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A solution to the linearized Boltzmann equation has been found that describes the galvanomagnetic proper-
ties of metals. The use of a vector mean-free-path function results in a solution for the conductivity tensor
that is valid for any strength and orientation of the applied magnetic field. A discussion is given of the
implementation of this theory to give a quantitative description of the galvanomagnetic properties of a
metal chen the Fermi surface and a model for the scattering of the conduction electrons are specified.

I. INTRODUCTION

The concept of a relaxation tinse for conduction elec-
trons in metals has proved an invaluable aid in our
understanding of many of those phenomena in which
the effects of anisotropy are unimportant. ' Galvano-
magnetic effects, however, do not fall into this category,
as it is well known that in a completely isotropic model
the magnetoresistance vanishes. A more cumbersome
but versatile vehicle that allows the exploration of
galvanomagnetic effects is the vector mean free Path. s In
this paper we develop a formalism based on this concept
that allows a complete solution to be computed for the
galvanomagnetic tensor for a model in which the current
carried by independent Bloch electrons is governed by
the Boltzmann equation. Our object is the development
of a method in which a change in the magnitude or
direction of the applied magnetic 6eld does not neces-
sitate a completely new computation. Instead, we 6rst
formulate an intermediate expression in which the
magnetic Geld does not appear; the calculation of the
conductivity tensor then follows with minimal computa-
tional effort as a function of the magnetic 6eld and this
intermediate expression.

This method has the advantage that it is no longer
necessary to invoke the concept of the orbit in which a
Bloch electron travels in a magnetic Geld. Few would
dispute the power and elegance of the concept of elec-
tron orbits in any pedagogical display of the quatita/ice
behavior of the conductivity tensor; qlaeHtatiee calcula-
tions, however, are another matter. Most previous
treatments of this problem4 require integration over
OI'bits that Inane extend lIlto IQRIly Blillouln zones ln a
periodic-zone scheme if the direction of the magnetic
Geld is close to a symmetry axis of the crystal and if the
Fermi surface is multiply connected. The existence of a
relaxation time must also be assumed.

The approach that we shall now describe avoids the
need to trace orbits through large distances in k space,
but at the expense of having to solve an integral equa-
tion in the first Brillouin zone. The principal advantage
of our method, however, lies in the fact that it is
applicable for all types of scattering between electron
states.

In Sec. II we discuss the linearized Boltzmann equa-
tion in terms of the vector mean-free-path formalism.
This discussion includes the closed-form solution for the
mean free pa, th. Section III includes a discussion of two
scattering operators that appear in the formalism, and
the separation of the problem into magnetic-Geld-
dependent and -independent parts. The Gnal result for
the conductivity tensor is given in a form suitable for
practical computations. The applications of group-
representation theory to the symmetry properties of the
scattering kernel and the scattering eigenfunctions are
given in Secs. IV and V. Section VI is a discussion of
the special case of a degenerate scattering kernel, a
simple example of which is described in Sec. VII.
Finally, four appendices treat in some detail the proper-
ties of the operators that appear in the formalism and
some formal proofs of results from group-representation
theory that are used in the text.

D. BOLTZMANN EQUATION

We consider here a metal of independent Bloch
electrons of wave number k, energy Gk, and group
velocity v& in the presence of a constant uniform ap-
plied electric field E and magnetic field H. For weak
electric 6elds the probability that a given state is
occupied diRers from its equihbrium value fj, by an
amount governed by the linearized Boltzmann equa-
tion'

(e/5) [.E+ (i/c) vk x H$ (ctf&/ctk) = (ctf~/ctt) ~n (l).
We assume the collision term in this equation to be due
only to elastic scattering between Bloch states, so that
the probability per unit time Q(k, k') that an electron
is scattered from the occupied state k to the empty
state k' of the same spin can be written as Q(k, k') =
Q(k, k')8(8&—8& ), with g(k, k') a smoothly varying
function. We then introduce the vector mean free path
A.I, de6ned by the relation

f~ fd = eE &v.(~f—d/~&~)—,

in terms of which Eq. (I) becomes'

vg —(e/hc) (vg x H Vg)Aw ——Q Q(k, k') (+),—A& ) .



and a scalar function

&.
-=Z Q(k, k').

k~

Another operator of interest may then be dedncd in the
form

T=(An/5)(q-Q) '(v h&V ), (3)

where A is the unit vector in the direction of the mag-
netic field, so that I=EN. With the definition of the
free-electron cyclotron frequency eII/mc as co. we then
rewrite Eq. (2) in the concise form

(1—i .2')+~= (V
—Q) 'v' (4)

It has already been shown' that the function (q—Q) 'vz
exists for any physically meaningful form of scattering
and velocity. It is demonstrated in. Appendix A that,
since the eigenvalues of T are all real, the operator
j.—mu, T possesses a well-defined inverse.

