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ln the present work the scattering of phonons by bound donor electrons is calculated for resonance
and nonresonance frequencies using Kwok's approach, and the results are applied to explain the phonon
conductivity of doped Ge.

I. INTRODUCTION

The scattering of phonons by bound donor electrons
has 1ong been an interesting problem. ' Previously
Kcyes lnltlRtcd this scRttcI'lng mechanism to cxplRln
the thermal resistance of e-Gc. He observed that the
scattering depends on the number of occupied donor
electrons rather than on the tota1 impurity concen-
tration. Iater GriKn and Carruthers' discussed the
elastic scattering ok phonons by bound electrons in
e-Ge in great detail. Recently Kwok4 has extended the
prob1em to include other inelastic scattering processes
to explain the attenuation of phonons by neutral donor
electrons Rt low temperatures in e-GC.

Kwok4 has studied the attenuation for frequencies
h~,q&&46. He observed that the elastic scattering of
phonons off the singlet state is proportional to the
phonon frequency to the fourth power, the elastic
scattering of phonons o6' the triplet state is propor-
tional to the square of the phonon frequency, and
inelastic phonon scattering processes are independent
of the phonon frequency, The aim of the present paper
is to simplify the expressions of the phonon attenu-
ation obtained by Kwok for the situations h~,~&&46,
It"gT»46, and 5~~q&&46, E~T&&46, in suitable forms
which can be used to explain the phonon conductivity
results of doped Ge in the off-resonance situations,
where other phonon scattering processes are also rele-
vant.

11. THEORY

Phonons in doped germanium in the low-temperature
range are scattered as a result of electronic transitions
between the different donor-electron. states. The ground
state in the doped Ge is fourfold degenerate. This
degeneracy is partly lifted due to intervalley inter-
action and the ground state splits into two states,
singlet and trip1et states. The energy separation be-
tween the singlet and the triplet state is known as
"chemical shift" and is denoted by 4A. The scattering
of phonons by donor electrons is relevant below 50'K.
At higher temperatures this scattering of phonons duc
to donors is negligible and other scattering mechanisms

2

make a major contribution. The well-known deforma-
tion-potential matrix elements describing electronic
transitions between the different levels can be written as

„„"(tl)=«;(tl, X)q;(Eeb;;b +-',& D ")F(q)
(n', I; triplet, singlet),

where «;(ti, X) is the polarization vector, q is the unit
vector along q, and E~ and E„are the deformation
potentials. D„are the angular matrices and depend on
the geometrical structure of the conduction band.

Since the dilation term vanishes, when we consider
the matrix elements between the singlet and the triplet
states, one can write the deformation-potential matrix
elements as

-""."(tl)= «~.D- -"P(q)
==- -"(q)~(q).

Hasegawa' and Kwok4 have studied these angular mat-
rices in great detail. Here F(q) is a form factor and is
dcfincd Rs

F(q)—=(l+-'a' 'q') ',

where a* is the effective Bohr radius.

The electronic transitions between the singlet and
the triplet states in the first-order approximation can
be written as

&,q+ (singlet) (triplet).

In the off-resonance situation, $~,qg4d, the energy is
not conserved for this process; the first-order contribu-
tion to the attenuation. of phonons is negligible.

l. Resonant Scatterin

a. Elastic processes (Ace,q—4A). The effective scatter-'
ing processes can be symbolically written as

A'(o,g+ (singlet) =(int. )=ha), g + (singlet),

h(e,+(triplet)= (in t.)—K,.„.+ (triplet) .
One can write the expression for 7.~ ', as obtained by
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Kwok:

rr'= (~/2oC~')~. ~ 2 f.(~)

X Q (~, ), /pC), ')&(~,i—~;x )

the deformation-potential matrix elements. The simpli-
fied expressions can be written as

' F'(v) '
(&D."'»

