It was not explicitly stated, but it was implied that the
contribution from higher-energy minima of the lowest
conduction band could be neglected. It is this aspect of
the third assumption that is thought to need correction,
Inspection of the calculated band. structures for
silicon" " indicates a large number of subsidiary
"minima" and "saddle points" one eV or less above
the 6& minima.

also Inost likely that the energy increases from U~
toward I'». Kane's calculation" shows the energy to
decrease monotonically from U) to X~, implying that U~

is a "saddle point" of the second type. 4' The band
calculations indicate the point 8'l is a "maximum" and
also show a maximum along XiLi Lalso along UiLi since
E(UiLi)=E(EiLi) employing E~+o», ——Ei] on the
hexagonal face. These 24 inequivalent points are either
maxima, type-one, or type-two saddle points, de-

pending on the energy variation from these points
toward I'~5 and perpendicular to EjL). The second
possibility seems likely. This accounts for all the known
"critical points" on the exterior of the BZ except for
the Xg points. 4'

In the interior there are 12 maxima along I'~553 and
one at the origin. Application of Morse's rules" (taking
into account degeneracy4') indicates there should be a
large number of critical points, mostly saddle points,
in the interior of the BZ.44 In making corrections to the
donor ground-state wave function, only the I.j, E), and
U) points and their environs will be considered. It is
unlikely that the higher-energy maxima or type-one
saddle points Inake a significant contribution to the
donor wave function; however, any low-energy type-
two saddle points (or minima?) might make a notice-
able contribution to the wave function. Not enough is
known about interior critical points to consider them
in the present work. Nevertheless, the possible im-

portance of low-energy critical points in the interior on
the donor ground-state wave function makes further
consideration of the band structure in the interior
worthwhile.

Table I shows the energy of some of these points,
based on the effective-mass expression, relative to the
Al mlnllTla given by

~B1aX
~ef f mass

2m

m, (k,—ko)' m (k.'+k„')
&max ~g &max

where k„„=2s/a (the lattice constant a=5.43 A).

B. Lowest Conduction Band of Silicon
TAaLz I. Energy of high symmetry points of the lowest conduc-

tion band in silicon (measured with respect to the d, I minima).

jeff mass band caloP 8

eV eV a0(k —k0i,) /u0(0)Point in BZ

XI—(0, 0, 1)k „„
Wi —(0, —,', 1lk„„„
UI (Eg')

—(4, 4, 1)k,„
%—(0, —,', —,')k .„
I-~—(k, k, k)&-
a» —(0, 0, 0)X,„

1,7X 10-2

2. 16X10-5

7.54X10 '

0.15—0.3
2.8-4. 1

0.4-0, 8

0. 12
6.97
3.55

15.2
14.3
42

0.4-0.8
0.5-1.3
2. 1-2.5

4.6X10 '
5.05X10-6
2.3X10 5

" Based on calculations in Refs. 26—32.

In Fig. 1 the important features of the lower-energy
portion of the silicon conduction band are shown. The
absolute minima occur along the cubic axes with
(ko/k, ) =0.86~0.02. The band-structure calcula-
tions'6 " indicate a minimum at I.)" and suggest a
low-energy region of states in the vicinity of E), which
will be considered as a "minimum"" in this work. Using
the relationship Ek+G„=E)„where 6„ is a reciprocal-
lattice vector, one readily shows that the point Ui (also
designated" as ICi') has the same energy as E&. (Also
see Fig. 2; one E point is equivalent to two U points. )
The band-structure caJculations indicate that the
energy must increase rapidly from U~ to 8"» and it is
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The results of the band calculations are also shown for
these points. Also shown in Table I is the relative
amplitude aq(k —koi, )/ao{0) of the Bloch function
admixture based on the e6'ective-mass envelope func-
tion F, (r) used by Kohn and Luttinger' in their
variational calculation. This quantity is given by

ao (ir—koi, )/ao (0) =1/L1+ (k,—k0)'f)'+ (k,'+k„')a']',

located at k„. The valley wave function for the mth
valley will have the form p =F (r)N), „(r) exp(zir r),
where F (r) Ldefined in Eq. (3)] is the solution of the
one-valley Schrodinger equation employing E(k—lr„)
to find the kinetic-energy operator. The corrected
ground-state wave function employing first-order
perturbation theory will be

where k, 5= I6.4 and k, u.=28.8.
Table I suggests that the effective-mass energy is a

reasonable approximation along 6», both toward X» and
I'»~. It gives an overestimate of the energy at W», but
the dependence along X»8'» is satisfactory. However,
the effective-mass energy at U» is a factor of 4-,' to 9
times larger than the calculations; at 1.» it is IO to 30
times larger; at E» it is 20 to 40 times larger. At the
points I,», E», and U», the actual band energy is much
less than that assumed by effective-mass theory.
Inspection of the factor eo(lr —k,i,)/ao(0) at these
three points shows it is very small ((10 ' at Ui,
(10 ' at Xi and Li). Even with increases of 10' or
more, the values of uo(k —koi*)/ao(0) would seem too
small to have much eGect on the wave function after
the sum over k in Eq. (1) is performed. This conclusion
is misleading and not to the point. In fact, there is a
large density of states associated with the region sur-
rounding these three symmetry points. Considerably
more of the BZ is in the vicinity of these three points
than in the vicinity of the six d» minima. It remains to
be shown that these regions are strongly enough
coupled to the 6» minima to make a measurable con-
tribution to the ground-state donor wave function.

C. CoIl6gQ1atloIl MlxiQg of SQbsld, iaj;f VRllegs

The impurity potential U(r) in Eq. (4) will couple
the Kohn-t. uttinger wave function f~r, based on the six
hi minima given in Eq. (7) with the wave function
associated with the mth subsidiary valley or minimum

OOI

(10)

where the sum is over all higher-energy subsidiary
valleys under consideration and S~, is a normalization
constant. The di6'erence in energy of the donor Is-A»
state of the 6i minima and the z)zth valley (measured
with respect to the respective edges) is small in com-
parison with the energy difference between the respec-
tive "critical" points, so that the energy denominator
is well approximated by Eq, E).„. For —a particular
symmetry set of subsidiary valleys, the totally sym-
metric summation over the six hi valleys in P)rl i, g,
requires that the matrix elements {P„I

U (r) I P)rr, i, ~,)
have the same magnitude, 4' which suggests the use of
wave functions

I Ai&zi which are totally symmetric
summations over the respective f„, namely (dropping
the 1s),

I Ai&zr = (1/X))r)'" g F„(r)u), (r) exp(zlr„r) (11)

where ~V~ ——4, I2, and 24 for the I-» E» and U» valleys,
respectively. The corrections from the I.», E», and U»
regions make the total corrected ground-state A» wave
function become

I~ & =(1/& )"'

&&LI ~i&~+n~
I ~i&~i+« I ~i&«+n~ I ~i&~i] (12)

where
I Ai&q, ——Pxr, i, ~, and the admixture coefficients

n.)r Lnot to be confused with the n, in. Eq. P)] are
given by

n~=(~i-~
I U(r)

I
~i ~ &/(E~ E~.). —

—[o)o]

FrG, 2. Brillouin zone of silicon showing the six b,1 minima
along the cubic axes and the position of the subsidiary "minima"
considered in this paper. 1.1 is a true minimum characterized by
two mass components. A1 is not a true minimum, but 'is a low-
energy valley. The Ul region approximates a saddle-point region.

These 0.~ can be shown to be real positive constants. '5

Neglecting overlap between all valleys (as infer, » ~, )&

the normalization constant takes the form Xg, =
1+nJ.'+nil'+nU' if the individual

I Ai)))r are nor-
malized.

For the Li valleys (true minima), the situation is
just as for donor states in Ge, namely, these valleys are
fourfold degenerate yielding a totally symmetric A»
state and triplet. T2 states, For the 12. E» valleys
(low-energy pockets, but not minima)44 the 12-fold
symmetry is split in Tq symmetry into A i+E+Ti+ 2Tz.
The Ui "valleys" (which resemble saddle points) split
in a similar manner to the E» valleys. Since the E» and
Ui valleys are not minima, the wave functions

I Ai&)r,
and

I Ai&U, are only approximate corrections'4 for these
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portions of the BZ. We have treated the Ej and V~

regions separately rather than considering one Ej and
two Ui valleys (two U points are related to each E
point by reciprocal-lattice vectors) to constitute a
single "valley. "This is justified and preferable because
(1) the F (r) for these valleys involve k summations
over only the first BZ (higher bands neglected), and the
F (r) for the E, and U, regions differ because E(k—k„)
does not vary in the same way around these points;
(2) the coupling of the Ei and Ui valleys with the 6i

valleys is dilferent; (3) I Ai)rr, and
I Ai)rr, do not give

equivalent results for the odd-integer and the even-
integer lattice sites (see Table III, below).

If we consider only the s part of uz„(r) for all the
valleys (the only part which contributes to the Fermi
contact constant, which is always mixed in phase with

I A, )q,), then ui, „(r) will be the same for all valleys of
the same symmetry set and can be factored out of

I Ai)si. In this case,
I
Ai)s„ I

Ai)rr„and
I Ai)rr, have

the form

I A&)r, ,'= [2ur, , (r)/(4)'"][F,„,cos (s/a) (x+y+s)+F,„;cos(s ja) (x+y—s)

+F,„,cos(s-/a) (x y+s)—+F;„,cos(s./a) (—x+y+s)], (14a)

I A&)z, = [2urr, (r)/ (12)"'][F,„cos(3s /2a) (x+y)+F,„cos (3x/2a-) (x y)+ F—„,cos (3s /2a) (y+s)

+F„,cos(3-s/2a) (y s)+F„—cos(3s/2a) (s+x)+F„cos(3'/-2a) (s—x)], (14b)

I Ai)» ——[2urr, (r)/(24)"'][F», cos (s/2a) (4x+y+s)+F»; cos (s/2a) (4x+y s)+F». c—os(~/2a) (4x—y+s)

+F»; cos(s./2a) (4x—y
—s)+8 similar terms for F, „retc., and F,„z, etc.]. (14c)

Similar corrections to the wave functions for the
1s-E and 1s-T~ states will have the form

I ~)= (1/&s)"'[I ~)~+« I ~)x+« I E)~ ] (15a)

I
T )=(1/-tl|.,)'"

X [I T2)dg+rL I T2)Lg+TIjIT2)x, +r, r7 I T2)rr, ]. (15b)

The e's and v's and the normalization coefficients are
defined in the same manner as the 0.'s and Eg, . In
Eq. (15a) there is no contribution from the I.& minima
because in T& symmetry combinations of the I.& valley
functions yield only the A& and T~ representations.

All of the o.'s, e's, and r's can be related to the indi-
vidual matrix elements (P, I U(r) I P;) of the impurity
potential between the valley wave functions for the ith
and jth valleys. The procedure for doing this is give~ in
Appendix A. The results suggest that the 0.'s are much
larger than the e's and r's because it is only the totally
symmetric A& state where all the individual matrix
elements Q, I U(r) I P;) add together. For the F. and T,
states there is substantial cancellation between the
individual Q, I U(r) I P,). Because of the detailed
ENDOR and ESR data for the 1s-A& state we shall only
be concerned with corrections to the A~ wave function.
Even though the individual Q, I

U (r) I P, ) may only be
a few millivolts the totally symmetric sum over a large
number of valleys can yield o, 's of the order yp.

The neglect of overlap between different symmetry
valleys is analogous to the neglect of overlap between
the six 6& minima [setting the n, in Eq. (7) equal to
(6)'r']. Here the minima are closer in k space and the
approximation is less valid, particularly for the overlap
between the 6& and adjacent U& valleys. An estimate of
these overlap integrals is made in Appendix B. The
neglect of the overlap integrals between the different
valleys can be viewec1 as a "tight-binding" approxima-

tion applied to k space. The shallower the donor state,
the larger the radius of the state, the smaller the amount
of k space required to adequately describe the valley
wave function, and thus the smaller the overlap
between different valleys.

D. Fermi Contact Hyyerfine Interaction

The Fermi contact hyperfine interaction" for a
nucleus located at the site r~ with respect to the donor
at r=0 is given. by

a(ri) = (8s/3)g g„piiuii„ I P(ri) I'. (16)

For P(ri) we substitute
I Ai), from Eq. (12), thus

obtaining

a(«) = (8~/3 ~'~ )g g.p»s. [l Ai(ri))~ +~~ I Ai(ri) )i
+iiK

I
Al(rl))K +&U

I Al(rl))U ]' (17)

Employing Eqs. (14a)—(14c) we factor out of Eq. (17)
the radial part of the A~ minimum envelope function,
2uz(ri)/(6)"', and a quantity Iz(r&) which is yet to be
defined. The resulting form for a(ri) is

Ao Fg(ri) '

A I a*

Il-(ri) Irr(ri) I&(r) '
X I+PL

( )
+PKI

( ) +OUI ( )
y ( )

where Ao is a donor-independent effective-mass Fermi
contact constant of a Si" nucleus located at the origin
due only to

I
A&)&„namely,

A, =6X (Ss./3)g g„piiua„q I
F; (0) I'. (19)

g=I uq(ri) I'/(I uq(r) I'), is a dimensionless factor"
representing the concentration of periodic wave function
at a silicon nucleus. F ~(0) = (1/7raq*')'i', where aq*
is the isotropic Bohr radius of Fii(r) neglecting all
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corrections. The P~ are. a new set of constants given by

pj's

=cxiiI (6/1@M) I NM (1i)/Ns (ri)]&

M=I., E, and U. (20)

The I~(ri) factors in Eq. (18) are sal/ey orsterfererice

factors associated with the respective symmetry valleys
and vary greatly with the position of the lattice site.
They are defined by

I~(«)= (&~—)"I
I ~i(«))~/2N~(«)Fo(ri)3 (21)

and are sonply sums of cosines times anlsotroplc
envelope functions. These valley interference factors
provide a compact means of determining the amount of
wave function from a given symmetry set of valleys at a
particular lattice site. They can be considered known
quantities if the band structure is known, so that ko

and the envelope functions for the different valleys can
be determined.