The electric current density j in a crystal of volume 0
is given by

1= (s/fl) Z v.f.
= —(e'/0) Q vgAgEBfjP/. Mg,

from which the galvanomagnetic tensor r has elements

0„„=—(e'/0) p e„A.(Bfd/Mk) . (5)

Our task is thus the solutio~ of Eq. (4) to find&i «r»1
directions and magnitudes of the applied magnetic 6eM,
and the substitution of these results in Eq. (5).

In an earlier paper' on the solution of the Boltzmann
equation ln thc Rbscncc of mRgnctlc fields lt was found
that the vector mean free pathA~(co, =0) could usefully
be considered as a hnear combination of a certain subset
of the eigenfunctions of the operator riQ. An iterative
technique was described that allowed a rapid evaluation
of A.q{&o.=0) . As a generalization of this technique we
now expand the zero-magnetic-field mean free path in
terms of the eigcnfunctions of T. That is, we 6rst define
the complete set of magnetic scattering eigenfunctions
b, (k) and corresponding real eigenvalues r, by the
equations

Tb;(k) = r;b;(k),

(v —Q) '&~= Z P.'b'(k),

It is also convenient to define an integral operator Q,
such that for any function gq

Q4~=—Z Q(k, k')4~

magnitude of H. It should be noted that, since the left-
hand side of Eq. (7) is a real function, the magnetic
scattering clgcnfunctlons occul ln this cxpRnslon Rs pRll's
of terms of the form P„;b;+P„;~b;~.Here b;* is the eigen-
function corresponding to the eigenvalue —v; when
b (k) 'obeys Eq. (6) . Witll this expansion tile coilduc-
tivity may be written as

~..= —(~'/fl) Z LP-/(1 ~~.~') j
X Z i.(k) b'(k) W~'/~g~) (8)

In the independent-electron model there is no reason
to expect any rapid variation ofAi, at the Fermi surface.
%C accordingly replace the summation over k in Eqs.
(2) and (8) by integrations in k space' and make the
low-temperature approximation of replacing Bfqo/Bgq

by —8(gi,—Gp), with Gp the Fermi energy. We then find

~"=2&' 2 L&.'/(1-+~.~') jf~.(k) b'(k) dZ (9)

The factor of 2 results from the summation over spin
directions and

d(=dS/Ss%
i

v~ i,

where dS is an element of area of the Fermi surface.
The next stage in the calculation is the expansion of

the magnetic scattering eigenfunctions b; in terms of the
eigenfunctions of the non-Hermitian operator g 'Q.
That ls wc wI'ltc

b'(k) = Z v'-(t )u-(k), (1o)

where the complete set of functions u„(k) obey the
Cquatlons

q 'Qu„(k) =n„a„(k)

or, equivalently,

1$(k, k')u„(k') df=n„u„(k) JQ(k, k') d]'.

It is shown in Appendix 8 that we may choose a
normalization for the u„(k) such that

fa, (k) q(k) u„(k) d(=b,„.
With the Rid of this relation we may substitute Eq.
(10) in Eq. (6) to find

—{im/5) Q y, Ii fu, (k) (vg & Vg) u. (k) d&

=r (1 n)y . (12)—
This takes on a simpler form with the deanition of a new
sct of cocKcients

4. =V (1—n)'"
Rnd thc vcctol matrix

where n„ is the pth Cartesian component of vi, . The
coefFicients depend on the direction but not on the
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Then Eq. (12) becomes
A

71 Q C„„f,„=r,f;„. (15)

summarized by the equation

Q(k, k') = Q(Rk, Rk') (20)