4irp3'C), ' [(5a)q), )'—(4A)']'

X &
=-. -"(q)=--"(q)

n& (e««&=c««) «««em en ~(dq)«

=..-'(a)=.-"(a)) '
e«««e««+tt(«)«))

where n, m, and m refer to the initial, intermediate,
and final electronic states, respectively. Equation (3)
can be simplihed easily by substituting the values of

b. Inelastic sc0Nering. The inelastic phonon scattering

where e~—F8=45, C» ——longitudinal velocity, C~= C3=
transverse velocity, and the angular integration over
dQ is being considered. Equation (4) is the same as
that obtained by Grifhn and Carruthers for resonant
scattering phonons.

processes can be symbolically expressed as

5o)q),+ (triplet)=(int. ) Ace, .),.+ (singlet).

The expression for the relaxation time for inelastic phonon scattering processes when an electron jumps down
from the triplet to the singlet state can be dered as

X Z.
=.-"'(q')=.-'(q) =-'(g)="-"'(c') '

(~~i W e~ tt~((x em eo+ft(oq&

Using Hasegawa s matrix elements, one can simplify Eq. (5), and the simplified expression can be written

f( ) ( + /~) p ( )
(/)

&&p ~ p ( ) ~
&)+

(0)

X L«E I 2 (=-"=.-'—=-"-""-")I'»+ &K I Z (="-"=-'—-""-"-"-")I'»] (~)

These angular matrices have been simpli6ed for X= 1, 2, 3 in Appendix B. It has been shown by Kwok that the
magnitudes of the inelastic phonon scattering processes and thermally assisted phonon absorption processes are
effectively the same. One can, therefore, include the effect of the thermally assisted phonon absorption processes

by considering only twice the value of inelastic phonon scattering processes given by Eq. (6).

Z. Og Resonan-ce Situations (Aced, ),W45)

a. Etastic scattering processes for frequencies A'(o,i«46. Kwok has simphfied his Eq. (3) [Eq. (1S) of Ref. 4]
for low frequencies such that 5co,),&&46. The expression can be written as

4rrpC), 2 ' 5' 4h ),I pC), ' C),

+ . ..' —,R'(q) Z, R'
V
—«& l & (=--"=-'—=--"=-"') ~'&&.

f(&)
4mpC), ' ' 5' ),i pC),' C),

Using Hasegawa's and GriKn and Carruther's matrix elements [see Eq. (3.14) of Ref. 3], one can simplify

Eq. (7) for r, ' as

T
R'(q) Z, R'

V
—(3&-)'«D'"'»+, ~.i'F'(ct) & (oC") '

4m.pC),' A' 4A ) i pCg' C), 4n.t)C),'

X'
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It can be further simplified by expanding the summation gi where X'= I, 2, 3. The final expression can be writ-
ten as

Here, X is the polarization index of the phonons. One can also calculate the contribution of the longitudinal and
transverse phonons separately. ((De""&) depends upon the geometrical structure of the conduction band (see
Table I).

b. Inelastic Processes (/ice, i«46). The expression for r, for inelastic phonon scattering processes, for frequen-
cies such that kv, i«45, can be written as I see Eq. (22)j

(tiEeT) 'F'( ) Q {C') ' —F' (+ IQ ( "' "— " "') I'))
4m pC),' )/

(io)

Using Hasegawa s matrix elements and expanding the summation gi, , one can write the simplified expression as

&&I:&&2 I Z (="-"="-"-™-'="-")I'»+&&2 I Z (=-"= -"-="-"=" ") I'») (ll}

The calculations of the angular matrices are given in
Appendix A.

%e observe that for frequencies such that S~q),&&46,
the elastic phonon scattering off the singlet state is
proportional to the phonon frequency to its fourth
power and population of the singlet state, elastic pho-
non scattering off the triplet state is proportional to
the square of phonon frequency and population of the
triplet state, and inelastic phonon scattering is propor-
tional to the population of the triplet state divided by
the temperature.

c. Ftastic scatter~kg (/t~, i&&46,). It is observed that
for some system the experimental data correspond to
the frequencies such that hc q),»46. %e also consider
this case and try to obtain the simplified expressions
for 7, ' for both elastic and inelastic phonon scattering
processes, for frequencies h~q), &&45.