The hyperfine interaction u(ri) in Eq. (18) consists of
the uncorrected part associated with just the six hl
minima times a correction factor 1/X~, multiplied by
the quantity in the square brackets. In this correction.
factor the I~(ri) factors depend almost entirely on the
structure of the lowest conduction band in silicon while
the P~'s depend on the potential U(r) and the ratios
usI(rg)/Np(ri). Only three potential-dependent con-
stants are required to specify the amount of the wave-
function admixture from these three subsidiary valley
reglolls,

E. DlPOle-Dlg016 IQtel'RCtl0&8

The dipole-dipole interaction hyperfine constants
reported in HM I also contain a wealth of information
about the donor ground-state wave function. However,
there are more unknown parameters involved in these
quantities and the inclusion of s, p, and d functions in

&*.=-3bo f (*ylr') I 4 I' d,

&.,=—3bo f (xs/r') Iso I'dr,

(22b)

(22c)

where bo gg„——peps„and iso is as in Eq. (7).The envelope
functions F, (r) are very slowly varying functions com-
pared with both the ek,. (r) and the phase factors
exp(ok;. r). It is the rapid variation of both Ni, , (r)
and the phase factors which accounts for most of the
magnitude of the dipole-dipole constants. "The F;(r)
are considered constant and equal to the value at the
nucleus, F;(ri), while the Ni, , (ri+r) and the phase
factors expI olr,' (ri+r)) are expanded about the lattice
site at r~ in terms of a relative coordinate r. Thus
for the x-axis valley, Ni, „(ri+r) has the form
s(ri+r)+P (r)+d (r)+ ~ ~ ~ 4o while coskp(xi+x) and
sinkp(xi+ x) are expanded exactly. The resulting

I
iso I' contains a large number of terms of both the

intravalley and intervalley type. Nevertheless, it can
be shown that these dipole-dipole expressions can be
reduced to the following:

the Ni,;(r) makes for a large number of terms in the
diferent integrations. A detailed consideration of the
corrections to the dipole-dipole constants due to the
other subsidiary minima will be considered in another
paper. However, we include expressions for the dipole-
dipole constants considering just the six hl minima in
this paper because (1) they are useful in the identifica-
tion of certain shells, and (2) they have been derived
by an alternative method to the equivalent orbital
technique employed by Hale and Mieher, " and in the
case of the B„component includes a term not reported
by Hale and Mieher.

The dipole-dipole constants are given by

B„=bp f L(x'+y' —2s)/r'3 I g& I' dr (22a)

&„(ri)=LF.'(ri) cos'k,xi+F„'(ri) cos'k, y,—2F, (r, ) cos kps, jI,
+I 2F, (r&)F„(r&) coskpxi coskoyi —F, (ri)F, (ri) coskpxi coskpsi F&(ri)F (1'i) coskpyi coskpsijIo,

B,o(ri) =fF,{ri)F„(ri)sinkox; sinkpyi]Jp

(23a)

+IF,(ri) sinkosiHF (ri) coskoxi+F (ri) coskoy&)J4+(F, (ri) coskpsi)I4']I, (23b)

Il„(ri) =B„(xi,yi, r, i) =B.„(xi, si, yi).

The integrals Jl, J2, and J3 contain the dipole-dipole
operators and terms containing components of Ni, , (r)
like sXs, pXs, and pX p times the corresponding sines
and cosines. J4 and J4' arise only from s)&d terms and
the nearly identical form of the integrals indicates
J4~4'. As noted by Hale and Mieher, " the magnitudes
of these integrals are not readily obtained and might
best be determined by fitting these expressions to
identified shells like A and B. However, if the wave-
function admixture from the subsidiary minima makes a
signi6cant correction to the dipole-dipole constants of
these particular shells, incorrect values of the J's

(23c)

will be determined. We note that expressions {23b)
and (23c) are identical to those obtained by the
equivalent orbital technique, but that the second
termoo in (23a) resulting from cross terms between
adjacent minima is apparently not found by the
equivalent orbital technique. A close examination of the
integrals Jl and J2 indicates they should be of the same
order of magnitude. As discussed in Sec. IV, this extra
term has a small eAect for most shells, but for several
speci6e shells can make the major contribution to 8„.

Expressions (23a)—(23c) indicate that the dipole-
dipole constants should all be proportional to

I
Fp, (ri) I'
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TAM,E II. Wave-function density at donor nucleus.

Donor EG mass
~
P(0) ~s„I,X f0 ss cm '
b* b*-SM 53Eoprr

~
p(0) {s„,sX10 sscm '

As (1)
(2)

0.0546
0.0531

0.137
0.133

0.495
0.630

1.24
1.58

1 $3a

P (1)
(2)

0.0546
0.0531

0.10'E

0.104
0.320
0.403

0 43a

0.0546
0.0531

0.0968
0.0940

0.224
0.340

0.56
0.85

a G. Feher, Phys. Rev. 114, 1219 (1959).

and would be expected to exhibit donor anomalies
consistent with the observed ground-state energy
anomalies of As, P, and Sb. Furthermore, the donor
anomalies should be smaller for the more distant shells.
The data in HM I indicate that the dipole-dipole
constants of many shells, but not all, are in agreement
with these predictions, even in cases where the Fermi
contact constants exhibit marked donor anomalies
Lsee, for example, shells H, 0, and X]. For shell A,
B„has a donor anomaly similar to a(rI), while B,„
does not have any unusual donor anomaly. For shell I,
a(rI), B„,and B,„are normal while the B„constants
are inverted (As(P&Sb). Shells B, I., and M have
the normal order for 8„,8,„, and 8„,but the magni-
tudes of the anomalies are too large to be explained by
the respective { FA(rI) ~' for the three donors. Shell F
{ V(Sb) is considered to belong to shell F] is the Inost
anomalous of all, exhibiting the largest donor differ-
ences of all the observed shells —furthermore the 8„
components are the largest of all the observed shells;
the B,„components are singularly strongly negative;
the B„components are strongly inverted. These results
suggest that the type of corrections discussed in
Sec. II C may explain soIne of these anomalous features
since the corrections are strongly shell dependent and
will be diGerent for the different dipole-dipole con-
stants. These seem to be just the features shown in the
data in HM I.

IIL CONSEQUENCES OF WAVE-FUNCTION
ADMIXTURE FROM SUBSIDIARY MINIMA

A. Hyyer6ne Interaction with Donor Nucleus

From the Fermi contact hyper6ne interaction one
can infer the magnitude of the wave-function density

~ pl (rl) ~' at a given lattice site. The value
~ P(0) ~' at

the donor nucleus has been obtained from the donor
hyperfine splitting. '0" For the I' donor Kohn and
t,uttinger' noted that. the effective-mass value

~ P (0) ~sII mass =61'/Ira

was a,pproxiInately a factor of 10 too small. Their

approach was to increase substantially the envelope
function F, (r) by solving the radial equation as a
diGerential equation using the experimentally observed
1s-A1 state ionization energy, thus producing a sharply
peaked Whittaker function and a cutoff radius (R, a
Wigner-Seitz cell radius) between interior and exterior
regions. An al.ternative approach is to mix in wave
function (in phase) from more of the BZ than just the
six A1 minima. One has already achieved a factor of 6
over that of a single minimum having the same g*.

{ n degenerate nonoverlapping minima characterized

by isotropic 1s radii u,* will have

14 (o) I'= & (1/~a'*')n',
i=1

where account has been taken of the
~

NI,. (0) ~' for
dlffcrcllf. sylnlllcf1'y-polIlf, 1111111IIIR.] EquRtloll (18)
gives the correction factoI' foI' the conti lbutlon of
subsidiary minima at L1, E&, and U1. For r~=o this
factol" 1S

IVAN {1+x'(IIIs /III ) pI+2(II5 /IIX ) pZ

+4 (aA,*/aII*)"PII}'. (24)

The potential U(r), including central-cell corrections,
is attractive, the matrix elements (Al;

~
U(r)

~
Al A, )

are negative, and the n's and p's are positive. A crude
gllCSS Of pz=px=pU~0. 1, RSSIIIIllllg Cqllal Bolll radII
for all the minima, gives a correction factor of about 3
with the largest contribution coming from the lower-

symmetry E& and U& regions because of the greater
number of valleys associated with these points.

Employing this correction we have calculated

I p(0) I' «»s, p, and Sb u»ng t c b* met od f« t e
radial envelope function, namely,

F (r) = (1/Irb*')'I exp (—r/b*),

where b~ = III~ and II = (Zo/BI, A, ) II'. ll is a quantitative
measure" of the deviation of the ground-state energy
from the effective-mass value Eo. As an approximation
this same radial envelope function is used for all

valleys. A justi6cation for the use of the b* envelope
function is given in Sec. IV and Appendix A.
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TABLE III. Valley interference factors (for equal spherical envelope functions) .

Class

Lattice
site

ENDOR Ig
shell (k0/k =0.875)

4 (001) Axes

3 (111lAxes

2 l110}Plane

1 Unique

(0, 0, 4)
(0, 0, 8)
(0, 0, 12)
(0, 0, 16)

(1, 1, 1)
(3 3 3)
(4, 4, 4)
(5, 5, 5)
(7, 7, 7)
(8, 8, 8)
(9, 9, 9)

(2, 2, 0)
(4, 4, 0)
(6, 6, 0)
(8, 8, 0)
(10, 10, 0)
(14, 14, 0)
(2, 2, 4)
(2, 2, 8)
(2, 2, 12)
(4 4 8)
(8, 8, 4)
(1 1 3)
(1, 1, 5)
(1, 1, 9)
(3, 3, 1)
(33 /)

.(3, 3, 11)
(5, 5, 1)
(5, 5, 9)
(7, 7, 1)
(7, 7, 3)
(7, 7, 11)
(9, 9, 1)
(9, 9, 5)
(11, 11,3)
(11, 11, 7)

(0, 4, 8)
(1, 5, 9)
(3, 7, 11)

+12
E"

+12

Q16

2.707
2.000
1.293
1.000

-1.670
2. 121
2.430

—2.940
0.000
2.940

—0.840
2.414
0, 234
1.000
1,766
2.840

—1.133
—1.840

2.547
1.414
0.707

—0.167
1 ~ 220
1.370

—0.919
—2.094
—1.994

1.855
2, 640

—1.765
—2.Si/
—2. 790

2. 155
2. 790

—2.217
—2.640

1.707
2, 005

—2.367

4
4
4
4

1.414
—1.414

4
—1.414

1.414

1.414

0
4
0

0
0
0
0
0
4
4

—1.414
—1.414

1.414
1.414
1.414

—1.414
1.414
1.414
1.414

—1.414
—1.414

1.414
—1.414
—1.414

1.414

4
—1.414

1.414

2
—2

2
6

0.879
5.121
0
5. 121
0.879
6
0.879

—1.828
0

,3.828
—2

3.828
—1.828

1

3.828
1

0
2

—1.121.

1.707
—0.293

0.293
3.121

—1.70/
3.121
0.293

—0.293
1.707

—1.121
—0.293
—1.121
—1.707

0.293

—2
—0.293
—1.707

4

4
12

0
0
0
0
0

12
0

—3.656
0
7.656
4
7.656

—3.656
2
/. 656
2
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

4
0
0

Table II compares the various calculated values of

~ f(0) ~' with the experimental values inferred from the
donor hyper6ne splittings. " The calculated values
given are the effective-mass value, the b* value, and the
b* value multiplied by the correction factor in Eq. (24).
This latter value is designated b*-SN. Two different
sets of P constants determined by fitting the ENDOR
shell a(ri) values were employed (see Table V below).
The results indicate ~p(0) ~'be sxr is in reasonable
agreement for P but is much too small for As and Sb.
However, if one multiPlies

~ f(0) ~sb~ zxr by the correc-
tion factor

( f(0) (' f, +,,sb/[ P(0) [',~, p 2.5 em-
ployed previously' to account for the strong change of

ub(r) for As and Sb in the central cell," the resulting
As and Sb values )designated (b* SM)„„,in T-able II]
are in much better agreement with the data. Table Il
clearly indicates that the second set of 'P's (uz* ——

0.63@*) yield better agreement with experiment, the
calculated values being 6, 9, and 28%%u~ too small for
P, As, and Sb, respectively. Although the calculated
values are somewhat too small, the agreement is
reasonable and, significantly, the correct donor de-
pendence of

~ P(0) ~' has been obtained and the cutoff-
radius problem (required for the Whittaker function)
has been avoided. The admixture (in phase) of addi-
tional wave function from interior critical points of the
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lowest conduction band will further increase the calcu-
lated

~ f(0) ~', as will an increase in F, (0) for any of
the valleys considered.

An additional interesting feature is that an arbitrary
admixture of wave function from the U~ "valleys"
increases

~
f(0) ~' but does not increase

~
f(r )i~' for the

(1, 1, 1) lattice site, because the wave function from the
square face of the BZ (XUW) can only contribute to
the even-integer sites (see the Io factors in Table III).
By treating Ui as a minimum the wave-function correc-
tions from this region of the BZ have probably been
underestimated. An increase in mo* [flattening of
E(k)] decreases ao*, thus increasing Fo (0) and

~ f(0) ~'. On the other hand, employing the Whittaker
function for F~(r) produces the unfortunate result of
increasing some of the a(ri) values too much for small

r~ [see the (1, 1, 1) and (0, 0, 4) site calculated values in
Table V].

B. Fermi Contact Constants for ENDOR
Shells —Qualitative

To obtain a qualitative understanding of the correc-
tions to

~
f(r )i~' from the subsidiary minima for

specific lattice sites, we need only consider the magni-
tude and signs of the different valley interference
factors I~, II,, I~, and I~. These are shown in Table III
for a group of lattice sites which are thought to be
potential measured ENDOR shells. For simplicity, the
F, (r) are all assumed spherical with the same radial
dependence, hence the F;(r) factors drop out of Eqs.
(21a)—(21d). Iq is given at ko/k, =0.875. For
quantitative calculations the anisotropies of the various
F;(r) must be considered.

Table III suggests substantially increased a(ri)
values for sites (2, 2, 0), (4, 4, 0), (6, 6, 0), (10, 10, 0),
(5, 5, 1), (5, 5, 5), (4, 4, 8), and (8, 8, 8). It suggests
substantially decreased a(r&) values for sites (8, 8, 3),
(4, 4, 4), (8, 8, 7), (2, 2, 8), and (0, 4, 8). Smaller in-
creases are expected for sites (1, 1, 1), (1, 1, 8),
(8, 8, 11), (5, 5, 9), (7, 7, 11), (9, 9, 9), and (11,11,8),
while small decreases are expected for sites (7, 7, 7),
(3, 3, 1), (9, 9, 5), (11, ll, 7), (2, 2, 4), (2, 2, 12), and
(1, 5, 9). For shells like (1, 1, 5), (7, 7, 8), (0, 0, 4),
and (0, 0, 8) the correction to a(ri) can be either posi-
tive or negative depending on the relative magnitudes
of the coefficients pz, px, and po. These positive and
negative corrections are just what is needed to explain
the donor anomalies observed in the data. The p's
are expected to be largest for As, intermediate for P,
and smallest for Sb. For the case of a large negative
correction, the correction would be largest for As,
intermediate for P, and smallest for Sb, possibly
leading to an inverted order of the Fermi contact
constants. A striking example of this is shell X [~ a (ri) =
242, 317, and 437 kHz for As, P, and Sb, respectively]
which belongs to the {110I-plane class of shells. On this
basis lattice sites (8, 8, 7) and (2, 2, 8) would appear to
be good candidates for shell X.