Since the matrix C is Hermitian (Appendix C), the
eigenvectors P,„are orthogonal, and may be nor-
malized such that

Z4' 8 (16)

This normalization of the P;„(and hence of the y,„)
determines the coefiicients p„; of Eq. (7). Substitution
of Eq. (10) in Kq. (7), multiplication by a„(k) (q—Q),
and integration over the Fermi surface yield

ZP. v'. (1 ~.) =g"

where

g"—= J~.(k)o (k) ~&

Use of Eqs. (13) and (16) then yields

so that from Eq. (9)

~"=2e' Z [1/(1-1~.r')3 Z g"V'.V'.'g- (18)
I 0

To evaluate the conductivity tensor it is thus first
necessary to solve Eq. (11) for the scattering eigen-
functions a„(k) and corresponding eigenvalues n„.
One then evaluates the coeKcients C„„and g„„dehned
in Eqs. (14) and (17), and solves Kq. (15) for the
eigenvectors f,, and eigenvalues r, . The conductivity is
then known from Kq. (18).

IV. SYMMETRY PROPERTIES OF SCATTERING
EIGENFUNCTION8

This section deals with the symmetry properties of
the scattering eigenfunctions, and the applications of
these properties to computations based upon Eq. (18).
%e consider a metal whose lattice has the symmetry
properties of a point group g. This group consists of g
rotations and rotatory rejections, where operation is
symbolized by the operator R. Then {Roperates upon a
function of wave vector k, and this operation is defined

by
(Rf(k) f(E 'k) (19)

where E. is the 3X3-matrix representation of (R that
acts upon the triplet (k„k„,k,) = k. Since the energy
BI, is a scalar under all operations of b, the transforma-
tion properties of k and vl, are easily obtained from the
properties of g. The symmetry properties of the scatter-
ing eigenfunctions, defined in Eq. (11), depend upon
the symmetry properties of the kernel function Q(k, k').
Slncc the scattcI'lng, ln 'thc llncRrlzcd approximation to
the Boltzmann equation, is independent of the electric
and magnetic 6eld, the Q(k, k') must reflect the sym-
metry of the lattice point group. The only assumption
tllat Iliust be Iliade about tile specific fol'111 of Q Is

y'(k) = Z y "'(k)D- "'(&) (22)

where D&&I(R) is the matrix of'the group operator 61 in
the jth irreducible representation. The symmetry-
adapted functions are constructed to be basis functions
of the point group. Furthermore, a linear combination

for all k and k', and for all (Rgb. This assumption does
not require that Q(k, k') be degenerate, or that it
depend only upon

~

k—k' ~. Clearly, Eq. (20) is a very
weak restriction upon the form of the scattering kernel
Q(k, k') . Equation (20), along with some results from
the representation theory of point groups, is sufFicient
to determine the symmetry properties of the scattering
eigenfunctions.

A useful result from group-representation theory is
the existence of a complete set of orthonormal basis
functions for the group. These functions, usually
referred to as symmetry-adapted functions, ~ are linear
comblnRtlons of sph. cI'leal harmonics RIld transform as
in Eq. (19), according to the irreducible representations
of each point group. For the cubic group this set of
functions, Kubic harmonics, has long been known' and
is tabulated. These functions are a complete set for the
expansion of functions dehned on an energy shell in a
monovalent metal. Thus, we consider a set of functions
IXI"I indexed by the angular momentum of the con-
tributing spherical harmonics l, the label j of the ir-
reducible representation of g, and the column r of the
representation. The most important point of this section
is the following theorem, proved in Appendix D.

Theorem. Given a function Q(k, k ) that is invariant
under all operations R of a group g [Eq. (20) j, there
exists the expansion

Q(k, k') = Q AII & + Xj"(k)XI&"*(k'). (21)
El~j r

It is also shown in Appendix D that the function q(k)
is a scalar under II. Therefore the modified scattering
kernel of Appendix B, Q(k, k')/[q(k)q(k')g"', also
possesses an expansion equivalent to Eq. (21). One
important feature of this theorem is that the expansion
given by Eq. (21) is not simply a replacement of Q by a
degenerate kernel, although the meaning of such an
approximation is clear. %e shall return to this point in
a later section.

