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of the wave-function amplitude over the FS when they
become available. Since all of the calculations of the
amplitude of & involve approximations which either
eliminate the details of the wave-function amplitude
completely or are not applicable to this case, there has
been no attempt to make detailed comparisons to them.
It is hoped that these measurements and others will
stimulate more detailed theoretical studies of the effect.
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Recent experimental work has led to the surprising conclusion that the Lorenz ratios of some of the
liquid metals exhibit substantial negative deviations from the ideal Sommerfeld value, hence indicating
that inelastic electron scattering effects may be an important factor in some liquid metals. Motivated by
these observations, we present in this paper a calculation of the electronic transport properties of a liquid
metal, which takes into account the effects of inelastic electron scattering from the ionic density fluctuations
to leading order in the small dimensionless parameter Eo/kpT. Here E, denotes a typical inelastic energy
transfer and kp 1" the Boltzmann factor. This calculation, based on the nearly-free-electron model, is carried
through by use of the exact sum rules of Placzek and of de Gennes on the dynamic structure factor S(g, w)
of the classical ionic liquid component of the metal. The effects of inelastic electron scattering on the electrical
resistivity are found to be negligible. Non-negligible corrections, however, associated with small-angle
inelastic processes, are found to enter the electronic thermal resistivity. The corresponding depression
in the Lorenz number is expressed in terms of the electron-ion pseudopotential, the static liquid structure
factor, and the collective-mode frequencies associated with the density fluctuations of the liquid com-
ponent. Inspection of the theoretical expression for the deviation in the Lorenz ratio reveals, however,
that it is too small to account for the experimentally observed deviations. It is concluded that, within
the framework of the nearly-free-electron theory, the effects of inelastic electron scattering are not the
dominant cause of the rather large anomalies in the observed Lorenz ratios.

I. SYNOPSIS
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In the currently existing nearly-free-electron theory'—*
of the electronic transport properties of liquid metals,
the electrons are considered to be scattered elastically
from the ionic density fluctuations of the liquid com-
ponent of the metal. A simple, but important, conse-
quence of this approximation is that the electronic
thermal conductivity . is related to the electrical
resistivity p by means of the Wiedemann-Franz relation®

pKe/T=L0=%7rZ(kB/6) 2.

Recent experimental data for several liquid metals
show, however, significant negative deviations of the
Lorenz ratio L=pk,/T from the ideal Sommerfeld
value L,. For example, Yurchak and Smirnov® and
Duggin” have observed a deviation in the Lorenz
ratio of liquid Ga of the order of — 209, while Filippov®
has reported deviations in liquid Sn and Pb of the order
of —30 and —129), respectively. Deviations varying
between —20 and —409, were reported for Cu some
time ago. Moreover, these deviations may be a fairly
strong function of temperature’1° Such #egative
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deviations cannot be accounted for by the existence of a
finite thermal conduction by the liquid component of
the metal.! Also, use of a simple textbook formula®®
shows that the effects of electron-electron scattering,
which would act to decrease the electronic thermal
conductivity while having no effect on the electrical
resistivity, are completely negligible. Thus, assuming
the soundness of the experimental work, it would appear
that the anomaly in the Lorenz ratio is associated with
the electron scattering from the ionic density fluctua-
tions of the liquid, and, specifically, with a distinct
difference in the corresponding transport relaxation
times for electrical and thermal conduction. This
suggests that iuelastic electron scattering from the
ionic density fluctuations may be a significant factor in
some liquid metals. As is well known in the theory of
electronic transport phenomena in metals,*® when
inelastic electron scattering is operative, the electronic
thermal resistivity receives a contribution from
small-angle inelastic scattering processes, a corre-
sponding contribution not appearing in the electrical
resistivity. This effect causes a depression of the Lorenz
ratio with respect to the classical value Lo* That
inelastic scattering effects may be important in liquid
metals was suggested by Duggin’ in presenting his
experimental measurements on liquid Ga.