We also note that lattice sites (0, 0, 4) and (0, 0, 8)
should have corrections of opposite sign which are
simply related. These sites have been matched to the
observed ENDOR shells A and E, respectively. Shell A
is partly anomalous in that u(A)sb) a(A)p while
shell E was not found" in Sb implying 2u(E)sb(420
kHz. The increased positive correction to a(A)sb with
respect to P is consistent with a large decrease of
a(E )sb and may account for the reason shell E was not
found in Sb. Table III also indicates why the donor
anomaly (normal ordering ) is larger for shell 8
[matched as (4, 4, 0)] than for shell A, even though it is
further from the donor. Shell C has been identified" "as
belonging to the (111)-axis class of shells. It has as
large a normal donor anomaly as shell 8 and has a
significantly larger a(r&) value than any of the other
(111)-axis-class shells. In the previous analyses" '4 of

u(r&) versus ko/k, „ there was no value of k,/k, „
between 0.8 and 0.9, where a single (111)-axis-class
shell had an a(r~) value several times the magnitude
of all the other (111)-axis-class shells as indicated by the
data. In particular, their analysis suggested the

(8, 8, 8), (4, 4, 4) [also (4, 4, 4)] and (5, 5, 5) sites
should all have nearly the same u(r&) values for
ko/k, „=0.875. Table III suggests a possible explana-
tion of this dilemma, since it indicates sizable negative
corrections for the (8, 8, 8) and (4, 4, 4) sites and a
probable sizeable positive correction for the (5, 5, 5) site.

A comparison of the valley interference factors for
shells located along different crystal directions indicates
the corrections due to the I-~, E~, and Uj regions produce
a channeling eRe'ct along the (110) axis. Whereas the
corrections for the cubic (001)-axis sites and for the
(111)-axis sites oscillate in sign [except for sites

(0, 0, 16) and (8, 8, 8), where all the I's are in phase and
large, as at the origin] with increasing ri, for the (110)-
axis sites the corrections are positive and large at
(2, 2, 0), (4, 4, 0), (6, 6, 0), and (10, 10, 0), are small
for (8, 8, 0), and are negative for (12, 12, 0) and

(14, 14, 0). Thus the first four of five sites (those most
likely to be measured) along the (110) axis have large
positive corrections. Other shells near the (110) axis
like (5, 5, 1), (9, 9, 1), and (11,11,8) also show positive
corrections [(8, 8, 1) and (7, 7, 1) are exceptions].
Site (5, 5, 1) shows a rather large positive correction
and is an excellent candidate for one of the larger a (rt)
values observed for I 110)-plane-class shells;for example,
shell D.

Table III also indicates that certain even-integer
sites like (2, 2, 4), (2, 2, 8), and (2, 2, 12) [also (4, 4, 4);
however, (4, 4, 8) is an exception] all have negative
corrections. (2, 2, 8) has the largest negative correction
of any of the sites in Table III. These even-integer sites
(n, n, m), n and m/0, have inversion-related mates,
sites (n, n, m), which in principle"" should have
slightly different u(ri) values. As noted in HM II,
and also in HC, none of these even-integer inversion-
related shells have been identihed. The fact that almost
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all of them have large negative corrections to a(r1)
from the subsidiary minima might be an explanation
for this.

The IU values shown in the table are zero for all
odd-integer sites, which appears to be a special property
of tllc sqlla1'c faces (XUW) of tllc BZ. Tllls 1s still
true when anisotropic envelope functions are con-
sidered, as long as the envelope functions are the
same for points related by inversion about the I point.
For the U, points this requirement is that Fx„,——Fx„-;,
F~„;=Fx„-„etc.This is certainly a reasonable ap-
proximation since the predominant part of the single-

valley 1s envelope function should be even. One can
also observe this feature in Fig. 8 of Ref. 12, which
shows u(r1) plotted versus ko/k, „ for the six
minima wave function. As ko/k „„approaches 1,
a(r1) goes to zero for all the odd-integer lattice sites. A
second feature of the I~ values is that the even-integer
sites, neglecting anisotropies, have I~ (I, r1, m) =
2Irc(N, n, tw), which is a reflection of the two-to-one
equivalence between U and E points in the BZ.

Many sites listed in Table III were not explicitly
considered previously. "'4 Other close sites have not
been included in Table III. Because of the large
ko/k „value occurring in Iq and the slow decrease of
the radial envelope function, it is the interference that
is the dominant factor in determining which sites are
observed within a radius of order u*. The experimental
evidence"" for this is very compelling. A convenient
means of selecting the sites with a large value of I~ is
sllow11 111 F1g, 3q wlllcll shows tllc Rl'gulllcll't g1l'(kg/km8x)N

plotted versus e. The projection on the horizontal
axis gives the cosine. For ko/k =0.86, the values of r1

which yield positive cosine values (ordered by de-
creasing cosine magnitude) are 0, 14, 9, 5, 4, 10, 13, 1;
those which yield negative cosine values (ordered by

FIG. 3. Argument (7r/2) (k0/k „)n versus n for n =0—16.
The projection on the horizontal axis gives the cosine, the mag-
nitudes of vrhich indicate vrhich combination of integers (all
even or all odd) for a lattice site (n, n, m) give large values of
the interference factor Ig.

decreasing cosine magnitude) are "I, 16, 2, 12, 11,3, 6, 8.
The favored positive integers" are 0, 9, 5, and 4 while
the favored negative integers are 7, 2, 12, 11, and 3. In
combining integers for a site (e, I, m), the largest
values of Ig are usually obtained when e and m differ
by0, 4, or 8. Of the201argestvaluesofI~ (i I~ i)1.84)
shown in Table III, four have e and ns the same, nine
have e and m di6ering by 4, and four differ by 8;
one is site (1, 5, 9) La member of the unique class
(f, m, e)j; and there are two exceptions, sites (2, 2, 12)
and (2, 2, 8). Combining values of e and m corre-
sponding to positive and negative cosint,*s leads to
small values of Iq, which in most instances have a(r1)
values too small to be observed as distinct shells. Only
sites (2, 2, 0) and (6, 6, 0), because of their large
positive corrections due to the subsidiary minima, may
have large enough u(r1 ) values to be observed. Sites like
(1, 1, 7), (1, 1, 11), (1, 1, 13), (8, 8, 5), (3, 8, 9),
(5, 5, 8), (5, 5, 7), (7, 7, 5 ), (9, 9, 8), and (9, 9, 7) have
been considered and the o(r1) values will be too small,
even including favol able subsldlaI'y minima corrections,
to be observed. Site (1, 1,8), the third nearest neighbor,
and site (3, 3, 1), the 6fth nearest neighbor, will be
explicitly considered as examples of si:es close to the
donor with small l~ values. Using the I5*-method
P (r) RIld Ilcglcctlllg subsidiary minima corrections, 011c
calculates u(l, 1, 3) 14 kHz (site radius=4. 5 A.),
while for a distant site (7, 7, 11) one finds a(7, 7, 11)~
772 kHz (site radius=20. 1 L). This is an indication of
the strong interference eGects present in the wave
function, even with only the six d~ minima.

C. Uniaxial Stress-Induced Changes in 18-A~

Wave Function

By measuring the change in the donor ground-state
Fermi contact hyperlne interaction and the donor
g-value shift with uniaxial stress, Wilson and Feher"
determined the d~ minimum g-tensor components gal

and gi, in addition to reporting a "spin-resonance"
value of the shear deformation potential constant
„=11~1 eV. More recently %atkins and Ham"

have also reported a spin-resonance value
11.4&1.1 eV for the I i interstitial donor. These deter-
minations are several eV higher than most values ob-
tained by transport and optical techniques" "in which
the electron is a conduction electron within the h~
minimum not subject to the impurity potential U(r).
Values of „ inferred froIn experiments involving the
1s-A j donor state, which contains non-negligible
wave-function admixtures from subsidiary valleys, may
be

effective

values (which are donor dependent)
rather than the true deformation potential for the h~
minima.

The admixture of 1s-A~ wave function from subsidiary
valleys changes the deformation potential by (1)
changing the normahzation of the wave function
(reducing the h1 minima component) and (2) the
valley repopulation e6ect of the subsidiary valleys
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(with their own deformation potential constants)
caused by a uniaxial stress. A calculation for an (001)
uniaxial stress employing the valley repopulation model
for all valleys yields an expression for )z, in terms of
an „),«, presumably the measured value, "given by

1+4Pr,/3+2Pz+4Pr "'

where e' and e" are, respectively, ( „/h)z, /( /b, )q,
and (../8)U, /("„/6)g ( „/d, is the coefficient
appearing in the valley strain; see Ref. 33). The
numerator of the correction factor contains the nor-
malization change while the denominator contains the
valley repopulation effect of the E& and Ui valleys (the
J& valleys are not split by a (001) uniaxial stress).
Without specific knowledge of the deformation po-
tentials and valley-orbit splittings for the E~ and U~

valleys (thus obtaining e' and e") little can be con-
cluded. If e' and e" were somewhat greater than 1,
Eq. (25) would suggest „)ii,( „),«. Equation (25)
also implies that Z„),ii should be donor dependent since
Z )g, should be an intrinsic property of the pure
silicon host lattice. In summary, caution should be
exercised concerning ™„valuesinferred from measure-
ments on 1s-A~ donor states.

A second consequence of these subsidiary valley
admixtures with their own valley repopulation effect
will be corrections to the calculated i~ parameters
reported in HC. ' These corrections will include the
same two contributions mentioned above. The valley
repopulation correction factor Lfor an applied (001)
uniaxial stress] of the Eiand Ui vall'eys has the form
c„„(2Pze'—4PUc") for even-integer sites and the form
c„Pze' for odd-integer sites, where c„ is a constant
dependent on the lattice sites (e, N, m). Considering
appropriate values of Pz and Pri (see Table V below)
and e' e" one may expect the factor (2Pze' —4Pc6 ') to
be small. This may explain why the even-integer shells
A, 8, and X.Lmatched as (0, 0, 4), (4, 4, 0), and
(0, 0, 8), respectively] were readily fit in HC without
serious corrections. These corrections will produce a
donor-dependent i~ parameter. Detailed corrections to
the i~ parameter will be given elsewhere.

A (111)uniaxial stress does not lift the degeneracy
of the six h~ minima, thus producing no repopulation
effect. However, the introduction of J.i and Ei (the Ui
components on a single XUS' BZ face can be lumped
together, " the average effect resembling that of the ~~
minima) components will introduce a small valley
repopulation effect, similar to that for the 1s-A& state
in Ge. Therefore a (111) uniaxial stress may be ex-
pected to produce small ENDOR shifts and splittjngs
due owly to the subsidiary valleys. "

Another consequence of the subsidiary valley
admixtures is the possible splitting of the 1s-T2 states
by a (111) uniaxial stress. The splitting of this triplet
P-like state by a (111) uniaxial stress is allowed by
symmetry but is not contained within the valley

repopulation model based on only the six 6& minima.
The is-T2 states play a crucial role in the Orbach
spin-lattice relaxation of the shallow donors. ' An
(001) uniaxial stress has been shown to quench the
Orbach spin-lattice relaxation rate for As and P
donors. " A much smaller quenching has also been
observed'4 for a (111) uniaxial stress. One possible
explanation of this small (111)effect is a small splitting
of the 1s-T2 states caused by a valley repopulation
effect of the subsidiary valleys.

D. Energy of Donor 1s States

The energy of the 1s-A~ state contains both single-
valley and valley-valley interaction contributions
Lresulting from the matrix elements (lt, I U(r) I p;)7
and has the form

E„„=—E,+ (F, I
~U

I F,)—(4a.+~,)
~r. (Er, , Es,) —(az +0—'cr') (Ez, Ea, ) . —(26)

The effective-mass energy Eo is given very closely by
mq~e'/2fPeo' and for mq*=0.322m" and co=11.7"
one finds ED=32.0 meV, a value slightly larger than the
Kohn-Luttinger value. The second term represents the
single-valley correction from 5U(r), while the third
term represents the coupling between the degenerate
hi minima" (6, is the coupling between adjacent
minima on different axes; 60 is the coupling between
opposite minima on the same axis). The remaining
terms represent the contributions, using second-order
perturbation theory, from the subsidiary minima, The
corresponding expressions for the 1s-E and 1s-T2
(spin-orbit splitting neglected) states are

Ei, z Eo+ (Fq
I
8U—

I
F——)+ (2h, —6o)

—(ez'+ e«') (Ez,—E~,), (27a)

Ei. ri= Eo+(F~-I ~U —
I
F~)+~o r~'(E» E»)— —

—(rz'+r~') (Ez, E~,). (27b)—
It is difticult to reliably estimate the magnitudes of

the various terms because of the difhculty in obtaining
a reliable expression for 6U. One might use the best
set of P's obtained from fitting the ENDOR data to ob-

tain the n's Drom Eqs. (20)], then estimate the energy
differences (Ez, Eq, ) and (Er, , Eq,—), and obtain—an
estimate of the second-order contributions to Ej, ~,.
However, the second-order terms are actually related to
the 6rst-order valley-valley coupling terms 6 and 60
because the o, 's contain sums of matrix elements of the

type Q, (r) I U(r) I ,FN(r)e'~ )0which are similar to
the matrix elements for r5, and 60. An'attempt has been
made to calculate all these matrix elements employing a
realistic impurity potential in Sec. IV D.

Qualitatively, considering the results in Sec. IV D, it
can be demonstrated that it is the valley-valley coupling
terms, both from the d~ minima and in second order
from the subsidiary minima, which are responsible for
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nearly all of the energy correction to the is-Ai state.
In fact, the single-valley correction is small ((1.6
mev). The importance of the second-order terms from
the subsidiary minima relative to (4h,+hp) should
increase with the ionization energy deviation, i.e.,
should be most important for As and least important
for Sb. The corrections to .the is-E and is-T2 states
from the subsidiary minima will be very much smaller
(p's and r's((n's) than for the 1s-Ai state and are
probably negligible, except perhaps for Sb. It is more
di6icult to estimate the relative importance of the
different correction terms in Eqs. (27a) and (27b), in
part because of a small uncertainty in the value of Eo.
Finally, even with SU =0 there will still be small donor-
independent energy corrections from the valley-valley
coupling terms. Therefore Eo, the effective-mass value
for a single minimum, is not the true effective-mass
value for a multivalley case.

IV. CALCULATION OF FERMI CONTACT
CONSTANTS; MATCHING SITES WITH

SPECIFIC ENDOR SHELLS

5.0

2.00(

l,0
l.0 5.0 l0.0 l5.0 20.0

FIG. 4. Relationship between the anisotropic "pancake" radii
ratio and the mass tensor components ratio for an ellipsoidal
energy surface. This was calculated from the expression given
by Lampert (Ref. 69) . The b1 value is obtained from cyclotron
resonance values of the masses (Ref. 65). Two different cal-
culated values of the masses at the L& point by Cardona and.
Pollak (Ref. 31) and Dresselhaus and Dresselhaus (Ref. 32)
give calculated values for the radii ratio.