The symmetry properties of the scattering eigen-
functions [either the a„(k) of Eq. (11) or, since q(k)
is a scalar, the F„(k) of Kq. (B1)jmay be obtained by
making the connection between the symmetry-adapted
functions, the expansion of Eq. (21), and the basis
functions for a representation of the group g. Basis
functions for a given matrix representation of g are
de6ned by'



of the form

is also a basis function.
We can now show that the basis function of Eq. (23)

is an eigenfunction of the modi6ed scattering kernel of
Eq. (Bl), and in fact is identical with the F of Kq.
(31). If Eq. (23) is substituted into an expansion of
the modi6ed scattering kernel that is equivalent to Eq.
(21), and the orthogonality properties of the XI are
used, then thc I'csult ls R scculaI' cquatlon

A consequence of the theorem is that the matrix of the
expansion coef6cients A must be Hermitian. This is
shown in Appendix D for real, symmetric kernels, The
clgcnvalues n are thus real and the vectors of the co-
efFicicnts BE are either orthogonal or may be made
orthogonal. Since the scattering eigenf'unctions of Kq.
(11),now labeled a ", are related to the eigenfunctions
of Eq. (23) through the scalar function [g(k) jI", it
follows that, in the sense defined in Eq. (22), the sym-
metry properties of the two functions will be the same.

Thc IncRnlng of thc 1DdcxlDg of thc scRttellng clgcD-
values and eigenvectors is clari6cd by an examination
of the structure of the codFicient matrix A~~

&' of Eq.
(21). This matrix connects only symmetry-adapted
functions that belong to the same irreducible representa-
tion of g. In this sense, A is a diagonal block matrix of
order g and each block, individually Hermitian, is
indexed by the irreducible representation j.Each block
will be of in6nite order if the kernel is not degenerate,
and the set of all eigenvalucs for all blocks is the sct of
scattering eigenvalucs. Each scattering eigenvalue 0.;"
must carry two indices, one j to label the irreducible
representation to which its eigenfunctions belong, and
n, an ordinal number to distinguish between eigenvalues
within a block. There is one additional complication,
arising from irreducible representations of dimension
larger than one. If an irreducible representation is of
dimension s. then Rn clgcnvRluc e." ls I -foM degener-
ate, corresponding to the e; partners of the basis set. '0

In summary, the weak assumption that the scattering
kernel Q(k, k') is invariant under operations of the
lattice point group [Eq. (20)j determines the sym-
metry properties of the scattering eigenfunctions. The
degencracies of the eigenvalues are easily determined,
since the scattering eigenfunctions are basis functions
of thc gI'oup representations.

Thc idcnti6cation of thc scattcI'lng clgcDfunctlons Rs
basis functions for the lattice point group has two
major applications ln the implementation of the for-
malism described in this paper. First, the sheer size of
the computational problem is reduced so that it is

feasible to investigate the galvanomagnetic properties of
metals with nontrivial scattering kernels. The com-
putational Rspccts of this formalism will Dot bc dls"
cussed in this paper, however, so we shall not pursue
this hne further. For our present purposes, the real
usefulness of this characterization comes in the inter-
pretation of Kqs. (14) and (1'I) of Sec. III. We illus-
trate this by considering the full cubic group Oq that is
of order 48 with 10 irreducible representations. Of these
representations the most important are I'q, the scalar
representation; I"ls, the representation of k and vl„.
RDd I ys &

thc rcpI'cscntRtlon of the opclRtoI' vg + Vg.
In the application of symmetry arguments to the

integrals represented by Eq. (17), the governing prin-
ciple is that the integral of any function over an energy
shell will vanish unless the function contains an in-
variant (scalar) part. "Thus, since the velocity trans-
forms as F~5, the Kronecker product of I'l5 with all the
irreducible representations of the u" requires that
g„„vanish unless u, is one of the I"g5-like functions.
Even more strongly,

where the s subscript on g represents the collection
( j, r, n). This result means that only the I'll-like
scattering eigcnfunctions contribute to the conductivity
through the coeKcients g„,. In the case of zero magnetic
6eld the conductivity reduces to

(26)

as a consequence of the orthogonality of the P;„'s of
Eq. (13). The zero-field resistivity is then due to the
I"q5 part of the scattering kernel,