The inverse of the relaxation time for the elastic
phonon scattering o6 the singlet state can be written as

~r'= (~/2pCi')~. iLF'(q)/(~. ~)'jfo(2')

X Z {~,). /pCx')&(~, i —~qi)
q/$/

&&F'(q') (& I Z (= "'="-"-="-"=-"')I'» (I2)

Substituting the values of the deformation-potential
matrix elements and simphfying one can show that
the angular matrices vanish (see Appendix 8). It
therefore shows that there is no scattering of phonons
o6 the singlet state, for frequencies hcoq),»46.

Following the procedure of Kwon', we can write an
expression for Tq

' for elastic phonon scattering o6 the
triplet state as follows:

~.~' —F'(q) Z (pCx') 'F' q-f(T) I
4xpCg'

' /i' i,i Cp, )

X«Z I Z ( " "'= ."-=""-" "') I')& (I3)
nn/ m

Substituting the values of the deformation-potential
matrix elements and simplifying (see Appendix 3), we
obtain the final expression as

, f(2') ~-'„( )((D „„)) „F"(q)
C2@ 34 C5

3 F22(q)

C5

d. Inelastic scattering (Ru, &,»4h). The relaxation time
for inelastic phonon scattering processes for frequen-

TABLE I. Values of tensors «0,""»and « ~ - » Kq. I'89) X) ' for ) = 1, 2, 3 and X'= 1, 2„3.

((~ ~ ~ )&g . (p9)
X'=1

gy)
V=2

«' ' ' &) g gy)
X'=3

48/225
32/225
40/225

tt0/315
20/315

106.5/315

a Reference 3.
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cies hood&&42 can be dehned as

AGOG

, (so~ 1—exp
' f(T)F'(q)

2pc)' ' EgT

Here,
H = (F„4/34m p'Cg'h') F,

F=((D "")) (21)

(/ques
X g (1+no~y~)5(uo~g~ (ao&,,—)F q

q9, ~ pcs' Cx'

X ((P I P (mom Fotno moo moo ) I )). (15)
n m

Equation (15) can be simplified by substituting the
values of the matrix elements; the expression given by
Eq. (15) modifies to

f(T),F, Fi'(q)

& (&E I
Z(=--"=--"—=--"=--") I'))

P2
+ ' „L((Z I Z (=- "™..'—=-.."=-..") I'))

2" n m

+&K I Z (="-"="-"—=.-="-")I'))] . (16)
n m

The angular matrices have been simplified in Appen-
dix B. It is here observed that there is no scattering
of phonons off the singlet state. The scattering of
phonons in the rest of the processes is proportional to
the population of the triplet state and the square of
the phonon frequency.

The above calculations show that the scattering of
phonons by donors depends on the phonon frequency,
the population of the state, and the matrices D„„"
which depend on the geometrical structure of the con-
duction band. The conduction-band structures for Ge
and Si have been studied in great detail. One can,
therefore, calculate the exact relations for the relax-
ation times for, elastic and inelastic scattering of pho-
nons by donors. Hasegawa and later Kwok have calcu-
lated the angular integrations of these matrices. We
have used these values to calculate the values of vq

'
from Eqs. (3)-(16).

It is also observed that the values of the angular
integrations of the matrices D„"are a constant factor.
One can, therefore, lump these deformation-potential
matrix elements into an adjustable parameter H. The
expressions given by Eqs. (3)—(16) modify to

r. '=HF'(q)~o~'Lfo(T) (fi~.~/4~)'+f(T)]
for Ace, &,((46, elastic processes (17)

II. r, '=HiF4(q)(4d/KiiT)(46/fi)2f(T)

for h~,q((46, inelastic processes (18)
III. r, '= HF'(q) )Pf(T)

for 6'~,q&&46, elastic processes (19)
IV, r '= H, F'(q)~ ~2f(T)-

for hi~,q&&42, inelastic processes. (20)

Hi= (F. 4/347rp'Ci2h')Fi,

Fi= &(LEq. (89), Appendix B]))qz' (22)

where Ii and F~ depend on the geometrical structure
of the conduction band.