A. Procedure

Calculations of the Fermi contact constants a(ri)
for As, P, and Sb donors have been performed by com-
puter for approximately 35 different lattice sites of the
type (n, m, m). With a few exceptions the selected group
of sites was chosen on the basis of favorable I~'s and/or
favorable corrections within a radius of 25 L. These
calculations were made using Eq. (18) considering
Px, Pp, and P~ as parameters which can be found from
the identified ENDOR shells or can be varied in a
systematic manner to obtain the best over-all fit to the
experimental data. In as much as Eq. (18) contains 15
different parameters a number of simplifying assump-
tions were made.

Ao and ko were considered as parameters, but were
only varied in a narrow range (6.25(Ap(7. 60 MHz;

TABLE IV. Estimated masses and Bohr radii employed
for the different subsidiary minima. '

Masses

~e)/m

m], /m
m„/m
m, */m

Radii

1.81
0.136
0.136
0.322

0.596
0.085
0.596
0.322

0.488
0.080
0.852
0.510

10,3
25.8
25.8
19.2

15.2
30.5
15.2
19.2

11.1
18.3
8.7

12.1

a These are the values used for the second b+-SM values given in Table
V, namely, for aU+ =0.63m+.

For the Zt "valley" t~ is taken along the ZW' edge of the BZ while
ts is taken along Zl..' For the U& "valley" t& is taken along the UW' edge of the square face
while t2 is taken along UZ'X.

0.84(kp/k (0.90) because of experimental knowl-
edge"'~ of these parameters. As a simplification the
isotropic is radii for all the different minima. were first
chosen to be the same, namely az*=aU* ——al.*=a~*=
19.2 L. This value was obtained from aq*= appp(m/mq*)
using the best values of eo and m&* and it is slightly
smaller than used previously. The calculated results
exhibited some features suggesting a reduced up~
value would better fit the experimental results and
several calculations were performed with reduced up*
values. This reduction is consistent with Ui being a
saddle point rather than a minimum. Anisotropic
pancake effects on the various valley interference
factors Lsee Eq. (21)j were initially neglected, but
were then incorporated, first for the Ai minima, next
for the L~ minima, and finally for the E~ and U~
"minima. " The anisotropic portion of the envelope
function can be written in the form

Fz) snis

expL (s2/al2)+ (x2/a&&2)+ (p2/ai22)]1/p
(28)

exp (—r/a*)
where a*= (aia&ia&p)'". PP This is the same relationshiP as
among the mass tensor components and the isotropic
mass, namely, m~= (mim, &mip)"' The axe.s x, y, and s
are the principal axes of the specific valley ellipsoid
under consideration and are different for each type of
minimum. The a* values are determined from m* using
a~=api~(m/m*), while the different a; are found from
the mass tensor components (measured for the
minima; calculated for the L& minima; estimated from
the band-structure calculations for the E~ and Ui
valleys) and the relationship of Lampertpp between
mi/m, and ai/ai which is shown in Fig. 4. The values of
m; and e; used for the different minima are shown in
Table IV.

Two different checks of the calculations were made by
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comparing them with the experimental results. These
quantitative checks were made with the following
expressions:

(29a)

The first quantity represents the average fractional
deviation of calculated and experimental a(r~) values
for the lattice sites identified with ENDOR shells—
either identified previously or identified on the basis of
the new calculations. e; is taken to be 14; however, this
does not imply all these shells have been positively
identified. The second quantity f„„&is summed in the
denominator over the experimentally measured shells
(see HM I), 21 for As and P (shells U and W were
excluded) and 19 for Sb Lthe AHA region in Sb was
arbitrarily assigned two shells with u(r~)/2=415 kHz;
however, there may be more shells in this region].
In the numerator the sum is over the 21 largest (19
largest for Sb) calculated values. Thus for a good fit f;
should be very small and fe,t,,q very close to 1.fe,t, & is
proportional to Ao, but is also a function of ko, the P's,
the pancake anisotropies in F, (r), and the type of
envelope function employed. The introduction of a
wave-function component lacking inversion symmetry
may also affect f t,,~esince it may introduce a positive
bias by removing from consideration lattice sites where
the correction is large and negative. f&,t, q was found to
decrease noticeably as (a&/a~)q, was increased from
1.0 to 2.0, whereas fe,e,~ increased slightly as (a~/a~)r, ,
was increased from 1.0 to 2.5. For a given set of all the
other parameters the value of Ao was obtained by
requiring f&,&,q to be close to 1.

For the radial envelope function previous com-
parisons" '4 have used the %hittaker function, which
introduces a large enhancement of F, (r) for small r
and requires the introduction of a cutoff radius. As
already noted in Sec. III A it is possible, with the
addition of the subsidiary minima, to greatly enhance

~ f(0) ~' and thereby reasonably account for the
values of

~ P(0) ~e»e2 obtained from the donor hyper6ne
interaction. ""This eliminates the need for increasing
F;(0) in the manner employed previously. ' In addition,
most of the energy correction to the 1s-Ai state results
from valley-valley interactions and that the correction
to the single-valley effective-mass energy from 8U(r)
is small (see Sec. IV D). The large valley-valley inter-
actions for the 1s states require the use of a coupled-
valley Schrodinger equation. " This question is con-
sidered in Appendix A.

One can construct Schrodinger equations for func-
tions which are various linear combinations of the
single-valley F;(r). The equation with the totally
symmetric linear combination has an eigenvalue

Ey~ g1, while the equations with otlier combinations Qf

the F, (r), even and odd, have eigenvalues F~, ~ and
E~, ~,. The spherical component of the envelope
function F, (r) should be determined by the Schrodinger
equation for the totally symmetric combination with
eigenvalue E~, @,. This argument leads directly to the
b* form of F;(r) given previously. The anisotropic
coInponents of the envelope functions result from
solutions of the other coupled equations with eigen-
values E~, ~ and E~, ~,. For this reason we have
used the uncorrected effective-mass radii u*, etc. , in
Eq. (28).

This exponential form F, (r) is certainly an over-
simplification for the radial w'ave function, yet the
results discussed below suggest it is in much better
agreement with the experimental results than the
~hittaker function. The effects of bU(r), considered on
a single-valley basis, are small enough that they might
be included by perturbation theory. For Sb the possi-
bility of U(r) being repulsive for small r (1.5(r(4 A)
suggests F, (r) is not simply exponential and may have
a somewhat smaller value at the (2, 2, 0) site than
given by the b* form of F, (r) Lsee the Sb results for sites
(2, 2, 0), (6, 6, 0), and (10, 10, 0) in Table Vj.

The procedure for obtaining the values of Pr„pz,
and P~ was the following. Taking the square root of
Eq. (18) yields

a(r()Xg, F, (0)et' '~'

Ae Fg(r() 1

=Ig (rt)+PlrIrr (r))+PUIp(r()+PI Ir, (rt). (30)

One inserts in Eq. (30) the experimental value a(r~)
for an identified ENDOR shell. The envelope functions
and the I, (r~)'s are readily calculated while Ao is
determined from the actual results and the use of the

f,.„~ check. The effect of 1V~, is small, but can be
included by iteration. Thus one has a set of linear
equations for all of the lattice sites that have been
matched to specific experimental ENDOR shells re-
ported in HM I. If we are given correct envelope
functions for the diferent valleys, the right ko, and the
right pancake anisotropy parameters, and thus the
correct I, (rl)'s, then the overdetermined set of linear
equations should be reasonably consistent with one
another provided contributions from other critical
points in the lowest conduction band, and a/so con-
tributions from a noninversion component of the wave
function, are unimportant. In practice, over-all excellent
consistency is dificult to achieve and the reasons for the
inconsistencies can be hard to isolate.

The following points were considered in selecting
sites. (1) Sites should be used, if possible, where the
corrections are large (IJr and Ip, and/or II. large).
(2) Sites where the corrections are primarily due to
only one or two different type valleys are preferred to
those where all three types of valleys make important
corrections; for example, (0, 0, 4) and (0, 0, 8). (3)
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TABLE V. Comparison of calculated and experimental values. (All hyperfine constants are in kHz. )

Donor Whit. b

Calculated s ~
a(r~)

~

b*-SM~ b*-SMe
b* (1) (2)

Bgg
b*

Experimental'

Match' $ ~
a(r~)

~
Shell

As
p
Sb

5201
4184
3684

3334
2728
2533

3928
3325
3150

4032
3316
3399

96.4
78.8
73.2

3860
2981
3101

57.0
41.4
46.0

As
P
Sb

927
851
794

926
808
768

747
644
616

611
560
485

97.5
85, 2

81.0

'?58

663
+Fh

16.0
14

As
p
Sb

1051
733
604

259
204
187

625
413
295

667
444
308

642
270
293

As
p
Sb

1485
1271
1149

1040
870
812

366
341
409

356
379
492

As
p
Sb

917
839
780

1053

854

607
646
751

643
644
746

801
689
703

As
p
Sb

1089
1055
1004

1150
1034
967 .

1722
1492
1318

1746
1458
1236

2037
1649
1397

As
p
Sb

557
595
590

781
730
70'?

552
568
615

475
505
571

739
598
670

As

p
Sb

530
332
165

411
253
173

694
739
629

As

p
Sb

373
367
364

504
472
436

524
487
433

607
612

N.F.

As
P
Sb

578
450
389

340
273
252

1177
841
615

1165
803
722

173.0
138.8
128.0

1121
840
504

151.0
116.4
37.0

F
V

As
p
Sb

2061
1789
1627

1852
1560
1460

2848
2159
1793

2878
2213
1841

—34.6
—29. 1
—27. 2

3000
2254
1833

—41.6
—34.0
—28.6

As
p
Sb

90
82
'?6

37
33
31

717
464
280

720
472
370

—29.0
—25.6
—24.4

741
582
425

—14.6
—11.2
—5.8

As
p
Sb

241
232
229

764
621
482

682
566
485

—15.5
—14.9
—14.7

777
612
559

—60.8
—40.6
—37.2

As
p
Sb

680
587
533

481
401
376

555
485
456

564
474
433

—43.9
—36.6
—34.2

566
524
387

—48.0
—40.2
—36.0
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TABLE V (Contf nued)

Site Donor Whit. b

Calculated ~~
( a(r~)

~

b* SM~ b* SMe

(1) (2)
B„

Experimental

Match' —', ~
a(r~)

~
Shell

(3, 3, 7)
As
p
Sb

841
804
760

865
759
720

315
349
442

332
374
480

—24. 2
—21.2
—20. 1

242
317
437

40
29.4
20.4

(3, 3, 11)
As
p
Sb

352
328
319

571
489
421

593
502
417

—2.6
—2.4
—2.3

696
662
629

4 8
—6
—5.8

P

(5, 5, 1)
As
p
Sb

872
809
756

827
713
675

1594
1236
990

1608
1235
961

53.4
46.0
43, 5

1292
1117
1003

4.2

3.6
3.0

(5, 5, 9)
As

P
Sb

725
670
647

878
774
708

872
777
706

—0, 6
—0.5
—0.5

806
764
'?61

7.0
5.0
4.6

('F, 7, 3)
As

p
Sb

806
731
705

756
674
648

719
665
656

21.0
19.1
18.4

718
685
643

—20.4
—17.4
—14.0

{9,9, 1)
As
p
Sb

325
307
300

397
357
329

375
344
318

23.2
21.8
21.3

428
379
332

24. 8
21.0
15.0

(9, 9, 5)
As
p
Sb

502
482
474

346
369
409

362
380
412

1.0
1.0
1.0

364
398

N.F.

0.0
0.0

(2, 2, 12)
As
p
Sb

625
587
571

439
442
467

459
461
470

22, 0
20.8
20, 1

377
410

N.F.

—5.4
—5.4

(4, 4, 8)
As

p
Sb

274
246
236

576
492
351

526
414
323

30.2
28.9
27.6

338
383

N.F.

(7, 7, 11)
As
p
Sb

406
398
392

564
520
473

517
482
439

8.7

8.5
8.4

(2, 2, 4)
As

P
Sb

853
708
632

570
473
441

268
260
289

193
203
198

149.0
124.2
116.0

(2, 2, 8)
As
p
Sb

816
771
'?27

765
673
640

47
95

183

56
108
135

73, 6
64. 7
61.6

(3, 3, 1)
As
p
Sb

537
447
399

348
286
266

164
169
197

168
169
199

55.6
45.8
42. 6

(1, 1, 9)
As
p
Sb

258
230
219

318
265
236

286
248
227

—25. 1
—22.3
—21.3
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TARSI.E V (ConIASNed)
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%hit.

Figure-of-Merit Results and Admixture Parameters

b*-SM

As
P
Sb

As

P
Sb

0.382'
0.507i
0.370i

0 99k

1.03&

1.05~

0.545
0.417
0.338

O. 843
0.891
0.941

0,081
0, 102
0.084

0.990
0.982
1.003

0.105
0. 133
O. 105

0.978
0.972
1.017

As
P
Sb

PK PU PL +A]. PK PU PL

0.170 0.106 0.141 1.057 0.182 0.086 0.142 1.062.
0.146 0.085 0.098 1.037 0.146 0.072 0.106 1.039
0.105 0.065 0.052 1.019 0.092 0.082 0.060 1.026

~ Data from E. B.Hale and R. L. Mieher, Phys. Rev. 184, 739 (1969).
Whit. —kp/kma, x =0.86, («/aI)6& =1.?5, ay+=21 A. ; these values are

from computer results furnished by E. B.Hale; see also Figs." 5—7 in Ref. 14.
b~ —kp/km~~=0. 875, Ap=7.00 MHz, («/a~)pi=1. 75, ay*=19.2 A..

~ P'-SM kp/kmai =0.875, A.p ='I.20 MHz, («/ui) gi =1.5, («/ci) Li =
{1)2,25, aL+ =aK+ =av =ay@ = 19.2 L.

b+-SM kp/k =0.870, Ap =7.00 MHz, («/aI) gi -—1.5, («/e~) Li ——

(2) 2 50. («1/&I)K1=2. (&~/+I)K1=1. («1/«)Vi=165. («"-/«)Vi=
0 69. aL+ =aK+ =cg+ =19.2 A, , av& =.63 ay+ =12.1 A..

G. Feher, Phys. Rev. 114, 1219 (1959).
~ E. B. Hale and R. L, Mieher, Phys. Rev. 184, 751 (1969).
~ N. F. indicates this shell was not found.

' E. B. Hale and T. G. Castner, Jr., Phys. Rev. B 1, 4763 (1970),
' These values are based on only the seven positively identified ENDOR

shells A„B, C, Z, I', X, and Q because the Whit. calculations were not
done for some of the lattice yites associated with tentatively identified
ENDOR shells. Inclusion of shells L, M, and X wiH increase f;.

