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The evaluation of the elastic scattering differential cross section of electron scattering from a planar surface
of a vibrating lattice is reduced to the solution of a set of coupled algebraic equations for the associated
scattering amplitude. This reduction is valid both for overlapping potentials (thus removing the restriction
of previous analyses to mufIin-tin potentials) and for the nonspherical potentials associated with ion cores
at solid surfaces. The algebraic equations are solved using a double-di6raction analysis of the inelastic-
collision model. Surface scatterers are taken to be geometrically equivalent but electronically and vibronically
inequivalent to those in the bulk. A Debye model is used to describe the phonon spectrum of the solid.
Numerical results are presented for a hypothetical fcc metal with the lattice parameters of aluminum.
Thermal expansion alters the energies of peaks in the elastic intensity profiles (I—V curves), whereas the
thermal vibration of the ion cores alters the intensities of the peaks. The temperature dependence of the
peak heights can be described by the kinematic model in which it is attributed to the Debye-Wailer factor
associated with an "effective" Debye temperature. However, the multiple scattering of the electron from
the lattice causes these effective" Debye temperatures to be related to the parameters of the model (e.g. ,
bulk and surface electron —ion-core scattering phase shifts, the inelastic-collision mean free path, bulk- and
surface-model Debye temperatures) in a complicated fashion. Although the trends evident in the de-
pendence of the e6'ective Debye temperature on the model parameters can be rendered plausible, it appears
almost impossible to extract from a kinematical model reliable quantitative information about the average
thermal displacements of the surface and bulk ion cores.

I. INTRODUCTION

In the past two years, rapid progress has been
achieved in constructing an adequate theory of elastic
low-energy electron diffraction (LEED) by virtue of
the recognition that strong inelastic-collision damping
as well as strong electron —ion-core scattering is an
important ingredient in such a theory. ' ' The micro-
scopic origin of most of this damping is thought to be
large-energy (AE &2 eV) electron-loss processes associ-
ated with interband transitions and plasmon excitation
in the solid. '' ' Therefore, one direction of develop-
ment of the present theory is the explicit description
of the coupling between the elastic and inelastic scatter-
ing channels for the incident electron. ' "However, in
this and a previous paper, " we have developed the
theory in a second direction, by extending it to in-
corporate a description of electron scattering from the
low-energy (AE 10 meV) atomistic collective excita-
tions of the lattice (phonons) within the framework
of the inelastic-collision-model description' ' ' of strong
electron —ion-core elastic scattering and strong inelastic-
collision damping via large-energy electronic excitations
of the solid.

The study of the inHuence of lattice vibrations on the
scattering of x rays" and neutrons" is an old and
venerable topic. However, the interactions of x rays
and neutrons with solids differ in one crucial respect
from those of electrons with solids: They are sufficiently
weak that multiple-scattering effects usually are un-
important. This fact has the consequence that linear-
response theory describes the interaction process. The
extensive theories of x-ray and neutron diffraction are
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based on this result. Because of this historical back-
ground, it is natural that early models of low-energy
electron scattering from phonons"" and magnons""
also were based on linear-response theory. Ke refer to
such models as "kinematical" in nature (following the
nomenclature for elastic LEED from rigid la, ttices')
and note that they have been used extensively in analyz-
ing the available experimental data on the temperature
dependence and (angular) line shapes of LEED differ-
ential cross sections. ""Unfortunately, similar analyses
of elastic electron scattering from a rigid lattice utterly
fail to describe analogous features of the experimental
data. ' ' "&'& They also seem to fail in describing thermal
effects. 2i&b& Consequently in our first paper" (hereafter
referred to as DL) we formally extended the theory to
describe multiple-interaction processes in both the elas-
tic and inelastic channels.

In this paper we consider only the influence of the
lattice vibrations on the elastic scattering of the inci-
dent electron by the solid. As noted in DL, the major
vehicle whereby this inhuence is exerted is the re-
normalization of the electron —ion-core vertices by the
Debye-%aller factor. The content of this paper con-
sists of first reducing to algebraic form the integral
equations describing the multiple scattering of the elec-
tron from this renormalized potential, and then solving
the resulting algebraic equations in the double-diGrac-
tion approximation. ' Our principal result is the dis-
couraging observation that the extraction from experi-
mental data of quantitative information on the mean
displacement of surface atoms is not possible at the
present time because of the sensitivity of the model
predictions on the (largely unknown) parameters de-
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scribing the electron —ion-core scattering and inelastic-
collision damping in the surface region. This fact does
not seem to have been fully appreciated in experimental
data analyses. " "In this context, it is worth recalling' '
that our double-diGraction analysis is as nearly a
"kinematical" calculation as one can sensibly perform
in describing LEED from solids. ' ' The use of an im-

proved description of higher-order multiple scattering' '
doubtless will complicate the situation still further, al-
though we anticipate' that for the values of the param-
eters used in our numerical calculations, the alterations
in the results of these calculations will be small.