Motivated by these observations, we present in this
paper a calculation of the electronic transport properties
of a liquid metal which takes into account the effects of
inelastic electron scattering to leading order in the small
dimensionless parameter y= Eo/kpT. Here

Eo=T1%kp2/2M

denotes a typical inelastic energy transfer, 7 the
absolute temperature, 2z Boltzmann’s constant, M the
ionic mass, and kr the Fermi wave vector of the elec-
tron system. The results of this calculation will enable
us to determine whether or not inelastic scattering
effects are in fact important enough to be responsible
for the observed deviations in the Lorenz number.
Following the work of Mannari® and of Baym,* we
first express the electrical resistivity p and the electronic
thermal conductivity «, in terms of the dynamic
structure factor S(g, w) of the ionic liquid component
of the metal. The leading-order inelastic corrections to
the usual nearly-free-electron-theory results for p and
ke are then obtained by explicit use of the exact sum
rules of Placzek and of de Gennes®™ on the structure
factor. It turns out that the inelastic corrections to the
electrical resistivity are completely negligible. Non-
negligible effects, however, associated with the small-
angle inelastic scattering processes, are found to enter
the electronic thermal conductivity. The deviation in
the Lorenz ratio from the Sommerfeld value L, brought
about by the new term found in , is expressed in terms
of the static structure factor S(g), the Fourier trans-
form v(g) of the effective electron-ion interaction, and
the collective-mode frequencies!® w, associated with the
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ionic density fluctuations. In principle, this result
would provide a new opportunity to test theoretical
calculations of the basic liquid-metal properties S(q),
v(¢), and w, namely, against the experimentally ob-
served deviations in the Lorenz ratio. Inspection of the
theoretical expression for the deviation in the Lorenz
ratio reveals, however, that it is much too small to
account for the experimentally observed deviations. We
conclude, therefore, that within the framework of the
nearly-free-electron theory the effects of inelastic
electron scattering from the ionic density fluctuations
are not the cause of the rather large anomalies in the
experimentally determined Lorenz ratios of liquid Ga,
Sn, Pb, and Cu. In view of the difficulty of thinking of
another simple mechanism which could give rise to such
strong anomalies, we stress here the importance of
further experimental confirmation of the presently
reported deviations in the Lorenz ratios of the liquid
metals.

II. CALCULATION OF TRANSPORT
COEFFICIENTS

The effects of the inelastic scattering of electrons
from the ionic density fluctuations in a liquid metal
may be readily incorporated into the usual nearly-free-
electron theory*™ by following the work of Mannari!®
and of Baym.'® Here the rates of transitions among the
free-electron states induced by the scattering from the
ionic density fluctuations are calculated in the Born
approximation in terms of the dynamic structure
factor S(g, w) of the ionic liquid:

y= @ F g

T'(k+q—k 5N

X '/;w dw S(q, w)d(exrq—ex—Fiw). (2.1)

In this equation the left-hand side denotes the elec-
tronic transition rate for transitions from the free-
electron momentum state #(k+q) to the state 7k, fi
denotes the electronic state distribution function,
ex="7%k%/2m is the free-electron energy, m is the elec-
tronic mass, and v(q) is the electron pseudopotential,
i.e., the Fourier transform of the effective electron-ion
interaction.'* The total number of electrons in the
system, of volume Q, is ZN, where N denotes the total
number of ions and Z the valence of the metal. The
dynamic structure factor is defined as the Fourier
transform of the liquid density fluctuation time cor-
relation function:

S(g,0)= @)= [* oot it pu(0)p-a(0)), (2.2)

where py denotes the ionic liquid density fluctuation
operator

Pq= Z CXP(—iRJ"Q),
J

and the angular brackets denote an ensemble average



4802 M. J.

over the liquid component of the metal. R; denotes the
coordinate of the jth ion of the liquid component. The
transition rate (2.1), together with the inverse rate
TI'(k—k+q), may be fed into the standard first-order
variational procedure of transport theory? in order to
obtain the following expressions for the electrical
resistivity p and electronic thermal conductivity «, 2:

6mQim
Nellrer / dx | v(x) |2 a®

p=

X /_: S(q, ) n(0)é do, (2.3)

6mQm
= f da | o(x) P o f S(q, @)n(e)é

X[+ (3a*/4n%) (1/6*—=3) . (2.4)

In (2.3) and (2.4) we have introduced the notation
w="Mw/kgT and x=q/2kp, and er denotes the Fermi
-energy. Also, #n(w) denotes the Planck function

n(w) =1/[exp(fiw/ksT)—1].

There are two pertinent observations that can be made
from the results (2.3) and (2.4). First, in the limit of
high temperatures @—0, in which the finite energy
transfer 7w between the electron and ionic systems
may be neglected, we may put #(w)o=1 and neglect
the second term in (2.4) proportional to w?. In this case
the integrals appearing in (2.3) and (2.4) are the
same, and it follows that the Wiedemann-Franz law
holds: pke/T= Lo. The electrical resistivity is given by

6mQm

Néfer 2.5)

b= / dx | () P S(w),
which is the usual Bhatia-Krishnan-Gerstenkorn-Ziman
(BKGZ) result™ where S(x) denotes the static

liquid structure factor

s= [ st do.