III. SCATTERING OF PHONONS BY BOUND
ELECTRONS AND PHONON CONDUCTIVITY

OF DOPED Ge

It has been observed in Ge that the introduction of
impurities' " drastically reduces the value of lattice
thermal conductivity (by about two orders of magni-
tude at temperatures below 4'K). This reduction bears
direct proportion to the increase in the donor concen-
tration. The above e6ects on the phonon conductivity
of Ge are explained on the basis of the resonant scat-
tering of phonons by bound donor electrons. In the
presence of other phonon scattering processes, ""the
additivity of reciprocal relaxation times is used to in-
corporate the resonance sca, ttering relaxation rate.
Callaway's formalism is then used to study the phonon
conductivity of doped Ge at different temperatures in
the range 1.3—50'K. In the Debye approximation, z~z

is given by"
"o r(T ca) 5'co4 exp(Ao)/KBT)d(u

~„g——(2x28) ' (23)KIT' [exp(5(o/KIT) —1]' '

where 6 is the average sound velocity, r '(T, co) =
ro '(T, co), an'd r, ' is the relaxation rate of the jth

scattering mechanism. For the present problem, v '=
ro '+ro ', where ro ' refers to pure Ge (where the
only defects which one has to consider are isotopes)
and 7., ' is the relaxation rate for the scattering of
phonons by donors. For 7.„',we have taken

r —i= (C/L, )+gz4+B iog 3+B z'iT3 (24)

where for a pure specimen C,/A=7. 622&(105 sec ',
C—3 5X1(y cm/sec I 1 12(S)'i'—1 12(44X44)'n
mm= 0459 cm, A = 2.57X10 44 sec', (Bi+B2)= 2.77X
10 "sec/'K'. These values were obtained by Callaway"
for the pure-Ge case and have been utilized here since
they give best agreement between theory and experi-
ment for the pure- Ge case. The 6rst term denotes
boundary scattering, the second denotes point-defect
scattering, and the third and fourth terms represent
scattering due to normal and umklapp processes. In
terms of the dimensionless variable x=A&o/K sT one'
can write

7 '=7 622X10'+7 5224T'x'+04739x'T' (25)

The corrections to the phonon conductivity due to
normal phonon processes has been shown to be negli-
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TAsx,z II. Values of the adjustable parameter II and the corresponding shear deformation

potential for different Sb-doped and compensated Ge samples.

Concentration IJ
S, (10'~ cm ') (10' sec 1 deg 2)

Calculated'
E„(eV)

deformation
potential

Expt
1,.( V)

Sb 172
Sb 207
SbGa 204
SbGa 170
SbGa 183

0.061
0.24
0.26
0.54
1 44,

1.0
2.0
4 0
3.0
2.0

16.03
11,91
19.14
13.63
8.65

(15—19)

Calculated from the relation ZJ (ev) ~4.030 )&10» H/N, ~.

A. Sb-Doped Ge

Since the resonance in the phonon conductivity of
Sb-doped Ge occurs at about 0.7 K, the present range
of temperature (1.3—50'K) in which we are interested
corresponds to the case where Lr»46 and E~T&&46.
The elastic scattering part of 7.

~
' for the above situ-

r

I

gP -l
-—-- Shen 2O4.

gible in the case of Ge. Similar expressions can also
be written if one considers momentum-conserving
electron-phonon collisions and it has been shown by
Gaur and Verma'0 that such corrections also make
negligible contributions to the phonon conductivity.
Hence, in the present calculations, the corrections to
the phonon conductivity due to momentum-conserving
scattering processes are not considered.

ation is given by

r, '(elastic, A'ca)&46; EsT»46)

= 10 . . . ", F'(q)(a, )P (26).
40 f(T) F„'
225 4~p2C7h2 34

It has been found that the scattering o6 the singlet
vanishes. Here p is the mass density of the system, E„
is the shear deformation potential, C is the average
phonon velocity, and F(q) is the form factor which is
defined as

F2( )~(1+2++2q2)
—4 (2&)

where u* is the effective Bohr radius and. under Debye
approximation &,,q Cq. f(T) is——the thermal equilibrium

population of the triplet state and is related to the ther-
mal equilibrium population of the ground state fo(T), as
fo(T)+3f(T)= 1 and fo(T) = A exp( —Eo/EsT), where

Eo is the ground-state energy. The scattering of pho-
nons, in this case, is proportional to the square of the
phonon frequency and the population of the triplet
state,

The inelastic part of r, ' for ke,&»4A and EsT»45
is given by

r, '(inelastic, 5&v&)4h; EsT))46)
239 f(T) F- '
3254 p'C'5' 3'

)O5

I a I

9

We again observe that the inelastic phonon scattering
is proportional to the square of the phonon frequency
and the population of the triplet state. One can include
the eSect of the thermally assisted phonon absorption
process by considering twice the value of .the inelastic
phonon scattering processes. This we have done in our
present calculations.

