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The nonrelativistic Green's-function method is used to compute self-consistent energy bands of calcium.
The results show the state V to be occupied in the metal and the state W to be unoccupied. Corrections
due to relativistic effects and to unfreezing of the core are discussed.

I. INTRODUCTION

There exists in the literature some disagreement
concerning the electron-energy -band structure of
calcium. An early band-structure calculation for
calcium was carried out by Manning and Krutter'
using the cellular method. They found unoccupied
states in the first zone near what would now be called
the point W, and occupied states in the second zone,
presumably near L. A more recent calculation for
calcium has been made by Harrison' using a few
weak constant orthogonalized-plane-wave (OPW)
matrix elements. He found a band structure very like
that for free electrons, with a Fermi surface consisting
of a first-zone monster and second-zone caps at L.

Altmann and CracknelP have used the modified
cellular method of Altmann4 to calculate the energy
bands. They find a band structure that is much less
free-electron-like than is the model proposed by
Harrison. They find a Fermi surface that consists of
small kidney-shaped pockets of holes centered at E
and U in the zone and a saucer-shaped region of
electrons at L.

The band structure of calcium has been calculated
also by Vasvari, Animalu, and Heine, ' using the model
potential of Abarenkov and Heine. ' Depending upon
the choice of the Fermi level, they finds' a first-zone
hole surface differing from that given by Harrison
and from that given by Altmann and Cracknell, and
consisting of hole pockets centered at W.

Ordinarily, these differences could be resolved by
appeal to experimental measurements of the Fermi
surface, in particular, to measurements of the de
Haas —van Alphen effect. Unfortunately, however, in
the case of calcium the measurements' "are incomplete
and were made on samples that turned out to be
microcrystalline aggregates. As a result, the measure-
ments are subject to differing interpretations and it is
possible to make from them a more or less reasonable
argument in support of each of the various calculations.
Thus, we feel that a reasonably careful First-principles
calculation will be useful and will help to choose among
the various models proposed for the energy-band
structure of calcium.

We have carried out a self-consistent energy-band
calculation for calcium using the Green's-function
method of Korringa" and Kohn and Rostoker. "
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We find the state E to be occupied in the first zone
and the state W to be unoccupied, the first-zone Fermi
surface consisting of pocket of holes about W. The
second-zone surface consists of the usual saucer-
shaped region of electrons at L.

II. RESULTS

The first Brillouin zone for the fcc calcium lattice
is shown in Fig. 1, where the various symmetry points
are labeled. " The calculations were carried out for
values of It in 1/48 of the zone, corresponding to 2048
equally spaced points in the full zone. The lattice
constant for calcium was chosen as 10.5296 a.u. This
value is based upon the measurements of Smith,
Carlson, and Vest'4 and includes an estimated cor-
rection for thermal contraction to O'K.

The numerical integrations of the radial Schrodinger
equation were carried out for a logarithmic mesh
given by

x= ln r= go+ (1V—1)Ag,

with xo ———9 and Ax=0.025. The inscribed sphere
radius corresponded to %=413, which gives a value
slightly smaller than half the nearest-neighbor distance.
The integrations were carried out using a modified
Milne method, with the starting values generated by
a series expansion near the origin.

The calculations were done nonrelativistically and
without spin-orbit coupling since it was felt that the
extra computer time that would be needed for rela-
tivistic calculations was not justified. These corrections
are shown to be small in Sec. III. The calculations
were carried out self-consistently, using a procedure
generally similar to that described by Snow and
Waber" in their self-consistent calculation for copper.
The calculations were carried out until for all occupied
states the energy eignevalues differed by less than
0.002 Ry between the two final steps.