"These values are estimates based on 15 lattice site calculated values
and the 15 largest experimental values for each donor. Some of the omitted
sites may have larger calculated e(r~) values which will slightly increase
the fi values.

~ g indicates a positive identification. gT indicates a tentative identi-
fication.

Neither very close Dor example, (1, 1, 1)) nor very
distant sites should be selected: for the former, a lattice
distortion (slightly different covalent radii for different
donors) might affect a(ri), while for the latter the
pancake anisotropies can be large resulting in less
reliable values of the I;(ri) in Kq. (30). (4) It is better
to average over a number of matched site-ENDOR
shells, particularly for the sites (n, I, m), n and m, /0,
hopefully to diminish the e6ects of neglecting lack of
inversion or a missing critical-point admixture to f.
Site (4, 4, 0), identified as shell 8, was selected because
this site is the best-known site for determining pz,
since the eGect of the E& and U1 valleys is small. Sites
(2, 2, 0), (6, 6, 0), and (10, 10, 0), tentatively matched
with ENDOR shells F PV(Sb)), I., and M, respec-
tively, were averaged to yield an expression nearly
independent of pr, which is a linear combination of pU
and Px. Sites (1, 1, 5) (identi6ed as shell Q), (5, 5, 5)
(almost certainly shell C from Table III), and (5, 5, 1)
and (3, 3, 7) (tentatively identified as shell D and
shell X, respectively) were used to form a linear com-
bination of equations which yields a result nearly
independent of PI., thereby determining Pir. Except for
Sb the sites (2, 2, 0), (6, 6, 0), and (10, 10, 0) exhibited
reasonable consistency. Sites (1, 1, 5), (5, 5, 5),
(5, 5, 1), and (3, 3, 7) gave relatively poorer con-
sistency with As the worst, P intermediate, and Sb the
best with only small inconsistencies. (5, 5, 5) and
(3, 3, 7) seem to require much larger values of px than
(5, 5, 1).The source of the discrepancy is unknown, but
these sites can be affected significantly by a com-

ponent of P lacking inversion symmetry, which will
not affect the (n, n, 0) or (0, 0, es) sites.

B.Results

In Table V the calculated results for 28 lattice
sites for two slightly different sets of pl. , px, and

pU (one set for ao*——aq*, the second for aU* ——0.63aq*)
are compared with the experimental values from HM I.
Along with these are shown the calculated values based
on the Whittaker FJ (r) (from HM II) and the b* F (r)
for just the six i4 miiuma (p's equal zero). Also shown
are the experimental and calculated values of 8„,
the latter based on Eq. (23a) assuming Ji——J2 ——33 kHz,
an average value of these integrals based on several iden-
tified shells. The checks (Q) indicate positive identiaca. -
tion of lattice sites with ENDOR shells from previous
work12" or this study while the checks with question
marks indicate tentative . identi6cations. The un-
identified ENDOR shells are always given in the correct
symmetry class (see HM I) but should not necessarily
be associated with the calculated lattice site values to
the left. Since lack of inversion symmetry (at the
atomic nuclei —the argument applies only to even-
integer sites) has not yet been considered, one has
a(n, n, I)=a(n, e, es); therefore the inversion-related
sites Dor example, (4, 4, 4), (2, 2, T2), etc.) have not
been listed in the table. The experimental values,
however, may include inversion-related pairs. One
speculative possibility would relate lattice sites (4, 4, 4)
and (4, 4, 4) to ENDOR shells H and 0, respectively, as
discussed below'.
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Before discussing individual sites and shells, some
qualitative comments on the over-all agreement should
be made. The b* values (without subsidiary minima)
are too small for many well-identified shells like A, 8,
and E and they lead to much too small a value of
ft,,t,,~ Th.e Whittaker function values are too large for
some shells (A, E, E, and Q) and too small for others
(8, C, D, and F), but a reasonable value of ft,,~,~ is
found. Both these sets have rather poor f; values for the
"identified" sites. Because of a substantial positive bias
in the corrections, the b*-SM calculated values have
satisfactory values of ft,,t,,~, in addition to having much
smaller values of f,, the agreement being close to 10%%u~

for the three donors. It also seems possible to explain
some of the striking donor anomalies observed in the
data. The agreement is suKcient to identify several new
shells positively and some others tentatively. Neverthe-
less, the fit is clearly not an optimized fit and further
refinement of the calculations with a finer grained
variation of some of the parameters seems both probable
and desirable since better agreement will then yield
reliable information on the detailed shape of the
lowest conduction band. %e now consider in detail the
agreement for specific lattice sites and the matched
ENDOR shells, insofar as is possible.

(0, 0, 4) and (0, 0, 8) Sites Matched —Previously
zgjjjg Sjgggg g» ggd +»

The agreement is apparently better for the first
b*-SM than the second, except that the second
predicts the anomaly ash(0, 0, 4))ap (0, 0, 4) and also
predicts a much smaller asb(0, 0, 8) (this shell was not
found experimentally and should have 2u(420 kHz; it
might be in the AAA region). The second b* SM-
(0, 0, 4) values are too large for three donors, and the
(0, 0, 8) values are too small for two donors, indicating
an incorrect balance between the L, the E, and U
corrections, possibly because of incorrect anisotropic
radii or too large a po.

(1, 1, 1) Site Matched Pr—eviously with Shell E"

The agreement of As and Sb is excellent, while it is

poor for P and thereby accounts for nearly one-half the
contribution to f, for P. This is not accounted for by the
smaller covalent bond radius of P because a smaller
radius for the (1, 1, 1) Si would increase the cosine
thereby increasing a(r~), making the agreement worse.
A significant decrease of pre and pz would help but would
worsen the agreement for many other shells.

(5, 5, 5) Site Matched as Shel—l C

Although the calculated values are somewhat too
small they are substantially larger than any other
(1, 1, 1)-axis-class site and the assignment with shell C
is consistent with the small dipole-dipole constant as
noted by Hale and Mieher. " The component of f

lacking inversion symmetry might substantially im-

prove the agreement as noted below.

Other (1, 1, 1) Axi-s Cla-ss Sites

The agreement is sufFiciently poor that no other
shells can be matched with lattice sites. One possible
reason is the neglect of the component of P lacking
inversion symmetry and further discussion is reserved
until after this is considered below.

(2, 2, 0) Site Ma—tched as Shell F [V(Sb)]
This site can be identified by its very large B„value

(largest of all the shells) assuming the large contribu-
tion of the second term in Eq. (23a). The agreement of
the a(rt) values is good for As and P and somewhat
worse for Sb. The agreement for Sb could be made much
better by reducing Po about 20'%%uo but this would make
the agreement worse for sites (0, 0, 4), (6, 6, 0), and
(10, 10,0).Another possible explanation is the repulsive
region of U(r) for Sb ' which might reduce F;(r) in the
vicinity of (2, 2, 0). Considering the dipole-dipole con-
stants" and the stress behavior, " there seems to be
little doubt that V(Sb) should be associated with the
very anomalous Ii shell.

(4, 4, 0) Site Matched P—reviously as Shell 8"
The agreement is satisfactory although all the

values are somewhat too small.

(6, 6, 0) and (10, 10, 0) Sites Matched —Tentatively
as Shells L and M, Respectively

These shells have patterns very similar to shell 8
characterized by negative B„values (shell M has the
largest negative B„v luaes of all the shells); they have
sizeable B,„values, and also have large donor anomalies
with normal ordering. The very large corrections
(see Table III) suggest (6, 6, 0) and (10, 10, 0) should
be observed and shells L and M are the only promising
candidates. The agreement of the b*-S3f values is
reasonable and they indicate the larger donor anomaly
for (6, 6, 0) thus suggesting (6, 6, 0) as L and (10, 10, 0)
as 3f. This is not in agreement with the dipole-dipole
calculations (neglecting SM corrections) which sug-

gest the reverse assignment. The uniaxial stress be-
havior is the most anomalous of all the shells (see HC).
These assignments await corrections to the dipole-dipole
and piezo-hyperfine constants. There do not seem to be
any other promising lattice sites for shells L and M.

(1, 1, 5) Site Matched Previousl—y as Shell Q

The agreement for this shell is reasonable although
the calculated values are too small for P and too large
for Sb. The reason for this is not understood.

(8, 8, 7) Site Matched Tentat—ively as Shell X

Only this site gives reasonable agreement with the
strongly inverted donor anomaly of shell X. Although
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sites (2, 2, 4), (2, 2, 8), Rnd (3, 3, 1) have substantial
negative corrections, none of these sites give reasonable
agreement. It is unlikely shell X is an even-integer site
since there doesn't appear to be an inversion-related
mate in the data. The (3, 3, 1)-site values exhibit too
small an inverted donor anomaly and are too small in

any case. However, the uncorrected B„value for the

(3, 8, 7) site is in poor agreement with shell X.

(8, 8, ll) Site Un—identifted; Shell P is a Possibility

The calculations suggest this site should be observed.
It should have a relatively small negative uncorrected
B„, a negative iq parameter, and a normal donor
anomaly. Shell I' has these characteristics; however,
the calculated values are somewhat too small and the
calculated donor anomaly is too large.

(5, 5, 1) Site Mat—ched Tentage'vely IIs Shell D

This assignment is troublesome because the dipole-
dipole constant B„and the stress results are in poor
agreement with this assignment. The calculated
b*-SM values are approximately correct although the
calculated normal donor anomaly is too large. No other
unmatched lattice site has large enough u(rI) values to
be a good candidate for shell D, although site (5, 5, 9)
would be in better agreement with the small dipole-
dipole constants and the small iq parameter for shell D.
Site (5, 5, 1) seems certain to have been measured and
no other experimental shell besides D is a favorable
candidate for site (5, 5, 1).

(5, 5, 9) Site Matched T—entatively Its Shell G

The calculated values show too large a normal donor
anomaly; however, with respect to the uncorrected
dipole-dipole constants and the uniaxial stress
parameter this assignment is excellent. Distant sites
are much more sensitive to the mass anisotropies in the
valleys, therefore some caution is required. It is highly
probable this site has been measured. While shel) D
should not be ruled out completely, shells like I and I'
are not good candidates when one considers the dipole-
dipole constants and the ig parameters. Shell G is
certainly the best choice at present.

(7, 7, 8) Site Tentatively Matc—hed as Shell I
The u(rI) values are in reasonable agreement with

this assignment; however, the uncorrected dipole-dipole
constants and uniaxial stress parameter ig deviate
somewhat. Shell I' is also a possible candidate for this
site.

(7, 7, 11)—Unmatched

The calculations, neglecting the noninversion com-
ponent of f, suggest this shell might have been ob-
served. It should have a small normal donor anomaly,
a small positive B„, small B,„and B„values, and a
negative ig value. While shell I' should not be ruled out

coIQpletely lt seems improbable that this distant, site
has been measured.

(4, 4, 8) Site U—nmutched

This site and its inversion-related mate should be
considered. as possible candidates for shells I and I'
(see the uniaxial stress ie values in HC); however, this
assignment is in poor agreement with the dipole-dipole
constants. Were this assignment to be con6rmed, then
sites (7, 7, 8) and (8, 3, ll) would have to be eliminated
from consideration, requiring strong unknown negative
corrections for these sites. It seems more probable from
the b~ SM va-lues of II(rI) for (4, 4, 8), particularly the
large donor anomaly, that site (4, 4, 8) should be
eliminated from consideration, but this remains an open
question.

(9, 9, 1) Site Match—ed Tentatively as Shell R

This assignment seems very good although correc-
tions are required to explain the uniaxial stress i~
values. The calculated b*-SM values, including the
magnitude of the donor anomaly, are in good agreement
with the experimental values for shell R. The (7, 7, 1)
site was also considered as a candidate for shell E,
but it has a negative correction from the subsidiary
minima and has calculated a(rI) values which are
substantially too small. It seems unhkely shell R could
be matched to an even-integer site since there does not
appear to be an inversion-related mate in the data.

(9, 9, 5) and (2, 2, 12) Sites Unmatc—hed, bit
Tentatively Associated with Shells S, T, and U

All of these shells exhibit inverted donor anomahes
for As and P. They have not been found in Sb; however,
there is a reasonable probability some of them are in the
AAA region (see HM I).These lattice sites should have
small dipole-dipole constants and small iq values, which
Is collslstcll't wl'tll 'tlM data lll HM I Rlld HC (tile is
of shell U was not measured). The uncorrected calcu-
lated $e VRlllc ls slllRllcl for (9) 9, 5) tllRII fol' (2, 2, 12)
or its inversion-related mate (2, 2, 12), which suggests
it is a better candidate for the remarkable shell T which
has &„=0.0 kHz and an

~
Ig

~
(0.01.Despite the lack of

any positive identi6cation, it is encouraging that the
subsidiary minima corrections yield lattice sites with
the right characteristics for these shells.

(2, 2, 4) and (2, 2, 8) Sites Not ExPected T—o Hove
Bees Measl'fed

The strong negative corrections for these sites and
their inversion-related mates, particularly for (2, 2, 8),
yield small a(rI) values and suggest these sites have not
been measured. The a(rI) values for (2, 2, 8) have been
reduced by factors of 15, 6.6, and 4 for As, P, and Sb,
respectively, which indicates the importance of a small
admixture of the numerous E~ and U~ valleys.
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a(ri, kp/k „)values to the experimental data in order
to check what spread of ko.values occurs. Using the
second set of Ps, Px, and Po (air" ——0.63aa) given in
Table V the values of a{ri, kp/k . ) have been calcu-
lated and are shown for As in Fig. 5. Matching circles
are obtained for 13 of the 14 "identified" shells Lthe
calculated a(ri, kp/km, „) values for site (9, 9, 1) were
slightly too small to be matched with shell Ej. These
matching circles lead to a mean value (kp)a, ——0.872k
A similar analysis for P (13 matching circles) and Sb
(10 matching circles) yields mean values (kp)p =
0.&72k,„and (kp)sb=0. 866k, . An analysis of the
over-all. spread in kp/k "fit values" indicates it is
much smaller than the previous analyses" '4 and sug-
gests a value kp/k, „=0.87&0.01. This is in good agree-
ment with the value kp/k, =0.86&0.02 reported in
HC (the value in HC wouM have been slightly higher
had the calculated values of he been based on the b*

envelope function rather than the Whittaker func-
tion) .

Inspection of Fig. 5 indicates the unmatched (111)-
axis-class shells II and 0 are far better candidates for
the (4, 4, 4) and (4, 4, 4) sites than for the (8, 8, 8) site.
It should be emphasized that the results in Table V
Rnd 1n Flg. 5 hRvc bccn based on R wRvc funct1on thRt
has inversion symmetry (with respect to the even-
integer lattice sites). A wave-function component lack-
ing inversion symmetry can introduce systematic
deviations which will RGect the results in Table V and
Fig. 5.