The total eGective r'elaxation time for phonon scat-
tering by bound donor electrons for S~,q&&46 and
&gT»46 may be dedned as

r, '=7, '(elastic)+r, '(inelastic)
FrG. 1. Plot of (v, ') Eq. (8) versus x for Sb-doped Ge sample

Sb 172 for temperatures 3 and 10'K. =3 295[f(T)/4sp C .52](F /3 )F (q)~&a ~ (29)
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FIG. 2. Temperature dependence of the occupation probability
fp{T) for the singlet state against temperature. 10'— $5 Ga 204.

to calculate the phonon conductivity at different tem-
peratures.

We have examined the phonon conductivity of the
various Sb-doped Ge samples' Sb 172, Sb 207, SbGa
170, SbGa 183, and SbGa 204 in the temperature range
1.3—50'K, which corresponds to the off-resonance situ-
ation 5+,),»4A and EIT»46. The last three samples
are the compensated samples. 7, ' versus x has been
plotted for the above samples at different tempera, tures
and the results for two samples Sb 172 and SbGa 204
are shown in Fig. 1 at two temperatures 3 and 10'K.
Figure 2 shows the plot of fo(T) versus T. The phonon
conductivity plots with respect to temperature for the

We have to multiply the above expression for 7-, ' by
the donor concentration E to obtain the total eGec-
tive scattering of phonons by donors.

The combined relaxation v, ' can be expressed as

r '= r, '= 7.622X 1@+7.5224T4x'+0. 4739x'T'

where
+HF'(x)f(T)T'x' (30)

H= 3.295(Eg'8 '/4''C'5'3')S„ (31)

and S„is the donor concentration. The coefficient H
is treated as an adjustable parameter. This adjustable
parameter is also a measure of the electron-phonon
coupling. This expression for r ' [Eq. (30)] is used

I 10
E4
l~

I-

g 10

10
1

I

100

101— $5 172

FIG. 4. Phonon conductivity of SbGe 204 sample (37, =0.12&(
10" cm '). The solid line is the experimental results of Goff and
Pearlman and the dotted line is the theoretical curve. The values
of Tq

' are calculated from the Eq. {29).

10'—

0

-I
y

'l0

10
1

I

10o

FIG. 3, Phonon conductivity of Sb 172 sample {$„=0.061&(
10'7 cm '). The solid line is the experimental results of Goff
and Pearlman {Ref. 4) and the dotted line is the theoretical
curve. The values of Tq

' are calculated from Eq. (29).

same two typical samples are shown in Figs. 3 and 4.
From these figures it is observed that the theoretica, lly
calculated values of the phonon conductivity on the
basis of additivity of reciprocal relaxation times, which
incorporates r, ' [Eq. (29)] and Callaway model,
agree remarkably well with the experimental values,
for the whole temperature range. The adjusted value
of the parameter H, which gives the best fit for the-
experimental curves, has been used to calculate the
value of the deformation potential, which occurs in
fourth power in the expression for H. The adjusted
values of the parameter H as well as the deformation
potential derived therefrom for the different samples
are given in Table II. It may be observed from this
table that the use of r, ' [Eq. (29)] gives good agree-
ment between the adjusted and experimentally ob-
served values of the deformation potential for the sam-
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ples Sb 172 and SbGa 204. For other samples Sb 207,
SbGa 170, and SbGa 183 the values of the shear
deformation potential are lower than the experimen-
tally accepted values, 15—19 eV, as shown in Table II.