The starting potential was generated from a super-
position of the free-atom charge densities. ' The.
crystal-core charge density was calculated from the
free-atom core with nearest-neighbors overlap and its
value frozen for subsequent steps of the calculation
(the effect of removing this restriction is discussed
in Sec. III). The potential for succeeding steps in the
self-consistent procedure was computed from the
4852



SELF-CONSISTENT ENERGY BANDS OF CALCIUM ~ ~ ~

kz
TABI,E I. Convergence of energy eigenvalues for representative

points in the zone. The computed eigenvalues are shown as a
function of the maximum l value included in the trial wave func-
tion. The units of k are n/4u and the energy is given in Ry.

l=3

k X

110
340
282
480

0.02934 0.03029 0.03023 0.03023 0.03023
0.18638 0.19833 0.18352 0.18336 0. 18336

—0. 15224 —0.15224 0.30672 0.30593 0.30585
—0.15224 —0.15224 0.31887 0.31770 0..31765

FIG. 1. First Brillouin zone for fcc calcium.
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frozen-core density and an average of the conduction
electron densities found in the two preceding steps
of the calculations. The crystal muffin-tin potential
was calculated using the formulation suggested by
Lib erman, '~ which is particularly suited to this type
of calculation. The structure parameters needed for
computing the potential from this formulation were
foun d to be

(1/r )a ——1/(0.37832@),

(1/r, s )aa ——1/(0.38157u),

where a is the lattice constant. The values include
the correction to apply to the inscribed sphere radius
used here and have an estimated uncertainty of
about 0.05 and 0.25%, respectively. Liberman's
formulation uses the Kohn-Sham' exchange potential,
which is —', as large as that proposed by Slater. " Snow
and Waber, " in their work on copper, found better
results by using a value somewhat between these
two. We have not investigated the effect of varying
this factor for calcium.

As shown by Ham and Segall, " it is convenient
to expand the wave function used in the Green's-

function method in the form

P= pi'd(„R~(r) F~„(8,y),
l,m

where the I'~ are real angular functions. This farm
allows the expansion coeKcients to be chosen real
and leads to real matrix elements. For these calculations
we have included in the expansion all terms through
l =4. The effect on the convergence of the energy
eigenvalues of including the higher t components in
the wave function is indicated in Table I. This table
gives for some representative points the variation
of the computed energy eigenvalue as higher l values
are added to the trial wave function. Particularly
noticeable from this table is the large effect produced
by the inclusion of the l= 2 terms. The importance
of these d terms for calcium has already been stressed
by Vasvari, Animalu, and Heine. '

Equally important for a self-consistent calculation
is the convergence of the wave function itself. An
approximate, but convenient, measure of this con-
vergence is afforded by the variation with / of the
fraction of the wave function outside the inscribed
sphere. This fraction eo, which is needed in the calcula-
tions, can conveniently be found by the method given
by Ham and Segall. ' The variation of this fraction
with / is shown for some representative points in
Table II, which indicates the degree of convergence
obtained for the wave functions used in the calculations.

The final computed energy eigenvalues are given
in Table III and the resulting band structure is shown

0.5

K
lal

0.2 0.2

TABLE II. Convergence of the wave function for representative
points in the zone. The table gives the fraction ~ of the wave
function outside the inscribed sphere shown as a function of the
maximum l value included in the trial wave function. The varia-
tion of this fraction is assumed to be a measure of convergence.
The first column gives k in units of w/4u.

O. I O.I
l=3 l=4

or X U W

FIG. 2. Self-consistent energy bands for calcium.

K

110
340
282
480

0.36125 0.33670 0.33645 0.33650 0.33650
0.66395 0.37545 0.32760 0.32670 0.32660

0.34235 0.33710 0.33645
0.34315 0.33575 0.33540
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TpQLE III. Eigenvalues for points in 1/48 of the Brillouin zone considering 2048 points in the entire zone. The units for
4 are ~/4g and the energy eigenvalues are given in Ry, relative to the constant value V, = —0.3947 between spheres.