In Sec. II we review the integral equations derived
in DL, make a partial-wave decomposition, and change
these integral equations into a set of algebraic equa-
tions without restricting the lattice site potential to the
mufFin-tin form used by Beeby." In Sec. III we de-
scribe the model we shall use for our numerical analysis
of the equations of Sec. II and in Sec. IV we give the
results of this analysis. We display curves showing the
effect of temperature upon the elastic energy profiles
and analyze our results so as to obtain an effective
Debye temperature for each peak. Those who are inter-
ested primarily in our results and not in the details of
the theory may skip directly to Sec. IV. Finally, in
Sec. V we summarize our conclusions.

II. REDUCTION OF INTEGRAL EQUATIONS FOR
SCATTERING AMPLITUDE TO

ALGEBRAIC FORM

In DL the dominant diagrams contributing to the
elastic scattering cross section were summed. The re-
sulting expression for the cross section is given by the
following equations:

d (rldE dfl lhg~kf elas

=}m'/(2m'')']8(Ef E')
~
J(kf k'j E,) ~' (1)

I(kf, k;; E,) =1V(( g g-expL —i(kfi —k;i)d)) —tg a]
g

X2 x(kfr ki Ei)b(kfl I k(ll g) ~ ( )

T)(kf, k, ; E„)=r), (kf, k;i E;)+ Q Q r)(kf, k; E,)
k

XG""'(k, k;; E) &)„(k,k'; E'), (3)

r), (kf, k, ; E,) = b), (kf, k, ; E;)

+ Q bg(kf, k; E;)G"(k, k, ; E,) r), (k, k;; E,), (4)
k

b), (kf, k, ; E,) = expL —IV), (kf—k,) ]t),(kf, k, ; E,), (5)

t), (kf, k;; E,) = v), (kf—k,)

G'"'(» k' E') =G(» E') Z expf —&}kll k'll]

~ LP+a(X&—X)]—i(k J k'J) X (d)„—d)) }. (9)

The effective site scattering vertices given in Eq. (5)
are the rigid-site scattering vertices ty renormalized by
the Debye-Wailer factors,

W), (kf—k;) = —', (kf—k;) (ut, ), (0)ui, )t'(0) )r(kf —k,)t'.

In Eq. (7) Z(k, E;) is a complex electronic self-energy'
which describes the interaction between the electrons
of the beam and the conduction electrons of the solid.

In obtaining the above equations we have made the
following assumptions' ' ':

(a) The solid is taken to consist of subplanes of ion
cores parallel to the surface. Each subplane consists of
the same two-dimensional Bravais lattice. The quantity
P is a vector in the subplane and g is a vector in the
reciprocal lattice of the subplane;

(b) A particular value of the index X denotes a
given subplane. All scatterers in a given subplane are
taken to be identical. The quantity u&, ), (0) is the nth
component of the displacement from equilibrium of the
lth atom in the Xth subplane. We adopt the convention
of summing over repeated Cartesian indices.

(c) The quantity a is a vector denoting the shift in
the positions of the center atom between successive
subplanes, and dq is the perpendicular distance of the
Xth subplane from the surface (i.e., do=0).

For convenience in the numerical calculations, we
shall assume that the electronic self-energy depends
only on the energy of the electron and not on its mo-
mentum. Hence we write

2m/f12
G(k, 8) = (Z — —Z(R) =, (1))

2m k'(E) —k' '

where
Pk'(E) /2m—=E—Z (E) .