The second point is that for finite ® we see from the
second term of (2.4) that there is a significant contribu-
tion to the thermal resistivity 1/, coming from small
values of the momentum transfer x=g/2kp. This is the
contribution to the thermal resistivity arising from
small-angle inelastic scattering processes that we
mentioned in Sec. I. It will be this term that provides
the main effect in the present calculation.

We wish to calculate the corrections to the transport
coefficients obtained in the @—0 limit that are of first
order in the parameter

y=Eo/kBT=ﬁ2kp2/2MkBT.

This parameter, whose magnitude measures the relative
importance of inelastic scattering, is typically of the
order of 107°-10~% at the melting point 7. In order to
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carry out this calculation it will first be convenient to
express the dynamic structure factor S(g, ) in terms
of a closely related function, namely, the spectral
distribution of density fluctuations 4 (g, w),2

Alg )= @eN) [ ate((pa(0), pa()} )

In terms of 4(q, w), S(g, w) is just®
S(q, 0) = 4(q, 0)[n(w) +1].

The integrals over frequency which have to be per-
formed in Egs. (2.3) and (2.4) then have the form

/ do A(q, ) n(@) [n(w)+1]em  (m=1,3).
The next step of the calculation is to replace the
product of Planck functions appearing in these inte-
grands by the high-temperature expansion

n(w)[#(w)+1]
= (ksT/fiw) [ 1— 156+ (764/720) — - - - ].

This expansion, of course, is appropriate for liquid
metals (lithium excepted), since the dominant weight
of the spectral density function is confined to values of
fiw less than kpT. The resulting integrations over w in
(2.3) and (2.4) may then be reduced to a sum of terms,
each of which involves a moment of the spectral density
function

w@= [ dedgai, (20
where # is an odd integer and #> — 1. The final step of
the calculation is to evaluate the moments (2.6) in the
high-temperature limit @—0. These moments have
been evaluated by Placzek” and by de Gennes.!®
First, we note that in the high-temperature limit

an(q) is just the static structure factor S(g). The
first- and third-order moments are!”:8

aw (q) =h*¢*/ MkgT,
a@ (9) =3aw (9)[aw (¢) +5 (fiwy/ kpT) ],

where w, denotes the liquid collective-mode frequency,
given in terms of the conventional pair-density function
g(r) of the ionic liquid and the ion-ion potential V()
by the relation®®

(2.7)
(2.8)

V(r)

Mowl2= /drg(r)[:l—cos(qx):laax(2 ,

(2.9)

where x denotes the x component of the radial distance
r. We will require only the first three moments for a
consistent evaluation of the transport properties to
leading order in y.

The resulting expressions for the transport coefficients
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are
Q 1
o= T [ o(a) B LS~y (2.10)
ezNﬁfp 0
p 36yQm /’ 1 .
= T d 2 43 (1—242
=1t e ), @10 PR3

X[1—1% (fiwss/kpT)*],
where we have defined
vy=1—(7/60) (fiw,/kpT)?

and p appearing in (2.11) is given by (2.10). We now
note that the correction of order y appearing in (2.10)
for p may be neglected; i.e., the effects of inelastic
scattering on the electrical resistivity are negligible.
This is because for all x we have the inequality

S(2) >3y (2.12)

very well satisfied for liquid metals. To see this we
first note that for small x, S(x) may be estimated by
the relation?#

S(0) =2 (kpT/Zer) ~107-10"2 (typically),

while for x~1 we know experimentally that S(1)~1.2¢
Also, it follows from the definition (2.9) that w2« a2
for K1, while for large x, fiw, approaches a constant
fiwg which is of order of the Debye energy ks®p of the
metal.® The maximum value of 7w,/kpT is therefore of
order ®p/ Ty, typically less than unity, so that for all
%, y=1. Thus, since y~.5(0), we have (2.12) very well
satisfied for all x. It follows that the expression (2.10)
for p may be replaced by the BKGZ formula (2.5).
On the other hand, the correction to 1/«, given by the
second term of (2.11) is in general non-negligible, since
it gives a contribution relative to the elastic contribu-
tion of order y/S(x) for a given value of #, and is
therefore important for small x, for which this ratio is
of the order of unity. The results for the thermal
conductivity may be written in the form

pke/ T= Lo/ (14au1),

(2.11)

(2.13)
where

_ 6 E ((1—3a?)[1—5 (Fws/kzT)"])
w2 kgT (S(x))
The angular brackets denote the wave-vector averages

(@)= [ dxls(e) f(e).

This completes our formal calculation of the effects of
inelastic electron scattering.