Band 1 Band 2 Band 3 Band 1 Band 2 Band 3

000
010
020
030
040
050
060
070
080

110
120
130
140
150
160
170
180

220
230
240
250
260

. 270
280

330
340
350
360
370
380

440
,450
460
470
480

550
560
570

0.0173
0.0238
0, 0429
0.0737
0.1144
0.1620
0.2114
0.2529
0.2705

0.0302
0.0492
0.0798
0.1202
0. 1675
0.2167
0.2581
0.2758

0.0677
0.0976
0.1371
0.1835
0.2319
0.2728
0.2903

0. 1263
O. 1642
0.2087
0.2549
0.2931
0.3084

0, 1998
0, 2408
0.2818
0.3104
0, 3176

0.2757
0.3045
0.3105

0.4992
0.4918
0.4728
0.4478
0.4220
0.3992
0.3816
0.3706
0.3669

0.4846
0.4669
0.4436
0.4194
0.3978
0.3811
0.3706
0.3670

0.4520
0 ' 4326
0.4123
0.3940
0.3797
0.3706
0.3675

0.4182
0.4030
0.3892
0.3784
0.3714
0.3690

0.3933
0.3846
0.3724
0, 3671
0.3721

0.3675
0.3518
0, 3600

0.5792
0.5713
0.5501
0.5184
0.4819
0.4467
0.4171
0.3959
0.3874

0.5693
0.5526
0.5036
0.4763
0.4431
0.4145
0.3940
0.3858

0.4999
0.4875
0.4628
0.4330
0.4068
0.3886
0, 3815

0.4688
0 ' 4437
0.4161
0.3930
0.3796
0.3765

0.4188
0.3926
0.3779
0.3735
0.3721

0.3810
0.3784
0.3770

221
231
241
251
261
271
281

331
341
351
361
371
381

441
451
461
471

551
561

222
232
242
252
262
272
282

332
342
352
362
372

442
452
464

0.0737
0. 1033
0, 1424
0.1885
0.2367
0.2777
0.2949

0. 1316
0. 1691
0.2132
0.2594
0.2974
0.3105

0.2041
0.2447
0.2860
0.3099

0.2796
0.3051

O. 0915
0.1201
0.1582
0, 2031
0.2507
0.2912
0.3058

0.1473
0.1834
0.2260
0.2718
0.3051

0.2164
0.2550
0, 2948

0.2832

0.4438
0.4237
0.4029
0.3838
0.3689
0.3615
0.3624

0.4062
0, 3876
0.3698
0.3556
0.3511
0.3600

0.3703
0.3523
0.3378
0.3431.

0.3330
0.3246

0 ' 4259
0.4049
0.3835
0.3636
0.3482
0.3427
0, 3509

0.3833
0.3613
0.3406
0.3238
0.3246

0.3384
0.3167
0.3001

0.2982

0.5040
0.4928
0.4686
0.4396
0.4135
0.3925
0.3810

O. 4782
0.4568
0.4325
0.4106
0.3914
0.3770

0.4399
0.4218
0.4060
0.3909

0.4108
0.4014

0.5072
0.4979
0.4755
0.4485
0.4223
0.3973
0.3798

0.4910
0.4745
0.4521
0.4279
0.4014

0.4647
0.4490
0.4299

0.4405

660 0.3058 0.3509 0, 3798

111
121
131
141
151
161
171
181

0.0366
0.0554
0.0857
0.1258
0. 1729
0.2218
0.2633
0.2810

0.4772
0.4599
0.4377
0.4146
0.3939
0.3777
0.3682
0.3662

0.5726
0.5572
0.5023
0.4748
0.4426
0.4144
0.3936
0.3844

333
343
353
363

443
453

0. 1725
0.2058
0.2448
0 ' 2832

0.2339
0.2587

0, 2457

0.3585
0, 3342
0.3120
0.2982

0.3091
0.2949

0.2934

0.4934
0.4831
0.4646
0.4405

0.4809
0.4689

0.4863
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This value is indicated in Fig. 2. It is particularly
to be noted from the table and the figure that we find

the point 8' to lie above the Fermi level and the point
U to lie below. This is in contrast to the findings of
Altmann and Cracknell, ' but agrees with the conclu-
sions reached by Vasvari. ' The resulting Fermi surface
is very similar to that given and discussed by Vasvari.

III. ENERGY CORRECTIONS

In this section we discuss two of the corrections —not
necessarily the largest —that apply to the calculations
discussed above. These corrections involve relativistic
effects, including particularly spin-orbit coupling, and
the effect of unfreezing the crystal-core charge density.
Both corrections are expected to be small for calcium.

Although the calculations discussed in the preceding
section were carried out using the nonrelativistic
version of the Green's-function method, we have
also written programs that are being used for other
calculations which use a relativistic version"" of the
method. Thus, it was comparatively easy to investigate
relativistic corrections to the computed energy eigen-
values. We have used the final crystal muon-tin
potential generated in the nonrelativistic calculations
to recompute the energy eigenvalues for a few rep-
resentative points with the relativistic version of the
program. The results of these calculations are shown
in Table IV. It is seen from this table that the
relativistic corrections are indeed small for calcium
and have the effect of further depressing U relative
to 8".