The dependence of the conductivity on the orienta-
tion of the magnetic field arises from the eigenvectors
of the h. C matrix, the P;„ofKq. (15).The quantity C
is the vector of the matrix elements of the operator
vl, x Vl, . The selection rules for these matrix elements
follow from the fa,ct that vl, x V'1, transforms as I"js', and
hence has even parity ader inversion. Thus, there can
be no matrix elements of C that connect scattering
eigenfunctions of opposite parity. The eigenvectors
p,„ that correspond to eigenvalues of the odd-parity
part of C have zeros in the positions corresponding to
even-parity representations, The even- and odd-parity
representations are entirely disjoint in the way they
dctcl'llllllc tllc 1p;„.Tllls dlsfolntncss settles thc qllcstloll
that has arisen about the operator (q—Q) '. Since the
g„, cocKeicnts allow only FI5-like scattering cigcnfune-
tlolls to colltl'lblltc to 'thc colldllctlvlty, tile f,„ tlla't
include the coc%cients of I'y5 functions are entirely
independent of the even-parity sca,ttering eigenfunc-
tions. Hcncc only those scRttcrlng elgcDfunctloDS thRt
Rre odd under inversion need be included as expansion
functions. Since the operator (q—Q) ' is singular only
when it acts upon a I'I-like function (i.e., either a con-
stant or a b-function scattering function) and these



4848 G. FAIR AND P. L. TA VI. OR

scalar functions do not appear as expansion functions,
the operator is nonsingular. The detailed selection rules
for the matrix elements of C are obtained from the
triple Kronecker product of the irreducible representa-
tions involved.

the expansion coefIicients A ll j. Since Ao is constant, the
function q(k) is a constant and the secular equation for
Q is the same as the secular equation for Q(k, k')/
[q(k) q(k') ]'i'. Explicitly,

A]1 A A 13
VI. DEGENERATE SCATTERING KERNEL =0, (29)

Since this formalism is designed as a computational
procedure for the investigation of the effects of scatter-
ing and Fermi-surface properties on the galvanomag-
netic properties of metals, an analytic discussion of any
physically meaningful model is quite difficult. There is,
however, one model that has been discussed in connec-
tion with this problem that bears some further discus-
sion from the standpoint of the present formalism. The
Sondheimer" model consists of a spherical Fermi surface
with a scattering kernel of the form

N

Q(k, k') = Z &* V'(k) C (k'), (27)
i, j=1

where I q, } is a set of 1V arbitrary functions of integrable
square. " Sondheimer introduced this scattering model

on the ad hoc grounds that the finite dimensionality of
8 reduces the Boltzmann integral equation to a set of
finite linear equations.

The scattering kernel has a natural expansion in terms
of the symmetry-adapted functions of the crystal point
group. The degenerate-kernel model is then equivalent
to a truncation of Eq. (21) after an appropriate number
of terms, and the functions {q,} are interpreted as
symmetry-adapted functions. Thus, the coeKcients
A« ' of Eq. (21) play the role of the 8;; of Eq. (27).

The use of the symmetry-adapted functions, Eq. (21),
as the basis for a degenerate-kernel approximation to
the scattering also serves to clarify one point of difficulty

in the work of Jones and Sondheimer. "As an example
of a degenerate kernel, they chose a fourth-order poly-
nomial, in the components of k and k', which they
assumed to be positive definite. The requirement that
Q(k, k') is positive and nonzero for every k and k' led

to a set of inequalities for the 8;j coe%cients. This con-

dition is necessary but not sufficient, however, and the
difhculties in this procedure can be seen by the con-
sideration of an equivalent scattering kernel of the form

Q(k, k') =AD+ Q Q Aii r"X """(k)
r=l l=1,3; iI=1,3

)(Xi r»" *(k'), (28)

where only the 1= 1 and 1=3 (real) Kubic harmonics of
the irreducible representation have been included. The
primary differences between this kernel and the example
kernel of Jones and Sondheimer are that only the terms
of odd parity have been included in Eq. (28), and that
the polynomial of Q in Eq. (28) is of sixth degree
(including l=l'=3 terms). The constant term Ao only
serves to make q(k) nonzero.