Fxo. 5. The calculated Fermi contact constants versus k0/k
including the subsidiary minima corrections (but neglecting
the noninversion contribution} from the JI, EI, and VI regions
of the lowest conduction band [the P, admixture coefficients used
were the second set (so*=0.63o*) given in Table Vf. The experi-
mental values taken from Hale and Mieher (Ref. 11) are shown
to the right. Matching circles were found for 13 of the positively
.and tentatively identi6ed shells [the (9, 9, 1) site calculated
values always remains below the shell It valuej. While shells
H and 0 were not considered tentatively identified in Table V,
it is noted that they can be reasonably matched with lattice
.sites (4, 4, 4,} and (4, 4, 4} but probably not with site (3, 3, 3}.

(1, 1, 9) Site Sot Expecte—d To Have Been Measlred

The small negative correction for this site yields
a(ri) values slightly below the continuum hmits given
in HM I. No measured shell has the appropriate
dipole-dipole constants or uniaxial stress iq to be a
reasonable candidate for this site.

(3, 3, 1) Site Pot Expecte—d To Have Been jfeasrsred

The calculated a(ri) values of this site, which is
close to the donor (fifth nearest neighbor), are sub-
stantially below the continuum limits because of the
negative correction from the Ir minima. The (1, 1, 8)
site (third nearest neighbor) has also been considered
and has a(ri) values well below the continuum limit.

Having incorporated corrections to a(ri) from
the subsidiary minima, j.t is of interest to 6t the

C. Inversion Symmetry of iP?

As noted previously"" the 1s-Ai-state donor wave
function need not possess inversion symmetry. This
feature does not result from the band structure because
of the cubic symmetry (Os' space group) of the diamond
lattice. However, the donor possesses only Tg sym-
metry and 8U(r) can contain a tetrahedral potential
bUr(r) = V&xysf(r). This potential. has negligible effect
on the valley-valley coupling because of its odd parity.
However, in the single-valley Schrodinger equation
)see Eq. (4)j, it can be treated by perturbation theory.
It admixes f function (satisfying the Ai representation)
from n=4 on to much higher e. This tetrahedral"
component of P will have the form

(nf-A,
i
bU, i

Is-A, )
lt, =xys P

(Ei.-~,—E )

X~ ~ (» p(—p/2) (31)

where I.„+sr(p) is the associated Laguerre polynomial
and A„ is a normalization constant for the nf function.
The anisotropic mass tensor has been neglected and
simple hydrogenic functions have been used in Eq. (31).
The energy denominator is nearly constant for m=4
and larger. Because of very large Bohr radii of these f
functions and the short range" of hU&{r), the matrix
elements will decrease slowly with e and might be ap-
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proximated by (nf AI { 8U, { 1s AI)~V0(1 —n)"~ where
a&(1. The summation in Eq. (31) can be done ap-
proximately by employing a gcncI'atlng fuQctlon foI'

the associated Laguerre polynomials leading to the
approxlIQatc result

where l1&(4R~, the Bohr radius of the 4f state. The
value of X is dificult to determine and will depend on
how rapidly the matrix elements decrease with e,
i.e., on the value of n. Neglecting mass anisotropies, one
obtains the same type of function for alI the valleys,
including the subsidiary valleys. With this f-function
admixture, the correction to a(rI) is readily estimated
since pl will factor out of each F; (r) term. The cross-
term result can be shown to be"

X Lexp (—rI/l1)/exp (—rI/b~) )u(rl). (33)

Equation (33) can be employed to calculate Au(rl);
if ll and the constant C' (C'~ V&) are known. For the
estimates made here we set ) =t}*and attempt to deter-
mine C' from the data for a set of tentatively identi6cd
inversion-related ENDOR sheHs. The set most likely to
llavc been obscl'vcd (ldcnt16ablc pal tly 011 flic basis of
the symmetry class) is (4, 4, 4) and (4, 4, 4). A careful
collsldcl'a'tloll of Rll 'tlM unldcnt16cd (111)-Rxls-class
shells indicates that only H and 0 give a plausible set
of C' values Lthe same sign for all three donors and a
reasonable donor dependence, in this case C'(P)&
C'(As)&C'(Sb)j. The uncorrected dipole-dipole con-
stant values Lsee HM I and Eq. (23b)j favor H as
(4, 4, 4) and 0 as (4, 4, 4). This assignment is also
supported by the sign of the required corrections for a
nunlbcI' of idcnti6ed shells. Shells C and E. 1cqull c
positive corrections while shdl X requires a negative
correction. Also sites (7, 7, 7), (8, 8, 8), and (7, 7, 11)
I'cqullc Qcgatlvc corrcctlons to bc consldelcd not ob-
served. All of the above facts require C' to be positive
L8U~(r) attractive, V~ negative) making ba(rl);
positive Lwith respect to a(rl )j in the positive quadrant
(n, n, m} and negative in the negative quadrant
(n, n, In).

Qualitatively the correction Lha(rl)/2j; is largest
for the more distant shells close to the (111)axes which
also have large values of u(rI). These corrections have
been calculated with Eq. (33) using shell-H and
sheH-0 data to determine C'.

The effect of Lho(rI)/2j, on all the sites is not, an
obvious over-all improvement. %bile the "idcnti6ed"
sites (5, 5, 5), (9, 9, 1), and (8, 8, '7) are substantially
improved the sites (5, 5, 9), (7, 7, 8), and (9, 9, 5) are
now in noticeably poorer agreement with the data.
Although site (7, 7, ll) is substantially decreased to
near the continuum limits, site (4, 4, 8) is increased
making it appear to be a measured shcH, while site

(8, 8, TI) is decreased enough to make it a questionable
cllolcc f01' shell P F. ol' flic (111)-Rxls-clRss sl tcs,
(8, 8, 8) and (7, 7, 7) are still both shghtly above the
continuum limits in HM I, but there are no (111)-axis
shells with values of u(rI)/2 this smalL Site (9, 9, 9) is
boosted substantially (too much), making it appear to
be a measured shell. Shells J and E are both candidates
(J is much the better candidate on the basis of the donor
anomaly}. Site (8, 8, 8) is reduced below the continuum
limits, however site (8, 8, 8) has a large enough a(rI)/2
value for As and P to be considered a measured shell.
Shell Smight be a possibility except the donor anomaly
is wrong and site (8, 8, 8) is expected to have a much
larger B,„value, not considering corrections due to the
subsidiary minima. If sites (8, 8, 8) and (7, 7, 7) can
really be removed from consideration (this seems
questionable for Sb) one has obtained more reasonable
general agreement for the unidenti6ed (111)-axis shells
than before the noninversion component of f was con-
sidered. The observation of site (8, 8, 8) seems rather
unlikely, but if con6rmed wouM bc a most remarkable
indication of the importance of the subsidiary minima
since the b* value of a(rI)/2 for (8, 8, 8) is negligible
(see Table V).

Ill sllllllllR1'y, tllls Rddltlon of f fllllctloll Illakcs some
improvement in the (111)-axis shells, thus supporting
the tentative assignment of shells H and 0 to sites
(4, 4, 4) and (4, 4, 4), respectively. It suggests site
(9, 9, 9) corresponds to a measured shell, but that sites
(8, 8, 8) and (7, 7, 7) probably have not been measured.
For the {110}-plane-class shells, the results are equiv-
ocal.

D. Valley-Valley Couyling Matrix Elements

Given a realistic donor potential U(r) which takes
account of the difference of the core potential of the
donor atom and a silicon atom and also takes account
of the dielectric shielding CBects, then it is easy to
estimate the valley-valley coupIing matrix elements
V I, between the jth and 1th valleys. Nara and Morita~4
have taken account of both these CGects and find a
spherical donor potential of the form

LVg)(k) —Vs;(k)j exp( —ilr r) dk

e(k) (2n )"
noting that the anisotropy in e(k) was shown to be
smalP' and the isotropic component of e(k) can be
writ ten as

Ak' Bk'
Le(k)1 '=, , +, , +eg ', , (35)

The coefllcients A, 8, a, p, and y have been calculated
by Nara~e; however, we note that these constants are
sensitive to detailed knowledge of the band structure
and should not be considered accurately known. The
f«m «VII(k) —Vs;(k) used by Nara and Moritar'
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was

Zg) —5 Zs —4
Vn (k)—Vs;(k) =—4se' —+

ks ' As+op)s ks+irs s

(36)

(Zn —5) (Zs —4)
a, =A 1—0.'

0~ —0.'08 —0!
(38a)

where the core potential of an n-fold ionized free ion was
taken to have the form

[is+ (Z;—is) exp (—a;~)](—es/r),

where Z; is the Z of the atom and 0; is an effective
screening constant. %'ithin this approximation one
finds U(r) to be of the form

U(r) = ( e'/r)—[es '+a. exp( —rrr)+b. exp( —Pr)

+c, exp( —yr)+d. exp( —o~r) —e, exp( —os;r)], (37)

in which the coe%cients are given by

where the usual approximation of averaging over
Ni, (r) has been made. If we neglect the central-cell
correction term and also recognize that the principal
contribution to V, ~ results from the short-range portion
of U (r), it is an excellent approximation to neglect the
anisotropic part of F;(r) [we use here the uncorrected
ua form of F;(r) for both valleys]. After performing the
angular integration we find

4 " ( 2r) sin(~ k;—ki
~
r)

V i= — exp
~

——
~
U(r)

' r dr
gas I o4) it,—kii

Qualitatively, for large
~
k —ki

~

it is only the very-
short-range part of U(r) which contributes appreciably
to V, i while for small

~
k;—ki

~

a much larger portion of
U(r) contributes to V;i. Based on shielding constants
determined from Herman-Skillman atomic potentials"
and on the dielectric coeKcients from Nara and
Moritar' V;i versus

~
k,—ki

~
jk,„has been calculated

and the results are shown in Fig. 6. For very small

(Zn —5) (Zs;—4)
ps ~ .s ps

(Zn —5) (Zs -4)
„&D P O'Si

A 0'g) Bo'~ 7'
,+, ,—,, (Zn —5),s s & s ps & (&

s +s)

Si ~0'Si 7'
osi cr &si 0 es(osi 'P)

(38b)

(38c)

(38d)

6.0

5.0

As &~, U(r)~ e'(Zz& Zs;)/—r as re—quired. In this
potential the terms u„b„, and c, result from the dielec-
tric screening eGects and can lead to a net repulsive
contribution to U(r) which is largest for Sb. Nara and
Morita~' observed that for large enough r such that
the core terms (d, and e„) are negligible, Sb can have a
repulsive U(r) for a small range of r; however, this
behavior is very sensitive to the screening constants
employed. ~'

The matrix element V;1 between the jth and 1th
valleys is

V 1 = Fg r u1„r ~ exp —ik) r U r

3.0
E

I

2.0

I.O

.50 l.00
&~i-4~

k max

I tt-
Oa &a pm& ~a&m pmgkahaoa pro

I

l.50 2.00

XF;(r)ui,, (r) exp(sk; r)dk

certtra 1 ee11
(sip, ali„—1)FiF;

Xexp[i (k;—ki) .r)U (r)dr, (39)

Fr(r)Fi(r) exp[i(k; —kr). r]U(r)dr

Flo. 6. Valley-valley coupling matrix elements calculated from
Eq. (46} neglecting the central-cell correction term employing
the potential in Eq. (44} with screening coeKcients obtained
from Herman-Sk. illman atomic potentials (Ref. 76}. Though
shown as smooth curves, the matrix elements are only between
the valleys of the lowest conduction band, which are separated
by discrete values of

~
k, —k~ (. The various values of

~
k;—k~ )

which give the various matrix elements (defined in Appendix A}
between a particular 6& valley and the other valleys are indicated
above the lower scale. The dashed curve for Sb indicates the
form of V;~ curve consistent with the empirical values Pl., P~,
and P~ obtained from fitting the Sb ENDOR shells.
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~
k;—ki ~, the donor dependence is small and the largest

contribution to V;i results from —e'/d'or, while for large

~
k;—ki ~, V;i is largest for Sb and smallest for P,

thereby demonstrating the role of the core portion of
U(r) On. e can pick off Fig. 6 the V(~ k;—ki ~) for the
coupling between a Ai valley and all the respective I.i,
Ej, and U~ valleys. In this manner the matrix elements

(Ai z, U(r)
~

Ai &,), (2, » ~
U(r) I ~i-iii) and

(A, ~, U(r)
~
Ai q, ) (see Appendix A) are deter-

mined and are, respectively, —20.6, —15.2, and
—47.8 meV for P. The central-cell term will tend to
increase the magnitude of these matrix elements.
Because of the lack of specific knowledge of el., (ri),
~z, (ri), and u~, (ri), it is diflicult to make more than
crude estimates of the n's from the P's, and hence of
the energy gaps Ez1 E& and EL,y E& These esti-
mates indicate the energy gaps should be small, in the
range 0.3—0.5 eV. This is smaller than most of the band
calculations" " predict although the k p calculations
of Cardona and Pollak" give values in this range. The
pseudopotential calculations, except those of Kane, "
predict energy gaps approximately a factor of 2 larger
than these estimates. The magnitudes of the matrix
elements (Ai;

~
U(r)

~
Ai q, ) are the right order of

magnitude to account for the magnitude of the admix-
ture coefficients, the n's and the p's, and indicates the
effectiveness of the potential in coupling the low-lying
valleys. We reemphasize it is only the 1s-A& state
(where all the individual valley-valley coupling
matrix elements add) that strongly exhibits the effect
of the valley-valley coupling.

From Fig. 6 the 6&-6& valley interactions yield
(4h,+ho) =15.5, 7.9, and 18.5 meV for As, P, and Sb,
respectively. The As and P results clearly indicate these
quantities are too small to account for all the energy
deviation of the 1s-A& state. By setting k, =k& and
subtracting —e'/&or from U(r), we obtain from Eq.
(40) the single-valley correction (Fq (r)

~

AU (r)
~

Ii ~ (r) )
which for the above parameters is —1.6, —1.0, and
—1.6 meV for As, P, and Sb, respectively. This is a very
small fraction of the energy correction to the 1s-A&

state. The second-order energy corrections in Eq. (26)
from the subsidiary minima can only be roughly
estimated because of the conversion problem between
the n's and the p's. An estimate based on uz, (ri) =
e«(r i) =uz, (r i) = 2u&, (r i) and energy gaps Ez,—Ez, =
EI,,—E&,=0.4 eV yields second-order corrections of
—12, —8, and —5 meV for As, P, and Sb, respectively.
Thus the valley-valley coupling between the 6& minima
themselves and the subsidiary minima can readily
account for all the energy deviation of the 1s-Ai
donor state.