We also shall use the fact that

(12)

is the propagator that describes the motion of the
incident electron through the conduction electrons of
the metal. We also used the subplane and interlayer
propagators defined by

G"(k, k'; E ) =G(k, E') 2 expL —~(kll k'll) &],
PWO

+ Q v), (kf—k) G(k; E,) t), (k, k;;E;). (6)

In the above equations v), (q) is the qth Fourier compo-
nent of the interaction between the electron and an
ion located in the 3th plane from the surface. The
quantity

G(k, E) =G( i
k },E)

in making our partial-wave decompositions.
As a notational convenience let us define

Yt, (0)=—I'r, (Q),

(13)

(14)

G(k E,) =LE,—Pk'/2m —Z(k E,)] ' (7) where the I'~, (0) are the familiar spherical harmonic
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functions "and

If we assume that the interaction between the incident
electron and an ion core in the solid is spherically sym-
metric in coordinate space, then

&& P Fi,„*(Qi)Fr, (Q,)
m=—l

=—Q viz(kz, k2) Fz*(Qi) Fr.(Q2)
vi, (kz —k2) =vg( Ikz —k2

I ). (16)
(22)

the terms in the partial-wave expansion of the potential

(15) v), ( Ikz —lr2
I ) = Q v), '(kz, k2)P2(cose)

= 42r Q I vi'(kz, k2) /(21+ 1)]

+ Q Q Q viz(kr, k) Fz*(Qr) Fz(Q) G(k, E)
k I Ii

X Fr.,*(Q) Fz, (Q;) t)z'(k, k;) . (17)

We always take the continuum limit with regard to
the plane-wave states of the electron, i.e.,

Q —+ f (dk)/(22r)2. (18)

From the orthogonality property of the spherical har-
monics

f (dQ) Fz, (Q) Fz,,~(Q) =8z,z„
we obtain

Trz(kr, k;) =viz(kr, k;)

co+, dkk2v)z(kr, k)G(k, E)tiz(k, k,). (20)
7I

Q

However, v&, ( Iiri —ir2 I) can depend only on
I hi I,

I
ir2 I, and cose, wl ere S is t e angle between irz and

ir2. Hence, a direct expansion of vi( I lrz —k2
I ) yields

»( Ii 1-i 2I)
00 8=Z vy(ki& k2& cosH)

n=0 8 (2kik2 COSe) 22&22 ~22=2

The reduction of Eqs. (3)—(6) to algebraic form is
accomplished by partial-wave expansions. Therefore
let us begin this reduction by reviewing, in a conven-
ient notation, the well-known partial-wave expansion
of the single-site t-matrix equation (6) (as all of the
vertices are characterized by the same energy E;, we
drop this designation and set E—=E,):
ti, (lrr, lr;) = g tiz(kr, k,) Fz,*(01) Fz(Q, )

= Q viz(kr, k,) Fz*(Qr) Fz(Q, )

must satisfy

viz( —ki, k2) = (—1) 'vt, '(ki, k2), (23a)

viz(ki, —k2) = {—1) 'vt, '(ki, k2). (23b)
The second equality in Eq. (22) follows from the
"spherical harmonic addition theorem. "2'

From Eqs. (20) and (23) we see that t&,r'(ki, k2) also
must satisfy

&),'( —ki k2) = (—1) '~).'(ki, k2), (24a)

tiz(ki, —k2) = (—1)9),'(ki, k2) . (24b)

From Eqs. (23b) and (24a) it follows that the inte-
grand in the second term on the right-hand side (RHS)
of Eq. (20) ls all eveil fllllctioii of k. Tllils tile 111111t011

the integral may be extended to —~ and the result
evaluated as a simple contour integral. Neglecting pos-
sible singularities in the potential eq, we obtain

00

(22r) ' dk k2viz(kr, k) G(k E) () r, (k k )

dk k2vgz(kr, k)G(k, E) &),'(k, k;)
(22r)2 2

= —
I 222i/5282r2]k(E) v).z(kr, k(E) )4'(k(E), k'). (25)

Substituting Eq. (25) into Eq. (20), we obtain

t),z(kr, k,) =viz(kr, k,)
—(212i/5'82r2) k(E) viz(kf k(E) )4 (k(E) k ) (26)

which dehnes the partial-wave components of the single-
site scattering amplitude in terms of the ion-core po-
tential.