Equation (24) relates the scattering eigenvalues to

A31 A33—n

where A»=A3i* (see Appendix 8). A necessary and
suKcient condition that Q be positive definite is that all
the eigenvalues of Q be positive and nonzero. " The
solution of Eq. (29) then determines the allowed values
of the expansion coefficients. Vfe note that the fourth-
degree polynomial of Jones and Sondheimer is equiv-
alent to Eq. (28) with A»=0. Any nonzero values for
A11 and A13 then give rise to a negative eigenvalue,
implying that such a Q is in fact not positive definite.

VII. EXAMPLE

A simple degenerate kernel of the form described
above will serve to illustrate some of the points of the
formalism. A spherical surface of radius unity is used as
the model for the Fermi surface. The scattering kernel
of Eq. (28) is used, with the coefficients chosen as
AD=1/(4z), A«. =0 867, A»=0434, and Ai3=Aai=
0.173. This model does not represent any metal, the
coeKcients chosen being for illustration only.

The scalar function q(k) is a constant, equal to 1/4z,
and is determined by the value given to the coeKcient
Ao. An effective relaxation time may be defined as
ro= (q) '= 4z.. There are three scattering eigenvalues.
Two of them are obtained from the secular equation of
Eq. (29) for the modified scattering kernel. The two
eigenvalues are each threefold degenerate and the
eigenfunctions are linear combinations of the t=1 and
t = 3 F15 Kubic harmonics. The remaining eigenvalue has
the value unity and corresponds to a scalar (1'i) eigen-
function that is a constant. From the discussion earlier
in this paper and in Ref. 3, we know that this eigen-
function makes no contribution to the transport
properties of the model. The C matrix consists of three
6)&6 matrices that connect the two sets of I'15 eigen-
functions.

The galvanomagnetic properties of this simple model
are shown in Figs. 1 and 2. Figure 1 shows the transverse
magnetoresistance as a function of co,ro. Figure 1(a)
demonstrates the high-field saturation of the transverse
magnetoresistance, while Fig. 1(b) shows the low-6eld
behavior. Figure 2 shows the Hall resistivity (lower
curve) and the effective Hall constant (upper curve),
obtained from a finite-difference differentiation of
p,„.The results show that the resistivity tensor is com-
pletely isotropic; i.e., these curves are independent of
the direction of the applied magnetic field. In addition,
the results give a vanishing longitudinal magneto-
resistance for this simple model.
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VIII. CONCLUSIONS

The approach described above may be thought of as
a generalization of the elementary theory of galvano-
magnetic effects in isotropic materials. If one examines
the free-electron model with isotropic scattering within
the framework of the present formalism, one finds that
the simple functions k,+ik„are eigenfunctions of T
when the magnetic field is in the s direction. The sum
over i in Eq. (9), for example, then reduces to a sum of
two terms (or, in the case of 0„, to only one term) and

the well-known absence of magnetoresistance results.
One may attribute this to the fact that, when cr is con-
sidered as a function of the complex variable co, the
only poles of this function occur at ~= &i/r. The intro-
duction of anisotropy then modifies this result by
introducing further poles on the imaginary axis at the
points a&= +i/r, .

As we have already mentioned, most previous
theories of galvanomagnetic properties make use of the
concept of electron orbits. The special role of open
orbits, which, for example, can lead to a nonsaturating
magnetoresistance, has been frequently discussed. '
Such special cases are also understood from the point
of view of the present formalism. We see from inspection
of Eq. (9) that the phenomenon of nonsaturation
normally associated with open orbits occurs when one
of the 2, vanishes. From Eq. (15) we note that this will

be associated with the singularity of the matrix h C,

5—

4—
dp

(x10)
d(v x)

, 3

, 2

fdcT0

FIG. 2. Hall resistivity and effective Hall constant ()&10).

and from Eq. (8) that such terms contribute no field
dependence to 0„„.

The convenience of the scattering-eigenfunction
approach is now apparent. The major part of the labor
necessary to solve the Boltzmann equation is performed
in the evaluation of the scattering eigenfunctions t2„(k)
and their associated eigenvalues n„, i22 the abse22ce of the

222agnetic field. When now a given. direction h of the
magnetic field is considered, it becomes a simple matter
to form the matrix h C and to find its eigenfunctions
and eigenvalues, and hence the conductivity tensor.
Detailed computations for some realistic models are
now in progress and will be reported in a later publica-
tion.