8. As-Doped Ge

For As-doped Ge samples, 46=4.15/10 ' eV and
4d /Es Tg =——49'K. The resonance at z~~Es T~/5
would have its strongest effect somewhere between
T,~~6' and T~~s T~. Thus T~ for As-doped Ge
samples lies at about 8'K. However, no marked reso-
nance dip in the phonon conductivity at about 8 K is
observed in As-doped Ge samples. (There is, however,
one exception, namely, sample As 223I,' where a dip
occurs at about 7'K. ) According to GriKn and Car-
ruthers, the true resonance energy hes at a frequency
such that pro is substantially greater than unity, where
ro is the effective Bohr radius and is 37 A for As. When
g) 1/ro, the scattering dies oR very quickly and the
result is that this cutoff suppresses the effect of the

-resonance. Kwok has used the method. of thermo-
dynamic Green's functions, which is more suitable in
dealing with phonons close to the resonance frequency
where simple perturbation techniques fail owing to
divergence de.culties. The simpli6ed expression for

(w ~ &a~'

gp, ) As R&&&

p~~pf~eA4~
ga),„(~(ed,

1o—

TAM,z III. values of the adjustable parameter H and the
corresponding shear deformation potential for different As-doped
Ge samples.

Sample

As 223I
As 23M

Concentration
E,

(10"cm ')

0.21
1.1

II
(10'sec '

deg ')

3.0
6.0

Calculated'
E„(eV)

6.5
5, 1

Calculated from the re1ation 8„4(ev)~1.2)&10» H jX,&.

the resonance scattering relaxation time obtained on
the basis of thermodynamic Green's function can be
expressed as

xT(1—e—)fo(T)„'=H' Ã,
L1—(Es/4A) xT]'[1 exp ( —4A/Eg—T)]

(32)
where s hrdqy/EsT and

, P'(4~/5c) (4~)
2mk4p2C25 3Vy5 V25

Here Il is a constant which depends on the geometrical
structure of the conduction band.

Because of the narrow width of the resonance, the
application of the above expression to explain the pho-
non conductivity in the off-resonance situations is not
proper. However, if one wants to explain the magni-
tude of phonon conductivity at about the resonance
temperature T~(=8'K), one needs large values of
the shear deformation potential of the order of 200—250
eV. This suggests that one needs damping term in the
resonance denominator.

We have used second-Born-perturbation results for
v~

' to explain. the phonon conductivity of As-doped
Ge samples in the temperature range 1.3—50'K. Since
the resonance e6ect is expected to be maximum at
about 8'K, we have used Eq. (29) for the resonance
scattering relaxation rate in the temperature range
10—50'K, which holds good for $~,q&&46 and EgT&&44.
In the temperature range 1.3—5'K, we have used Eqs.
(17) and (18) for r, ', which holds good for 5~,q&&4d
and E~T&&45, The simpli6ed expression for v, ' is as
follows:

,;~(g&«4Z; E,T«4a) =HF'(x)

x q(»)' f(&)( ~~ ) +f!~)
~2

p

FIG. 5. Phonon conductivity of As-doped Ge samples As 223I
(jV '=0.2&10" cm ') and As 233I (E, =1.1)&1017 cm '). The
dotted line is the experimental curve and the solid is the theoretical
curve with v, ' calculated on the basis of Kwok's perturbation
theory.

H =E„'Ea'/47r p'5434C7. (35)
For the resonance range 5—10'K, we have extrapolated
the results both from above and below the resonance
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region. The results of calculation of phonon conductiv-
itv for the samples As 223I and As 233I9 are shown
in Fig. 5. The solid lines represent the experimental
curves and dotted lines denote the theoretical curves.
The values of the parameters used in the analysis of
phonon conductivity are given in Table IH. The val-
ues of the shear deformation potential which one ob-
tains from the adjustable parameter H on the basis of
second Born perturbation results are 6.5 and 5.1 eV
for As 223I and As 233I, respectively. These values
may be compared with the experimental values which
lie in the range 15—j.9 eV.

ACKNOWLEDGMENTS

The authors are grateful to Professor K. S. Singwi,
Professor Vachaspati, and Professor B.Dayal for their
interest in the present problem. The authors are also
indebted to Dr. M. M. Joshi for his helpful discussions.

APPENDIX A

where Eqs. (A1)—(A3) have been used. Equation (B2)
remains electively the same for other dastic processes.