The analogous partial-wave decomposition is not so
straightforward for Eqs. (3) and (4). The quantity in
Eq. (4) corresponding to the ion-core potential is

bi(irz, k2) = expL —W&, (iri —ir2) ]/i(lri, k2). (27)
Although t~ exhibits the same symmetry properties as

x (2kik2 cose)"
nt

L822/8(2kik2 cos8) "]vi{ki, k2, cose) I22222 aos2=2

(21) unless
zg(ki, ir2) = z), ( I iri —lr2

I ) (28)

Wg(ir, -ir2) = Wx(
I

lrz —ir2
I ) {29)

is satis6ed, we 6nd

bi(&l ir2) &&),( I 12:i-ir2
I ) (30)

depends only on k~' and k2', it follows that the terms in
Eq. (20) which are odd in COSH are odd in ki and k2
and the terms even in cos8 are even in kj and k2. Hence,

This result, which occurs, e.g., if surface phonons play
a role in determining 5 q, complicates the partial-wave
decomposition of Eq. (4).
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If we use the Debye model2' for the phonon spectrum
of the solid, then Eq. (29) is satisfied. However, even
in the case of bulk phonons more realistic models of
the spectrum33 lead to a form of Eq. (10) which does
not in general satisfy Eq. (29). Hence in making a
partial-wave decomposition we write

by(kr, k2) = Q bp '(kz, k2) Yr,*(Q2) Yr, (Q2). (31)

~e note in passing that b&, (k4, k2) has the role of the
effective single-site scattering amplitude for an electron
scattering from an ion core in the solid. Even for a
rigid lattice, the use of pseudopotentials" may require
the general form of Eq. (31) rather than the specialized
form of Eq. (16) which resulted from a spherically
symmetric ion-core potential. In addition, we do not
expect the potentials of the ion cores at the surface of
the metal to be spherically symmetric. Hence, we shall
take bq(kr, k2) as the single-site scattering amplitude
and not inquire whether its lack of spherical symmetry
comes about from phonon effects or is inherent in the
potential of a rigid-ion core.

The partial-wave expansion of Eq. (4) gives

Z r~"'(kr, k') Yz*(Qf) Yz (Q')
LLI

= Q b), '(kr, k,) Yr,*(Qr) YI (Q;)
LL~

+ f I (dk)/(22r)3j Q buzz'(kr, k)
L,LI; L1,L2

X Yr,*(Qf) Y'r, , (Q) G"(k, k, ; E)

X r),~2~'(k) k;) Yr,2*(Q) Yr: (Q') (32).
Consequently, we obtain

rP~'(kr, k, ) =biz~'(kr, k,)

+ f L(dk)/(22r)3] Q b)z~'(kr, k) Yr, , (Q)
Lj,L2

XG' (k k, ; E)r), ' '(k k )
Y' *(Q) (33)

From Eqs. (8) and (13) we can write

G"(k, k;; E) = G(k, E) g expL —i(k(( —k;t[) P].
PgP

(34)

We next make use of the angular momentum represen-

tation of plane waves, "
exp (—zk P) = g (42r) (—i) "Yr,,*(Q)Yr, (Qp)j3,(kP),

(35)

where j3,(kP) is the spherical Bessel function of order
l3, to write

G'v(k k, E ) =42rG(k, E) g exp(ik, 'P)

X Q ( —i) '4Yr, ,*(Q) Yr., (Qp)j, , (kP). (36)

Substituting Eq. (36) into Eq. (33), we obtain

rP~'(kr, k,) = by~~'(kr, k, )

+ P g exp(ik, 'P) Yr, , (Qp) X f $(dk)/(22r)'j
Lj,, L42,L3 p&p

Xb) ~~'(kr, k) (42r) (—i) "j i, (kP) G(k, E)
Xr+2~'(k k,) Yr, , (Q) Yr, *(Q) Yr, 3*(Q). (37)

On the basis of symmetry arguments the integral over
(dQ) in Eq. (37) is zero unless

lr+ l2+l3 ——even number. (3g)

In addition, we make use of the symmetry property"

j &, ( kP) = (—1)—"j &, (kP) . (39)

The arguments presented in Eqs. (21)—(24) also apply
to the b&, (kr, k2) given by Eq. (5). For appropriate
phonon dispersion relations they lead to the relations

bp~&( —kr, k, ) = (—1) 'bp~&(kz k2), (40a)

bp~'(kr —k2) = (—1) "bp~'(kz k2) . (40b)

From Eqs. (40) and (37) it follows that

rp2~'( —kr k2) =(—1)t2rp2~'(kr k2) (41a)

r+2~'(kz, —k2) = ( —1)"r),~2~'(kz) k2). (41b)