It is customary in self-consistent energy-band
calculations to consider only the variation of the
conduction-electron charge density, with the core
being frozen at the free-atom value. However, changes

TABLE IV. Energy corrections for representative points in the
zone. The first column gives k in units of s./4a and the second
column gives the uncorrected energy eigenvalue in Ry. The third
and fourth columns give the energy corrections due to relativistic
eGects and to unfreezing of the core, respectively.

hE (rel. ) d,E (core)

ii0
340
282
480

0.03023
0. 18336
0.30585
0.31765

—0.00472
—0.00399
—0.00ii6
—0.00088

—0.00272
—0.00338
—0.00534
—0.00564

in Fig. 2. By assigning an appropriate weight" to
each of the states given in the table, we find for the
Fermi energy, relative to the bottom of the band, the
value

Ep =0.3091—0.0173

=0.2918 Ry.

in the outer-electron charge density will, of course,
react back on the core and this in turn will affect the
potential seen by the conduction electrons. To in-
vestigate the size of this effect in calcium, we have
computed the change in the energy eigenvalues which
is produced by unfreezing the core. For this purpose
we have first recalculated the free-atom charge density,
using a method similar to that described by Liberman,
Waber, and Cromer. " This preliminary step was
necessary to ensure that possible differences in details
of methods of calculation would not mask the effect
being investigated. The core charge density was then
recalculated using the same program, but with the
outer 4S-,' conduction-electron charge density frozen
at the final value computed in the previous section.
The difference between the recalculated free-atom
core density and the core density as computed with
the frozen 45-,' electron density was taken to be the
correction that is to be added to the crystal-core
density used for the calculations described in the
preceding section. A new crystal mufFin-tin potential
was then calculated from this new core density and
the final conduction-electron density, as described
in Sec. II. The change in the energy eigenvalues that
resulted from using this new potential are shown"
for some representative points in Table IV. It is seen
from this table that the correction is reasonably small.
This is, of course, not surprising, since the conduction
electrons in calcium account for only 10% of the
total charge density and, as indicated in Table III,
30% of this is outside the core region. Thus, changes
in the conduction-electron charge density from the
free-atom value should have a rather small effect on
the core. The corrections, however, could be con-
siderably larger for cases, such as copper, where the
band electrons account for a proportionately larger
fraction of the total charge.

Sote added ie proof. A calculation of the energy-band
structure of calcium by the OPW method has recently
been reported by Chatterjee and Chakraborti $S.
Chatterjee and D. K. Chakraborti, J. Phys. C 3, S120
(1970)].These authors find the state W to be occupied
in calcium and the state E to be unoccupied. This
agrees with the conclusions of Altmann and Cracknell, '
but disagrees with the calculations of Vasvari, Animalu,
and Heine' and with the calculations reported here.

ACKNOWLEDGMENTS

We wish to thank Dr. D. A. Liberman of the Los
Alamos Scientific Laboratory for making available to us
his free-atom results, which were used to generate the
starting potential and to construct the core density
used in most of the calculations. We wish to thank
also the staff of the computer center of the University
of Wyoming, without whose cooperation the calcula-
tions could not have been made.



J. A. DREESEN AND L. P YENSON

* Submitted by one of the authors (L.P.) in Partial fulfillment
of the requirements for the M.S. degree from the University of
Wyoming.' M. F.Manning and H. M. Krutter, Phys. Rev. 51, 761 (1937).' W. A. Harrison, Phys. Rev. 131, 2433 (1963).' S.L. Altmann and A. P. Cracknell, Proc. Phys. Soc. (London)
84, 761 (1964).

4 S. L. Altmann, Proc. Roy. Soc. (London) A244, 141 (1958).
s B.Vasvari, A. O. E. Animalu, and V. Heine, Phys. Rev. 154,

555 (1967).' I.Abarenkov and V. Heine, Phil. Mag. 12, 529 (1965).
7 B.Vasvari and V. Heine, Phil. Mag. 15, 731 (1967),
8 B.Vasvari, Rev. Mod. Phys. 40, 776 (1968},
'T. Berlincourt, in Proceedings of the Seventh Internationat

Conference On Lom-TemperatNre Physics (University of Toronto
Press, Toronto, 1960), p. 231.