The elastic scattering of phonons o6 the singlet
state, for frequencies $40,i»46, can be defined as I see
Eq. (12)]

rq + 4-4om ~mo ~0m ~mo

= (l~-)'&& I Z (D "'D ." D. "—D ."') I'&& (B3)

Considering the symmetry of the matrices one can say
that

r, '—+negligible quantity.

Finally, we come to the matrix elements describing
the electronic processes for inelastic phonon scattering
processes. One 6nds for this case

. ' (K I Z (D-"'D-"—D-"D-"') I')) (B4)

D iv —(Q D iD v)2 (A1)

The matrix elements obtained to explain electronic
transitions can be calculated by using Hasegawa's D
These matrices are obtainable by considering the sym-
metry of the system. GriKn and Carruthers have given
relations for combined matrices with

Using Kwok's table for matrices D„.„",we 6nd

&&2 I Z (D-"'D-"—D-"D-"') I'))

(+ I g (D MD X Dka M) I2)) (85)

(A2)
((P I D vD x D xD M+D MD i+D MD 'h

I2))

n/ n

They have also shown that where
(B6)

«D."")&=3«D."")),
2L&(D.""))+((D.""&)j=3&(D.""&),

L«D.""»+«D.""))j=3L&(»""»+&(D."")&3

One can now find the values of the matrix elements
describing dectronic transitions by using these rela-
tions.

Q D MD x—D vD i+D k~D i+D MD x

Q D vD i D ilD X (D vD '4+D i&a i) (B7)

Q DAD i D vai Dvai+Dx&ax

APPENDIX 3
Substituting Eqs. (6) and (7) into Eq. (5), we find

r —1~(( I
D~MDgk+D~i~a~x+D MD i a~MD x

D MD i D vD x I2)) (Bg)

(( I (D MD x)2+ (D vD x)9+ (D MD X)2

+(D MD x)2+ (D 'k&D x)2+ (D MD x)2

+2(D MD xD MD X) 2(D MD XD MD i)

+2(D MD xD MD i)
I )) (B9)

To calculate the value of r, ' for frequencies Ace,~&&46
(elastic processes), one find that the scattering of pho-
nons oG the singlet state is given by

r. '~&&
I Z =-"'=-" I'&)= (3«.)'&& I Z D-"'D-' I') &

m m

= (l~.)'((D."'")) (»)
Similarly, the scattering of phonons oA the triplet

state is given by

rg + ~no ~on ~no ~on
n, n~

= (4a) (( 2 I (D.."'D,"-D;."D-"' I'»
n, n~

= (-:~.)'&( Z I
(D-""'D:")' 2(D-""'D-"D-""D—

+ (D-""D-"')'
I »

(ig )42(((D )M» ((»xM)))

'A~
The RngulRr lntegrRtloll of these ma trlces CRn be

obtained with the help of Hasegawa's Table III. We
have calculated these angular matrices and, with refer-
ence to polarization, we have given the important val-

(B2) ues in Table I.



SCATTERING OF PHONONS B Y BOUND ~ ~ ~ 491i

*Work jointly supported by the U, S. National Bureau of
Standards, University Grants Commission and CSIR, India.

'W. Kohn, in Solid States Phys. , edited by F. Seitz and D.
Turnbull (Academic, New York, 1958), Vol. 5, p. 257.

2 R. W. Keyes, Phys. Rev. 122, 1171 (1961).
3 A. GriKn and P. Carruthers, Phys. Rev. 131, 1976 (1963).
4 P. C. Kwok, Phys. Rev. 149, 666 (1966).' H. Hasegawa, Phys. Rev, 118, 1526 (1961).' J, P. Dismukes, L. Ekstrom, E. F. Steigmeier, K. Kudman,

and D. S. Beers, J. Appl. Phys. 35, 2899 (1964).

' E. F. Steigmeier and B.Abeles, Phys. Rev. 136, A1149 (1964) .' N. K. S. Gaur, C. M. Bhandari, and G. S, Verma, Phys. Rev.
144, 628 (1965).' J, F. Goff and N. Pearlman, Phys, Rev. 140, A2151 (1965).