In concluding this section we recall that Egs. (2.3)
and (2.4) for the transport coefficients were derived on
the basis of the usual first-order variational procedure
of treating the Boltzmann equation.’®:® If the electron
scattering were completely elastic, this procedure would
be exact.’® Since we are working close to the elastic
limit, we expect the use of the variational procedure

ay

(2.14)

(2.15)
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to introduce only a very small error in the above
calculations of p and «,.

III. DISCUSSION OF RESULTS OBTAINED

We have presented a calculation of the electronic
transport properties of a liquid metal in which the
effects of the inelastic scattering of electrons from the
ionic density fluctuations have been taken into account
to first order in the small parameter y=FEy/ksT. To
this order, the effects of inelastic electron scattering on
the electrical resistivity were shown to be negligible,
while non-negligible corrections, arising from small-
angle inelastic processes, were found for the electronic
thermal conductivity &, The resulting electronic
Lorenz ratio may be written down from (2.13) as

L=Lo/(1+a),

where oy is the ratio of wave-vector averages defined in
(2.14). It will be convenient for our subsequent dis-
cussion to use the BKGZ result (2.5) for p in order to
reexpress o in the form

wm LI, (WS A G a DY,

Zer)?

3.1)
where J, is the electronic mean free path for conduction,
1/p=ZNeo/Qhikr. (3.2)

In the wave-vector average in (3.1) we have divided
out by the ¢=0 value of the electron pseudopotential*
—32¢p in order to render these averages dimensionless.
We recall that the wave-vector average is defined by
Eq. (2.15).

We may now estimate the order of magnitude of the
inelastic term «; and hence determine whether or not
inelastic scattering effects are large enough to account
for the anomalies in the experimentally determined
Lorenz ratios. The magnitude of oy is determined by
the product of the dimensionless quantity

a= (8Z/7r) (Eo/kBT) kFlo
= (8Z/m) (m/M) (Tr/T)krly, (3.3)

with the dimensionless wave-vector average defined in
(3.1). In (3.3), Tr denotes the Fermi temperature
keTr=er. At the melting point, use of (3.3) and (3.2)
shows that e~1 typically. For example, at T we have
a=0.9 for Na, ¢=1.25 for Li, and ¢=0.72 for Ga.
Thus, the order of magnitude of a; is determined by the
order of magnitude of the wave-vector average ap-
pearing in a;. This average is a little difficult to estimate
without explicit recourse to detailed numerical calcula-
tions.*%-% Its precise value will depend quite sensitively
on the shape of the pseudopotential and, to a lesser
extent, on the relative importance of the collective-
mode term.* An extreme upper limit to the magnitude
of the average may be obtained by neglecting the
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collective-mode term in the integrand of the average
and by neglecting the shape of the electron pseudo-
potential by taking | v(x) |=%er for all . In this case
the average appearing in oq is 0.14, indicating a devia-
tion in the Lorenz ratio of order —14%,. In the more
realistic situation,®—3! however, »(x) is substantially
less than 3er in the important range of wave vectors
x $1. Thus, typically we would expect much smaller
values for the wave-vector averages, and hence for the
effects of inelastic electron scattering. For example, if
for liquid Ga, v(q) is chosen to be a Coulomb potential
screened by the Lindhard dielectric function, and the
collective-mode term is neglected,? we find by numerical
integration that e;=2.1%,.

We have to conclude, therefore, that within the
present framework of the nearly-free-electron theory,
the effects of inelastic electron scattering from the ionic
density fluctuations are not the cause of the rather
large anomalies in the experimentally determined
Lorenz ratios of liquid Ga, Sn, Pb;, and Cu. It is
difficult to think of another simple mechanism that
would be important enough to give rise to such anom-
alies. We have already pointed out that the effects of
electron-electron scattering are negligible. Corrections
to the transport coefficients arising from the use of
finite temperature in the Fermi-Dirac statistics are
probably also too small.®® Another mechanism which
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could be considered is the possibility of a large effective
electron-electron interaction induced by the ionic
density fluctuations. However, such an effect could also
be expected to be present in the metal just below the
melting point, and to the author’s knowledge there does
not appear to be any experimental evidence for this.
Finally, we mention that the present calculation could
predict large corrections to the ideal Lorenz ratio if a
suitable shape of electron pseudopotential were to be
employed. Such a shape, which would have to be
strongly peaked at small wave vectors, would be
radically different from the conventionally accepted
shape for metals, and is highly unlikely. We would
stress, then, the importance of further experimental
confirmation of the presently reported deviations in the
Lorenz ratios of the liquid metals.
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