'0 J. H. Condon and J. A. Marcus, Phys. Rev. 134, A446
(1964)."J. Korringa, Physica 13, 392 (1947).

"W. Kohn and ¹ Rostoker, Phys. Rev. 94, 1111 (1954).
j3L. P. Bouchaert, R. Smoluchowski, and E. Wigner, Phys.

Rev. 50, 58 (1936).
'4 J. F. Smith, O. N. Carlson, and R. W. Vest, J. Electrochem.

Soc. 103, 409 (1956).
» E. C. Snow and J. T. Waber, Phys. Rev. 15'7, 570 (1967)."D. Liberman, J. T. Waber, and D. T. Cromer, Phys. Rev.

137, A27 (1965)."D.Liberman, Phys. Rev. 153, 704 (1967).
's W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)."J.C. Slater, Phys. Rev. 81, 385 (1951).
~o F, S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961).
2' Y. Onodera and M. Okazaki, J. Phys. Soc. Japan 21, 1273

(1966)."S.Takada, Prog. Theoret. Phys. (Kyoto} 36, 224 (1966).
2'The magnitude of the entries given in Table IV have been

reduced by 0.00068 Ry to account for a change in the constant
potential between spheres.

PHYSICA, L REVIEW B VOLUME 2, NUMB ER 12 iS DECEMBER 1970

Interaction of Dislocations with Electrons and with Phonons~
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The interaction parameter of moving dislocations with electrons and with phonons was determined in
aluminum, in the temperature range 10 to 250'K. A new technique, involving a "dynamic bias stress",
was developed for measuring ultrasonic-attenuation changes ha. The numerical values of the interaction
parameter were obtained from the measured 50. by means of an analysis which does not require any knowl-

edge of the dislocation density or of other inaccurately known features of the dislocation network. The
results indicate that the dislocation interaction with electrons is temperature independent and the inter-
action with phonons increases with increasing temperature. These results are consistent with theoretical
predictions.

I. INTRODUCTION

When a dislocation in a crystal is set in motion, it
experiences a resistive force against its motion. In
the string model of a vibrating dislocation, this
frictional force, or damping, is usually assumed to
be proportional to the dislocation velocity and is
described formally by the following equation:

vrhere br is the force per unit length acting on a
dislocation moving with velocity e, b is Burgers's
vector, v is the resolved shear stress on the dislocation
slip system, and 8 is the damping constant. This
damping constant is assumed here to consist of two
parts, one due to interactions of dislocations with
phonons (Bpn) and the other due to interactions with
conduction electrons (8,). It is further assumed that
these parts are additive, i.e., B=Bph+8,.

Theoretical attempts to predict the magnitude and
temperature dependence of B~h have been made in
the past by a number of people including Eshelby, '
I eibfried, ' Xabarro, ' Lothe, ' Weiner, ' Mason' and
Seeger"', and for the electron contribution B„by
Mason, ' Kravchenko, ' Holstein '" and Brailsford "

Comparison and discussion of some of these predictions
are presented by Nabarro. "

Commonly used techniques for experimental de-
termination of the damping constant 8 are (i) direct
observation by etch pits'3 or x rays' of the displacement
of individual dislocations produced by stress pulses
of known magnitude and duration, (ii) ultrasonic-
attenuation methods, " " and (iii) macroscopic me-

chanical tests.""Discussions concerning the relation
between the values of damping constants deduced

by these methods were given by Fanti et cl.22 and by
Gillis et al." The purpose of this paper is to discuss
a new method of obtaining the damping constant
by means of ultrasonic measurements and to present
experimental values deduced from this approach.
With this nevr method we have overcome many diS.-
culties previously encountered both in the analysis
and in the experimental technique. The analysis is
applied to the case of aluminum and the value of
8 thus derived and its temperature dependence are
presented.

In Sec. II, the method of analysis is described. The
new' experimental technique, a dynamic bias stress
method, is outlined in Sec. III. The results obtained
in aluminum single crystals are given in Sec. IV and