10—
APPENDIX A' PROPERTIES OF MAGNETIC

SCATTERING OPERATOR

pxx

p(o)

I

4 6

(a) High-field saturation

I

10

The properties of the magnetic scattering operator T
may be obtained from consideration of a more general
operator

T=Q 'P,

Ti = Q-1/2PQ-1/2 (A2)

Since T' is constructed to be Hermitian, it has eigen-
values and eigenfunctions defined by

T'x„=Q '/'PQ'/'x„= r„x„, -
(A3)

where P and Q (and hence Q ') are Hermitian. The
operator T will not be Hermitian unless P and Q

' com-
mute. If Q is assumed to be a positive definite, bounded,
linear operator, then the operator Q"' exists. "

Instead of T, it is more convenient to work with a new
operator

.2 , 4 .6 .8 1.0

where 2. is real and the Ix„I form a complete, ortho-
normal set of eigenfunctions. Operating on the left-hand
side of Eq. (A3) with Q

'/ gives

"c~o
(b) Low-field behavior

FxG. 1. Transverse magnetoresistance.

or
Q

—1P(Q—1/2x ) = T (Q-1/2x )
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APPENDIX B: PROPERTIES OF
SCATTERING OPERATOR

Equation (11) defines the scattering eigenfunctions

a„(k) and the scattering eigenvalues n„of the scattering
operator q 'Q. It has been observed' that this scattering
operator is not Hermitian, so that the scattering eigen-
functions are not orthogonal. In a manner similar to
that used in Appendix A, the properties of the scattering
operator may be obtained by considering an equivalent
scattering operator defined by the eigenvalue equation

,
I'„(k') dk'=n„I'„(k), (B1)Q(k, k')

where

dk= [2/(2m)'](dgkdS/5
~

vk ~)
= d)dgk.

The kernel of Eq. (B1) is real, positive definite, and

symmetric, so the set of eigenfunctions {I'„}are orthog-
onal. Since the assumption of elastic scattering requires
that Q(k, k') be proportional to an energy-conserving

function, the scattering eigenfunction may be
separated into the product of an energy-dependent part
and a part that only depends upon the surface variable
g. The resulting scattering-eigenvalue equation is

„,F (k') d&'=cx„F (k). (82)C(k, k')

The orthogonality condition for the eigenfunctions of
Eq. (B2) follows from the symmetry of the kernel

fF„(k)F„(k) d&=8,„. (B3)

The scattering eigenfunctions a„(k) may be recovered

A comparison of Eqs. (A4) and (A1) shows that the
eigenvalues of T are the same as the eigenvalues of T'.
Furthermore, the eigenfunctions of T' (i.e., e '~'x„) are
complete since the x„are complete and Q is a positive
definite, bounded linear operator.

This discussion is applied to the magnetic scattering
operator T by the association

e-(~-e),
8—+(im/fi) (vk h x V'k).

Thus, since the v„are real, the quantity m, 7„ is an
imaginary number and (1—m, T) ' is nonsingular.

This discussion is not a rigorous justification of the
expansion in terms of the magnetic scattering eigen-
functions used in the text. The difhculty lies in the fact
that P, a derivative operator, is not bounded. Hence,
there is no guarantee that the eigenfunctions of T lie
in the space spanned by the scattering eigenfunctions
a (k), and the question then is the existence of the
expansion of Eq. (10) for the b, in terms of the a„.The
ultimate justification for this expansion is that the
expansion coeScients p,„are obtained, independently,
through Eq. (15).

fa„(k)q(k) a„(k) d&=b„„ (B5)

APPENDIX C: HERMITICITY OF C~

The vector matrix C„„was de6ned in (Eq. 14) as

C,„=—{im/f'i[(1 n, )—(1—n„)]'"}

Xfa, (k) (vk x V'k) a„(k) d$
or, equivalently,

C,„=—{im/fi[(1 —a„) (1—u„)]i~'}

X fa, (k)(vkxV'k)a (k)b(gk gF) dk

To prove that C is Hermitian we consider the vector
quantity

Vk x ('gvk) =ilVk xvk vk x Vk'9)

where v is a scalar function of k. Since vk is v'krak/5,
V'~ x vi, =0. Hence

Vk x [a a 8(gk gg) vk] [vk x 7ka ]a b(gk gF)

[vk x Vka ]a„b(gk pip)

the remaining term vanishing since V'kb(gk —G~) is in
the direction of vi, .