Our subsequent analysis is valid only for potentials
and phonon dispersion relations such that Eqs. (40)
are satished. However, this is not a serious restriction. "
From Eqs. (30)—(41) we see that the integrand in the
second term on the RHS of Fq. (37) is an even func-
tion of k and so the lower limit can be extended to

and the integral evaluated by contour techniques
just as in Eq. (25) . Specifically, we find that34

I(L2, L2, L3) = f (dQ) Y~, (Q) Yr2*(Q) Yr 3*, (Q)

=((212+1)(2lp+1)/42r(212+1) j"'C(l2, l3, l&, m2, m3, mz) C(l2, l3, lz, 0, 0, 0), (42)
where

C(l2, l3, 12, m2, m3, ml) =h, , ~ II (212+1) (l2+l3 ll) ./(12+l2+l3+1) .j
X (11+l2 —l3) !(lr+l3 —l2) !(12+mr) !(l2—mz) !(12/m2) !(12—m2) !X (l3+m3) !(l3 m3) !)"'—

X Q L( —1)"/v!jL(12+13 12—v)!(l2—m2 —v)!(l3+m3 v)!(12—13+m—2+v)!(lz—l2 —m3+v)!j '. (43)
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As before we shall neglect any possible singular behav-
ior of eq in the k plane. This means that only the poles
in the electron Green's function enter in the evaluation
of Eq. (37) and so we obtain

dk k'bp»(kf, k)jl, (kP)G(k, E)rp'i'(k, k;)

dk k'bp»(kf, k)jI,{kP)G(k, E)rp'i'(k, k, )
~QO

"',' b; (k„k(E))k„(k(E)~)

&&rP'i'(k(E), k,). (44)

Tile kl( ) (X) arc spllcl'Ical Hankcl fllllctlolls (I.e., spllcl'-
ical Bessel functions of the third kinds'). In Sec. III
we investigate the number of partial waves necessary
for a reasonable model calculation and give explicit
cxpl'csslolls fol 'thc kI(). Using Kqs. {42) alld (44), we
can rewrite Eq. (3/) as

rgb'(kI, k,) =bp~'{kl, k;)+ Q b) i»(kf, k(E) )

{4)r)( i) " —mIrik (E)—
&( P exp(ik, 'P) g

PRO I I )r

x)iP'()(E}P)Fr,,(Q|}I(L|,I , 1.})rP'"'()(E},)).
(45)

Equation (45) can be written in a compact notation
by dining"

(—i) " I)IIrik (E)—
Gl, ,l,,"(lr;) = g exp(Qr; P) g

PM I,3 X

/k), "'(k(E)8)Y»(QP) I(II, +, 13)

exp(ik; P) Gl„l,,"(P).

In terms of G»I, ,"(Ir;), Eq. (45) becomes

rP~'(kr, k, ) =b),ii'(kj, k,)

+ Q bp»(kg, k(E) )G1,,1,,8)'(k,)r)~&~'(k(E), k, ). (4/)

The partial-wave decomposition of Kq. (3) follows
in a completely analogous manner. Writing

T),(kr, Ir, ) = Q Tpi'(kr, k, ) Fl~(QI) Fl, (0;), (48)

Tgi'{kg, k;) =radii'(kf, k;)+ Q Q rP»(ky, k(E) )
Xy&X I I,I g

yG»»)(lr ) T), '~"(k(E) k,) (49)
where

G~,~, " (lr;) = g exp je; I P+a(}I—X)+(dI,—dl)sjl

yG & xxl(P) (5(j)

( —i) "—rIIIrik(E)G, ,""'(P =
I ) )I

Xk),")(k(E) i P+a(XI—X)+(d1,—d),)s i )
&& I'I *(alp+.o)-) )+(~„~,).-)1(LI, is, I()) (51)

In deriving Eqs. (26), (4/), and (49) we have made
use of the properties of the vertex functions for general
values of the momenta. However, now that we have
derived these equations we note that we are consider-
ing the elastic scattering cross section, Therefore we
require the t amplitudes only for values of k; and kf
such that

k;= kf =k(E), (52)
i.e., we say that the t amplitudes are evaluated "on the
energy shell. " Thus, on the energy shell we have for
Kqs. (2|)), (4/), and {49)

),'), (k(E))=s), (k(E))— I), (k(E))/), (k(E)),
I)uk(E)

f28+'

r),~i'(k (E) )=bP" (k (E) )
+ Q b)~»(k(E))GI, ,I,,S)'(Ir;)rp'~'(k(E)), (54)

Iy, Lg

T),ii'(k(E) )=r),'~'(k(E) )
+ Z Z r~"'(k(E))G»""'(lr)T1'"'(k(E))

I1.,L2 XygX

where the energy-shell values of b(III, lr1) are related
to the energy-shell values of i(lrl, lr2) through Eq. (5).
Thus the solution to Kqs. (53)-(55) requires the evalu-
ation of 8'),(kI—lr2), which in turn requires a model of
the phon Dn spectrum of thc solid. e dcfcI' fuI'ther
discussion of this point until Sec. III, where we make
use of a spccihc model for the phonon spectrum.