'0 N. K. S. Gaur and G. S. Verma, Phys. Rev. 159, 610 (1967)."P. G. Klemens, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic, New York, 1958), Vol. 7."P.Carruthers, Rev. Mod. Phys. 33, 92 (1961)."J.Callaway, Phys. Rev. 113, 1046 (1959).

P HY S1CAL REVIEW VOLUME 2, NUMBER 12 15 DECEMBER 1970

Configuration Mixing of Subsidiary Minima: Corrections to the
Ground-State Wave Function for Donors in Silicon*

T. G. CAsTNER, JR.)
Department of Physics and Astronomy, University of Rochester, Rochester, %em I"ork 146Z7

(Received 18 February 1970)

The introduction of wave-function components from the region of the Li, E1, and U1 points of the lowest
conduction band into the ground-state wave function of the shallow donors As, P, and Sb is shown to
improve substantially the agreement between the calculated Fermi contact constants for identified ENDOR
shells and the experimental Fermi contact constants measured by Hale and Mieher. This wave-function
admixture is the band-structure analogy to configuration mixing in atomic physics, and is calculated here
employing first-order perturbation theory, the total impurity potential being the perturbing interaction.
If one considers the low-energy L1, E&, and U& regions as subsidiary minima (strictly correct only for the
L1 region), this approach represents a logical extension of the Kohn-Luttinger formalism. This admixture of
subsidiary minima is donor dependent (largest for As, intermediate for P, smallest for Sb) and is able
to explain satisfactorily the numerous observed donor anomalies, even including the inverted-order cases.
The calculated results indicate the positive identification of two new ENDOR shells, shell C as site (5, 5, 5)
and shell Ii as site (2, 2, 0), and suggest the tentative identification of nine other ENDOR shells with
lattice sites. Matching experimental Fermi contact constants and calculated values versus ko/k „for posi-
tively and tentatively identified ENDOR shells yields ko/k „=0.87+0.01. A noninversion component
of wave function has been introduced, resulting from the tetrahedral potential admixing 4f-nf wave function
(satisfying A1 symmetry) into the solution of the single-valley Schrodinger equation. This addition makes
only a slight improvement in the over-all agreement. The subsidiary-minima-admixture approach has
also been attempted for the deep donor S+, yielding an improved qualitative agreement between theory
and experiment. The admixture of subsidiary minima has a number of other physical consequences: (1)
The donor-nucleus hyperfine interaction can be reasonably accounted for, including the donor dependence,
without employing the sharply peaked Whittaker function and a cutoff radius; (2) the "shear" deforma-
tion potential determined by ESR or optical experiments using the 1s-A1 donor ground state may not
yield the true "shear" deformation potential of the 5& minima; (3) the energy of the 1s-A1 state contains
an important second-order correction from the subsidiary minima which can account for between 25 j&
and 50% of the energy correction to the effective-mass value. It is shown the valley-valley coupling terms
account for nearly all the energy correction of the 1s-A1 state, and that the single-valley correction is very
small, contrary to previous work. Analysis of the location of the lattice sites positively and tentatively
identified with ENDOR shells yields evidence that the three-dimensional appearance of the wave-function
density of the 1s-A1 state significantly rejects the tetrahedral symmetry of the atoms surrounding the
donor.

I. INTRODUCTION

The generally accepted treatment of the energy
levels and wave functions of shallow donors and
acceptors in semiconductors has been that developed by
Kohn and Luttinger. ' This elegant theory has been
very successful when applied to the excited states of
donors and acceptors; however, marked deviations
have been observed' for the 1s states (particularly in
silicon), most notably for the 1s-A & ground state. These
deviations have been attributed to central-cell correc-

tions' and a number of attempts of several different
types' ' have been made to calculate the corrected
energy of the ground state. Efforts to correct the wave
function have been made by Kohn and Luttinger4 and
also Muller' in an e8ort to explain the much larger
wave-function density at the donor nucleus obtained
from the hyperfine interaction with the donor nucleus. '
Recently, a substantial amount of remarkable experi-
mental data concerning the shallow donors As, P, and
Sb in silicon has been reported by Hale and Mieher"
(hereafter designated as HM I) using the ENDOR