Now we consider the integral of the factor Vk x (Vvk),

fVrk x (qvk) dk= fvvk xn dS,

where n is the unit normal to the Fermi surface. Since
vz is everywhere in the direction of n, the vector product
vanishes. Thus,

fa, (k) [vk x V'k]a„(k) 8(gk —Gp) dk

= —fa„(k) [vk x Vk]a„(k) b(gk —8~) dk,

or

Crn Cnr Cnr

Therefore C is Hermitian.

APPENDIX D: GROUP-THEORETIC RESULTS
FOR SEC. IV

The theorem quoted in Sec. IV is easily obtained
from the representation theory of finite groups and the
properties of the symmetry-adapted functions. For the
case of spherically symmetric kernels and spherical
harmonics this theorem is well known. Its natural
extension to point groups and the symmetry-adapted
functions does not appear to have been noticed.

The theorem, to be proven here, is a statement about
the form of the kernel Q(k, k') as an expansion in the
symmetry-adapted functions. Certainly, since Q(k, k')
may be considered successively as a function of k and

then as a function of k', there exists the general expan-

by the definition

a-(k) = I'.(k)/[V(k)]"' (B4)

Hence, from Eq. (B3) we get the desired orthogonality
condition for the {a„}
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Q(k, k)= g g A„. '"X, (kIX,. '"*(k'). (D1)
Elj ly/

The proof of the theorem must demonstrate that the
group symmetry of Q requires that the expansion co-
eScients only depend upon t', l', and j.Thus,

Theorem. Given a function Q(k, k') that is invariant
under all operations (R of a group g Li.e., Q(k, k') =
Q(Rk, Ek') for all 8, of (tj, then there exists the expan-
sion

Q(k, k') = P At( & g Xti"(k)X( i"*(k'). (D2)
SZj

Proof. The proof follows from an explicit evaluation
of Q(Ek, Ek'). Since the symmetry-adapted functions
are basis functions for the point group, Xt' (Rk) can be
written in terms of Xt&'(k) . The orthogonality property
of Xp' along with the symmetry requirement on the
Q(k& lt') gives

At, irj'r~ —Q At(, ioj'o'D (i) +(g)D, ,(P)(g) (D3)
py/

The matrices of the irreducible representations of g
have an orthogonality condition that"

Z D,.(»(~)D„('& *(~)= (gl;)~.~.,~;,' (D4)

Thus a summation of Eq. (D3) over all group elements
yields

A«'"""'=(1/I) Z~«'"'"'&ii'&-ttoo
uu'

or, after all extraneous indices are removed,

At( i'= (1jit;) g At(. i&.

Since this relation must hold for all e; values of r, it is
clear that A ~g

&" in fact cannot depend upon the column
index r and the theorem is proved.

It is appropriate at this point to use Kq. (25) to
demonstrate two points that have been made in the
text. The 6rst is the Hermiticity of the coeKcient
matrix At( '. Since Q(k, k') is assumed to be a real,
symmetric kernel, evaluation of Kq. (21) for Q(k, k')
and Q*(k', k) gives immediately that At( (=A( (i*.

The other point to be made concerns the function
q(k), the integral of Eq. (21) over the surface ds'.
The simplest way to illustrate the properties of q(k)
is to assume that the Fermi surface is spherical, i.e.,
the magnitude of the Fermi velocity is a constant
everywhere on the surface. Thus, if Kq. (21) is inte-
grated over d5', the orthogonality of the symmetry-
adapted functions leaves only the l'=0 term; that is,

q(k) = g A(or&X(r&(k),

a scalar function (I't) of k.
For a nonspherical surface the magnitude of the

Fermi velocity„ though not constant, is a scalar. Thus,
the integral over dS' involves an integral of a product
of X~ &" ~ with a linear combination of scalar symmetry-
adapted functions (i.e., I= I't, but here /' is not re-
stricted to 0), and the result is clearly still a scalar.
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