The principal problem regarding the valley-valley
coupling matrix elements in Fig. 6 is the large over-
estimate of these matrix elements for Sb.7' The reason
for this is thought to be the inadequate description of
the potential Vsb (k) by a single screening constant —the
potential U(r) for Sb (1.5&r&4 A) is not well de-

scribed by Eq. (37). The problem is not solved by the
argument of Nara and Morita" that with increased Zn
the coefficient u, becomes more negative leading to a
more repulsive U(r) for 1.5&r&4.0 X, because Bi
has a substantially larger value of both E&, &, and

~
$(0) ~' than As, and therefore the V, i curve for Bi

should be higher than for As. Sb seems to be the truly
anomalous donor and the results suggest a very delicate
balance of the terms in U(r) which would produce the
dashed curve V, i(~ k,—ki ~) shown in Fig. 6 which is
required to account for the smaller Pz and Pi, and the
larger pp of Sb relative to P. Although the matrix
elements are very sensitive to the dielectric coefficients
(particularly n), a change in these coefFicients changes
the V, i(~ k,—ki ~) curves proportionately for all the
donors and would not account for the anomalous
behavior of Sb.

V. EKTENSION TO DEEP DONOR

It is of interest to extend the subsidiary valley
corrections approach to a donor with a significantly
larger binding energy which still resides in T~ symme-
try. Bi is the next more tightly bound shallow donor
(Ei, ~,= —70 meV) but no ENDOR data on this
donor exist. The double donor S+ [Z=2, U(r) =

2e'/e, r+—6U(r)] has been studied extensively and a
detailed ENDOR study by Ludwig" has given hyperfine
tensors for eight shells. Ludwig attempted to use the
Kohn-Luttinger theory to explain the data, but found
the agreement was poor, and was able to identify only
one measured shell. The nearest-neighbor site (1, 1, 1)
was identified with the largest a(ri) value (largest of
all eight shells) because of its symmetry pattern and its
enormous dipole-dipole constant 8,„.Since the (1, 1, 1)
site has the largest a(ri) value, the wave function for
this deep donor differs qualitatively from that for the
shallow donors discussed above. The significantly
stronger potential should greatly increase the coupling
between the valleys.

The effective-mass energy for S+ will be —Z'E()
—128 meV, and the Bohr radius will be a*/Z=9. 60 A.
Using the binding energy (0.52 eV) employed by
Ludwig, we find x=0.50 and b*s+=iia*s+=4.80 l (the
b~ envelope function with these parameters was that
employed by Ludwig). With the a*s+ envelope function
one can readily calculate the valley-valley coupling
matrix elements V;~ using an appropriate screening
constant o~ for S+. From these V;~ one obtains the
matrix elements (Ai, ~

U(r)
~

Ai q, ) and scales the
p, 's for S+ from those for P using the relationship

t'(&1—j ~
U(r)

~
&i—a&)s"

«~. , lU() i~ .,).
This yields for S+ the values pI, =0.890, pz=1.240,
and PU =0.683. Most of this substantial increase results
from the eightfold increase of (1/a*') in Eq. (40).
The S+ core potential is only slightly stronger than that
for P, but is much weaker than that for As and Sb. The
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Tpax.z VI. Comparison of calculated and experimental Fermi contact constants for the substitutional S+ donor.

Site
Calculated u(r~) /2 values

b*-SM b*-SM b*-SMo a(r)) /2

Experimentalb

B„ B+p

(1, 1, 1)

(3, 3, 3)
(4, 4, 4)

(5, 5, 5)

(8, 8, 8)

(0, 0, 4)

(2, 2, 0)

(4, 4, 0)

(1, 1, 3)

(5, 5, 1)

Pv

3.29

3.76

1.95

1, 10

0.001

18.20

2.88

5 ' 40

0.11

1.42

0
1

17.9
2.45

0.12

1.83

0.20

1.38

6.32

7.14

5.80

0
5.0

16,3

2.23

0, 05

1.67

0.21

3.70

11.72

6.79

5, 28

3, 86

0, 30

5.5
I

14.9

2.04

0.03

1.53

0, 21

14.30

6.40

4.83

3.53

6.0

16.35

4.54

1.46

0.68

1.03

4. 18

1.92

2.39

~ ~ I d

0.08

0.37

0.53

0.03

12.0
0.54

0.02

0.10

[ 0.09[
0, 35

0.28
—0.07

B„
B,„

~ ~ ~ 'r1

0.72

0.35

0.04

~A}l values in MHz.
G. W. Ludwig, Phys. Rev. 13'f, 1520 (1965).

'Pl, =0.890 and P~ =1.240.
d ~ ~ ~ indicates this value is required to be zero by symmetry,

overlap between valleys has also increased by more than
an order of magnitude (see Appendix B) and ao (k—k, )
falls off much more slowly away from the minimum k, .
While the l., and E, valleys are still far enough away in
k space to be considered isolated valleys, it is now

questionable whether the U& "saddle-point" region can
be separated from the h1 valleys. For this reason the
calculations'presented below are for several reduced
values of Pt, including Pp ——0.

Values of a(r~) are calculated for substitutional S+

using Eq. (18), setting k0=0.87k,„, 20=56 MHz
(the eightfold increase results from the 1/a*' factor),
and employing the b* envelope function, The choice of

Sg, is di6icult because of the substantially increased
valley-valley overlap and because linear terms in the
a~ from overlap can now make a noticeable contribu-
tion to Ng, . The choice of N~, has been dictated both by
the estimates based on expression in Sec. II and the
value of f~„,~ (this latter check suggests a value of

S~, in the range 5-6). The results for the b* and three
b* SM values ar-e compared with the experimental a/2
values taken from Ludwig's study" in Table VI.

Qualitatively the b* S3f values im-prove the over-all
agreement in several respects: (1) The (1, 1, 1) site
has the largest value of a(r~); (2) the (0, 0, 4) site
value is substantially reduced, remaining smaller than
three of the I 110I -plane sites for most of the range of Pp.
Quantitatively, the results are much less reliable than
for the shallow donors for several reasons: First, the
values of nl. and o,~ are now comparable to one and the
use of perturbation theory is questionable; secondly,
the A1-U1 region of k space has not been treated
properly; finally, comparable qualitative agreement
can also be obtained for S+ in the tetrahedral inter-
stitial site. From Table VI it is tempting to assign
tentatively the third largest (111)-axis shell (a/2=1. 46

MHz) with the very small dipole-dipole constant B,„
to site (5, 5, 5), in analogy with shell C for the shallow

donor case. This should be regarded as speculative until
the corrections to the dipole-dipole constants are con-

sidered, since the subsidiary minima admixtures are
so large. However, these corrections may be small

since the B,„component for shell t." exhibits very little
donor dependence.

For the S+ donor the largest contribution to
~ f (r~) ~'

for sites (1, 1, 1), (8, 8, 8), and (5, 5, 5) is no longer
from the A1 minima but is from the subsidiary minima.
For site (8, 8, 3) the major contribution to a/2 is from

the E& valleys and negative corrections result from the

6& and I-1 valleys —just the reverse of the shallow-donor

case.
The admixture of wave function from other bands to

the S+ wave function has been suggested by Ham (see
Ref. 25). Ham notes the A2' band is a prime candidate
because it is close in energy to 6& and is coupled by
U(r). Previous discussion" has suggested the
band is the extension of the 51 band on an extended-
zone scheme, and might thus be considered a higher-

energy portion of the 61 minimum valley. The S+ donor
would certainly be expected to have a very much
larger admixture of h2' band wave function than the
shallow donors. Nevertheless, this A2' band admixture
will affect the interference characteristics of f much
less than comparable amounts of wave-function
admixture from other regions of the Brillouin zone

(BZ). Wave-function admixture from a substantial

portion of the BZ in ample amounts has the eGect of
greatly reducing the interference in

~ f (r&) ~'—in

agreement with what appears to happen for S+. While
admixtures from other bands, particularly the
band, seem likely, we suggest the lowest conduction

band, with corrections from the subsidiary valleys and
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FIG. 7. Matching of the observed ENDOR shell
lattice sites em lo in the c

s e s with the
p ying e calculated Fermi contact constants.

e etter of an observed shell (see Hale and Mieher Ref. 11)
a jacent to a lattice site indicindicates a positive identification. A
e er o owed by a question mark indicates a tentative identiflca-
ion. question mark followed by a letter or letters in parentheses

suggests possible candidates for a particular site, A uestion m
alone indicates no favorable ENDOR shell for that site,

as yet undetermined interior critical points, con-
tributes the major portion of the S+ donor 1s-A& wave
function.

VI. DISCUSSION AND CONCLUSIONS

What is the three-dimensional appearance of the
wave-function density

~
lf (r&) ~s inferred, from the Fermi

contact constants? To what extent does the 1s-Ai-state
wave function reflect the tetrahedral symmetry of the
silicon atoms surrounding the donor? These questions
are best answered by considering the identified sites,
the tentatively identified sites, and other possible
attice sites that may have been measured. These are

shown in Fig. 7, which shows the sites in one of the six
[110} planes (we recall from HM I that no unique
class shells were measured above the continuum limits;
thus all the measured lattice sites lie in these six {110)
planes and each individual (110) plane contains all the
measured sites). Figure 7 suggests channelling of
~f(r&) ~s along the (110) axis. Four sites have been
identified or tentatively identified along this axis and
large wave-function density extends further along this
axis than along the cubic axes. Two sites have been
positively identified along the positive (111) axis, site

Z

&OOI&

[IIO]

Pkee

I
X +QO&

BIO]
XJ

Plane

Y

cOIO&

Fro. 8. The tetrahedron of the four nearest-neighbor silicon
atoms surrounding the donor and two of the six reflection planes
(vertical reflection planes in the Tq point group) which bisect
the tetrahedron. In the D1G] plane the wave-function density
is greater on the positive half of the plane. In the (11G) plane
the wave-function density is greater on the negative Z half of
the plane.

(4, 4, 4) is tentatively matched with shell H, site '

(9, 9, 9) is a candidate for shell J and site (8 8 8) h
no een ruled out of consideration. Along the negative
(111) axis site (4, 4, 4) is tentatively matched with
shell 0, while sites (3, 3, 3) and (7, 7, 7) have almost
been ruled out of consideration due to large negative
corrections. Thus there is some evidence for channeling
along the positive (111) axis. This preferential chan-
neling along the positive (111)axis results partly from
th e subsidiary minima corrections and partly from the
component of the wave function lacking inversion
symmetry.

Another way of considering the wave-function density
is to look at only the odd-integer sites in the $110]
plane since they are situated unsymmetrically with
respect to the (110) axis which divides the $110]
plane into two halves (the sites repeat and are identical
above and below the (001)axis). How many odd-integer
sites on each half of the L110j plane have been meas-
uredP On the right-hand half (positive quadrant),
sites (1, 1, 1), (1, 1, 5), and (5, 5, 5) have been posi-
tively matched with ENDOR shells; sites (5 5 1'
55

)(, , 9), and (9, 9, 1) have been tentatively matched;
and sites (9, 9, 5) and (9, 9, 9) are candidates for
measured shells. On the left-hand half, no sites have
been positively matched; sites (3, 3, 7) and (7, 7, 3)
have been tentatively matched; site (3, 3, 11) is a
candidate for a measured shell Lsites (3, 3, 3), (7, 7, 7~
and ~7'7 ll ~ might be considered marginal candidates

7

for measured shells). Inspection of the ts(r~) values for
these odd-integer sites in Table V indicates the possible
measured a(rt) values are noticeably larger (and also
more numerous) on the right half of the D10] plane.
This indicates a higher probability for the donor elec-
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tron to be on the right half of the L110] plane than on
the left half. The preference for the positive (111)
axis is in agreement with this conclusion.

When all six {110}planes are considered this tendency
for the electron to spend more time on the half of a
specific {110}plane containing the (1, 1, 1) nearest
neighbors is a definite indication of the tetrahedral
appearance of } P (r~) ~'. Figure 8 shows the tetrahedron
of the four nearest neighbors surrounding the donor and
two {110}planes which intersect at right angles. In the

{ 110] plane the wave-function density is greater for
negative Z Lin the direction of the two (1, 1, 1) neigh-
bors in this plane], while in the [110]plane the wave-
function density is greater for positive Z. The behavior
is the same for the other four {110}planes. This con-
clusion of the tetrahedral nature of

~ P(r~) ~' is still
true if one neglects the component of f lacking inversion
symmetry; however, this component does enhance
the effect. The regions of large wave-function density
then consist of six intersecting sheets, namely, the six
{110}planes, with the donor residing at the common
intersection of all six planes.

If the subsidiary minima corrections are neglected
Lsee the h* values of a(r~)/2 in Table U], there is still
some tendency for the odd-integer sites to have larger
values of a(r~) in the positive quadrant (see Fig. 7)
than in the negative quadrant. This reflects the position
of the 6i minima. For kp/k, „=1 all the odd-integer
sites have

~ f(r~) ~'=0, while for ko/k, =O.S the
values of cos(k,x&) are equal +Q-,' for all the odd-
integer sites and there is no tendency for the ''ter--
ference factor Iq to be larger more often on the right or
left half of the 010]plane in Fig. 7. Thus the position
of the 6» minima themselves produces some tendency
for

~ P (r&) ~' to reffect the tetrahedral symmetry.
Since it is the positions of the neighboring atoms and
the resulting periodic potential which determines the
band structure, it is not surprising that the weakly
bound shallow-donor wave function reflects the tetra-
hedral symmetry. Nevertheless, this is the first reported
evidence known to the author which indicates that the
1s-A» wave function for the shallow donors really does
exhibi t tetrahedral symmetry.

One should also note that the e6ects discussed above
reflect the fact that the unpaired electron shows a
pronounced tendency to go in directions with a higher
density of atoms since it can lower its energy by staying
closer to the potential of the atoms.

How much has the Kohn-Luttinger wave function
really been modified by the addition of the subsidiary
minima components? This can be estimated from the
normalization constant i7~, (the unresolved conversion
from the P's to the n's makes an accurate determination
of Ez, difficult). Since overlap between the valleys is
small for the shallow donors 1V~, has the form given in
Sec. II and 1/E~, represents the fraction of time the
unpaired electron spends in the 6» valleys. This is

estimated to be larger than 94% for As, 96% for P, and
97% for Sb. The fractional time spent in all the other
valleys is less than 6, 4, and 3% for As, P, and Sb,
respectively. The reasons why these corrections are so
important for the Fermi contact constants are (1) the
large number of minima associated with the I., E, and U
points yielding large interference factors I~, I~, and IU
for certain lattice sites; (2) the probable increased s
component of the periodic function uz(r) at these
points; (3) the complex interference pattern of the
combination of different valleys, often leading to large
corrections at sites where the six 6» minima wave func-
tion is small; (4) the corrections are added linearly in
amp]itude and the result is squared in obtaining a(r&).
Thus relatively small corrections to the Kohn-Luttinger
wave function can lead to major corrections in a(r~).

It has been noted previously" that donor-dependent
central-cell effects should only extend a distance the
order of a Wigner-Seitz radius. The correction potential
8U(r) may extend somewhat beyond the Wigner-Seitz
radius as indicated by the results of Nara and Morita74;
however, the important large portion of 5U(r) is in the
donor core region. The admixture of wave function from
the subsidiary valleys is accomplished primarily by
the short-range stronger portion of U(r). However, the

sects of this admixture are revealed at large distances
from the donor, the extent depending on the Bohr radii
a,* associated with the envelope functions F,(r) as-
sociated with the diferent subsidiary valleys. Conse-
quently, distant lattice sites like (5, 5, 9), (8, 8, ll),
(8, 8, 8), (10, 10, 0), and (9, 9, 9) experience sub-
stantial corrections due to the subsidiary valleys even
though they are well outside the range of the strong
central-cell potential. It is precisely this long-range
effect of the subsidiary-minimum corrections which
accounts for the fact that approximately half of the
ENDOR shel1s observed in HM I exhibit donor
anomalies.

The treatment of the E» and U» regions in this work as
minima, while incorrect in a rigorous sense, has allowed
one to simply introduce wave functions from these
portions of the BZ into the donor j.s-A» wave function.
The results indicate a substantially improved fit be-
tween the calculated and experimental Fermi contact
constants of the identified ENDOR shells. This strongly
supports the assertion that the donor 1s-A» wave func-
tion contains non-negligible components from these
low-energy regions of the lowest conduction band.

The evidence presented in this paper indicates the
identification of a large number of ENDOR shells for a
bound electron in a periodic solid can potentially yield a
significant amount of information on the conduction
band of that solid. An immediate question is whether
the approach used in this paper can be extended to
other solids. Grachev, Deigen, and Pekar~' have used
the method of Kohn-Luttinger to attempt to obtain
information from the extensive F-center ENDOR
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data~9 on the conduction-band minima in KC1 and NaF.
Their conclusion that the conduction-band minima in

KC1 and NaF may lie on the cubic (100} axes is in

question because of the diAiculty in correctly identifying
some of the distant F-center ENDOR shells, and per-

haps also because they did not consider contributions
to the P-center wave function from subsidiary energy
valleys of the conduction band or from other bands.
The binding energy of the Ii center is approximately
50 times that of shallow donors, but the conduction-
band-valence-band gap is only of the order of ten times
larger than in silicon, and the width of the conduction
band is only slightly larger than in silicon. This suggests
that the relatively stronger potential of the F center,
compared with that for the shallow donors in silicon,

may couple the different valleys in the alk.ali-halide
conduction bands much more strongly than for the case
of the shallow donors. This in part may account for the
fact that there is relatively little interference in the
F-center wave function because the wave function is
composed of a large portion of the BZ. Nevertheless,
the successful identification of a substantial number of
8-center KNDOR shells along different crystal axes
could provide substantial information on the band
structure of the alkali halides, provided the theory of
the hyperfine tensor components correctly accounts
for the topological features of the conduction band and
neighboring bands of symmetry such that they are
admixed into the F-center wave function by the
impurity potential.

The principal conclusions of this paper are as follows.

(1) The admixture of wave function (configuration
mixing) from the I.i valleys, the Ki valleys, and the U',

"saddle-point" region of the lowest conduction band in
silicon significantly improves the wave function of the
shallow donors by improving the fit of the calculated
Fermi contact constants with the experimental ENDOR
shells. The improved 6t ls good enough to positively
identify fwo llew sllells (C alld F) and to sliggest
the tentative identification of nine other shells (D, G, II,
I, I., M, 0, E, and X) (the confirmation of these
tentative identifications rests on making corrections to
the hyperfine tensor dipole-dipole constants and to
the piezo-hyper6ne constants, in addition to further
re6nement ot the Fermi contact calculations). The
matching of the positively identified and tentatively
identi6ed shells with calculated values of a(ri) versus
k0/k leads to a value k0/k„„„=0.87&0.01 for the
position of the A~ minima —slightly larger than pre-
viously reported values.

(2) The admixture of wave function from the sub-
sidiary minima changes the interference pattern of the
donor wave function substantially and gives an ade-
quate explanation of the many donor anomalies ob-
served in the experimental data, accounting for both
the large normal donor anomalies and the unusual

inverted anomalies (shell X being the most important
example). Large negative corrections for a number of
previously promising lattice sites L(2, 2, 4), (2, 2, 4),
(2, 2, 8), (2, 2, 8), (3, 3, 1), (8, 8, 8), and (7, 7, 7)j
have either removed them well below the continuum
limits or have made them marginal candidates to be
matched with the measured shelis.

(3) The subsidiary minima corrections are shown to
give a good explanation of the wave-function density
at the donor nucleus, for the first time explaining the
donor dependence for As, P, and Sb semiquantitatively.
This is accomplished. with a simple exponential envelope
function rather than employing the sharply peaked
%hittaker function and a cuto8 radius.

(4) Analysis of the admixture coeKcients yields
estimates of the energy splittings EJ.,-Eq, and. E~,-Eq,
in the range 0.3 to 0.5 eV, about a factor of 2 smaller
than predicted by the pseudopotential calculations
but in approximate agreement with the k p calcula-
tions. Additional re6nement of the Fermi contact
constant calculations should yield more accurate values
of these energy splittings and will also give values of the
mass tensors for the subsidiary minima inferred. from
the anisotropy of the envelope functions for the
respective valleys.

(5) The corrections to the energy of the is-A& donor
state are shown to result primarily from the valley-
valley coupling terms and the single-valley correction
is shown to be a very small fraction of the total correc-
tion. Estimates indicate the subsidiary minima may
account for between 25 and 50'Pz of the energy
correction to the Is-A~ state.

(6) A component of f lacking inversion symmetry
has been incorporated into the donor wave function
resulting from f function admixed by the tetrahedral
potential in the single-valley Schrodinger equation.
Although this component is speculative it does lead to
some improvement in the over-all fit of the calculated.
values with the experimental data.

(7) From the ENDOR shell-lattice site matchings
evidence is presented which indicates the three-
dimensional appearance of the wave-function density
rejects to a significant degree the tetrahedral sym-
metry of the atoms surrounding the donor.
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APPENDIX A: COUPLED-VALLEY MATRIX AND

SCHRODINGER EQUATION

The problem of coupled valleys has been treated
previously. ""%hen considering the coupling between
the I», E», U», and 6» minima, one is confronted with a
large 30&30 matrix even after reducing the eight I.»

valley f; to four functions, the 12 Ei valley f, to six
functions, and the 24 Ui "valley" f; to 12 functions (the
U» valleys may be further reduced if the four regions
on a single XUW face are lumped together). Since we
consider only 6rst-order perturbation theory and are
only concerned with the coupling of the I. , E,, and U,
valleys to the 6» valleys, the coupling between the
different subsidiary minima can be neglected. We con-
sider as an example the coupling between the E» and 6»
valleys. The approach is readily extended to the I.» and
U» valleys. The 12&12 valley-valley coupling matrix
will have the form

xy, xy xy, xy yr., yz yP., ys sx, H 2x, S'x

W

W

8"

8'

W

0' 0' 0' 0

0 0' 0" 0' 0' 0' Pa

0 0" 0' 0' 0'I

Each 6&6 matrix for the 6» and E» valleys separately
is diagonalized by the same matrix A;;, namely, that
formed from the n; for the Ai, E, and T2 states (see
Appendix C in HC or Ref. 2). Thus the 12X12 matrix
8;; consisting of the two identical blocks A;, will
diagonalize matrix (A1) into the six states Ai, E, and Ta
but will leave o8-diagonal dements showing the
coupling between the 6» and E» states. Noting that
8;;=2,; for z=1—6, j=1—6; z=i—12 j=7-12 and
also that 8,;=0 for i=1—6, j=i—12; z=7-12, j=1—6;
and employing A.II,

' ——Bh 'A;,B,I„we have as shown
on p. 4939.

By reducing the IC& matrix to a 6)(6 matrix (taking
symmetric combinations of xy and xg, etc. ), we have
eliminated certain odd-parity states, which accounts for
the absence of coupling between the T2 states of the
4» and E» valleys. Second1y, this reduction also means

that the matrix element between x and (zy+gg)
actually consists of two matrix elements, namely,
0=0,+o„and the matrix element between s and

(zy+xy) also consists of two identical matrix elements
a . Here a means adjacent and is the smallest

~
k,—k;

~

between 6» and E» minima, 0 means opposite and refers
to the largest

~
k;—k;

~

between hi and Eiminima,
'

tg means middle cori espondlng to an intermediate
value of

~
k;—k;

~

between the 6, and Zi minima. Thus
we have

which viewed from the point of view of a single 6»
minimum just represents the symmetric sum of the
coupling with the 12 di8erent E& valleys. Similarly, the
coupling between the E states is proportional to
(0. +tr,—2a ), which is much smaller than Eq. (A3)
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O O 0 0 0 Q 0 O O O 0

0 0 0 0 0 0 O 0 0 0

Q Q 0 Q O O O 0 0 0

b b

b 0 O OI I

I

I 0 0 0

b
0 0 0I

b
0 O 0 Q

b

+ O O O O O 0 Q 0 O O

O 0 O O Q 0 0 Q O O O

0 0 O 0 0 0 0 0 O O 0

0 O Q 0 0 0 0 0

IO O g O O O
b b

0 0 0I I

I

O g O O O O
b

b 0 0 0
b

'8 O O O O O
b

+ O O O O O
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since one expects the 0's to all have the same sign and
be the same order of magnitude. If the above type of
analysis is extended to the J.~ and U~ valleys one ob-
tains

potential over solid angles to remove the angular
dependence. This yields

(exp[i(k,—ki) r]U(r))ri

(A. .. ~
U(r)

~
A, „)=- (4~.+4~.) (A4) = U(r) sin(~ k,—ki ( r)/~ k,—ki

~

r.
and

(Ai u, ~U(r) ~A, ~,)

=—(4'.+Ski i+Stan 2+4'.). (AS)

The u and o have the same meaning; however, for the
U& valleys there are two slightly different intermediate

~

k,—k,
~

designated m1 and m2. These
~

k,—k,
~

can
best be visualized in Fig. 2. Equations (A4) and (A5),
viewed from the standpoint of a single A~ minimum,
represent the coupling with the eight different I.j
valleys and the 24 different U& valleys.

Starting with [Ho+ U(r)]Pi, =Ebb, in which Pi, is the
sum g,n,P; over all valleys, one can derive an approxi-
mate coupled-valley Schrodinger equation of the form

[«('~)+U(") E]F (r)

+ g n, exp[i(k,—ki) r]U(r)F, (r) =0. (A6)

This equation is similar to the coupled-valley equation
of Twoset' but diff'ers in two respects: (1) the sum over
coupled valleys is now a sum over all coupled valleys
including the higher-energy subsidiary valleys; (2)
terms of the form

g n; exp( iki r—) (Ho —E) exp(ik, 'r)F, (r)

One has a large effective potential for
~
k,—ki

~

r(ir/2,
while for r) a (a=5.43 A), the potential is much weaker
than U(r). To understand the effect of the valley-
valley coupling on Fi (r) it is sufficient for our purposes
to treat only the six 6& minima. Then the equation for
F, (r) will have the form

62 82 62 a2 82—+ —+U (r) EF, (—r)
2m' 8s~ 2m~ BS2 Bp~

sin (Ak.r) sin (hk.r)
U(r)

' F, r+U r
hk, r hk, r

X(F,(r)+F, (r)+F, (r)+F „(r)) . (A7)

The equations for the other five Al minima will have the
same form. Taking the totally symmetric summation
of the six coupled equations yields

h'
P+ U(r)

2m*

sin(hk, r) sin(Ak, r)
X 1+4 + EG(r)—

5k r Ak, r

have been neglected compared to the potential-energy
term exp[i(k,—ki) ~ r] U(r) in the valley-coupling
term. This can be justified by multiplying the valley-
coupling term by Fi(r)" and integrating over the
spatial coordinates. The result for the neglected term is

g,ytn, (E, (iV') E)S,i, where S;i is t—he valley overlap
integral between the jth and /th valleys. The potential-
energy term takes the form g;y&n, V, i, where

V, i= f Fi(r)*exp(—iki r)U(r) exp(ik, 'r)F, (r)dr,

(see Sec. IV D) and is of order several meV. The overlap
integrals are very small (see Appendix B) justifying
the neglect of these terms. This result emphasizes that
it is U(r) which couples the different valleys. The ni
and a; are determined by Td, symmetry and also by the
valley coupling.

Equation (A6) contains the effective valley-coupling
potential exp[i(k, —k&) r] U(r) while the valley-
valley coupling matrix (A 1 ) contains the matrix
elements V, i. The diagonalization of an expanded (A1)
will determine the energy of the different coupled-valley
states; however, to find Fi(r) we must solve the set of
coupled equations (A6) with l summed over all the
valleys being considered. This problem can only 1-

treated approximately.
First, it is convenient to average the coupling

x&=x,y, z cyclic

8
X + (F„+F„)=0, . (AS).

where

G(r) =F.(r)+F-*(r)+F.(r)
+F—(r)+F*(r)+F—*(r)

The last terms in the sum are anisotropic kinetic-energy
terms and are expected to be small since m* is inter-
mediate between m& and mq. G(r) transforms as the Ai
representation of T& symmetry and has a large spherical
component, namely, the isotropic component of F, (r)
for the D~ minima. Neglecting the anisotropic kinetic-
energy terms, G(r) is the solution of a Schrodinger
equation with an eigenvalue Ei, z, ' = Eo (4&~+60), — —
not the same as Ei, ~, in Kq. (33) because of the
neglect of the subsidiary minima and the small self-

valley correction. Neglecting the valley coupling
potential, and setting U(r) =—e'/ear, the solution is

G(r) = (1/m. a*')"' exp( —r/a*) with eigenvalue Eo. —
An average solution to (AS) will be

G'(r) = (1/urn"a*')'" exp (—r/ri'a*)

with eigenvalue Fi, ~,'= —Eo(1/n") if the average
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effect of the total potential results in a stronger potential
—e'/ear(1/rg ). Quantitatively, it is difficult to describe

accurately the effect on F;(r) of the extra potential
bU(r) and the oscillatory coupling potential. Qualita-
tively, one might expect G(r) to be nonexponential for
small r and also to have small oscillatory components.
The consideration of the subsidiary valleys will further
enhance the potential and will lead to the b~ function
for Fg(r) with rg= (Es/E» &,~„,&)g".

The overlap integral between the jth and )th valleys
has the form

5 g= f Fg(r)*lg, (r) exp( —ikg r)

)&F;(r)Ng, (r) exp(ik; r)dr
~ I Fg(r)*F (r) exp/i(k kg) —rjdr (81)

where in the second form the periodic Bloch function
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