Equations (48) and (53)-(55) completely specify
the momentum space representation of the scattering
amplitude a,s a set of coupled algebraic equations. The
scattering amplitude through Kqs. (1) and (2) then
determines the clastic scattering cross section. Our
equations represent the appropriate generalization of
Seeby's~ analysis of the muSn-tin model which is
needed to describe the inQucnce of lattice vibrations
on the elastic scattering cross section. An interesting
feature of these equations is that they are no more
complicated than Beeby's. However, we have avoided
both the muon-tin restriction that the potentials be
nonoverlapping and the requirement that the poten-
tials be spherically symmetric. Again we point out
that b)((kI, lr2) has the role of an effective single-site
scattering amplitude and whether its asymmetry and
extended nature come from phonon effects or from the
nature of the potential I)„(r—R„) is irrelevant in our
analysis.

In closing this scctlon wc note that lf thc cGectlve
site potential were spherically symmetric, we would
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for an ion core in the "bulk, " The effective single-site
scattering amplitude is obtained from Kq. (5),

b (k, k ) = ti,'(k(E) ) exp[—W (k —k )]. (60)

The Debye model of the phonon spectrum gives the
expression for 8'q

35'(ki —k2) '
"''( ' "')=

mb e ~2' kgO~D~

(61)
0

.6
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S 8 P WAVES
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Ql2

Fxo. i. Plot of effective site scattering amplitude divided by
the rigid-ion scattering amplitude versus scattering angle. The
parameters used in making the plot are for bulk aluminum
I'&=27 amu, OD=426'K). The horizontal dashed line shows
the s-wave approximation to the scattering vertex and the dotted
line shows the approximation of using both s and p waves. The
electron self-energy has been taken to be zero.

have
b~'"'(&(E) )=b~" (&(E) )b», i~, (&6)

and. Kq. (54) would have the simplified form

r) ~i'(k(E) )=byi(k(E) )bl. ,r;

+ Q b)P(k(E) )Gr I,,"(k;)rg~'~'(k(E) ). (5'1)

In the case that we consider only the I=I.'= 0 compo-
nents of both T~~' and GI.L, , we recover the isotropic-
scatterer inelastic collision model. ' '

III. MODEL FOR NUMERICAL CALCULATIONS

9'e shall illustrate the effect of temperature upon
the elastic scattering cross section through a very sim-
ple model —namely, use of s-wave scattering from a
rigid-ion core, use of the Debye modep' to characterize
the phonon spectrum of the solid, and inclusion of
lattice expansion in an empirical manner. '5 We also
assume that only the surface layer of atoms is diGer-
ent from the layers of atoms making up the "bulk" of
the solid. We do not specify the potential in Kq. (26)
but instead will treat the phase shift as a parameter in
our calculation. ' ' ' The amplitude for scattering from
a rigid-ion core is written as

tso(k (E) )= [7ri5'/mk (E)j(e'"e—1)

for an ion core at the surface and as

~,o(b(E) ) ['iV/~a=(E) j(e '. 1) (5—9)

(5g) 2'&(ky, k, ) =r~(kr, k;)+ I [(d&)/(2~)']

X Q ry(kr, k)G""'(k, k, , E)rg, (k, k;). (62)

In Kq. (61) On" is the Debye temperature character-
izing the vibration of an atom in the A, th layer and
T is the temperature of the system. The eGective
single-site scattering amplitude given in Kq. (60) no
longer describes only s-wave scattering since the
exp[ —Wq(ki —k2)] factor introduces higher partial
waves. To make this point more explicit let us take
our solid to be aluminum. In Fig. 1 we see a plot of
bq(ki, k2)/tq'(k(E)) versus scattering angle for pa-
rameters corresponding to bulk aluminum. In this 6g-
ure we also show both the s- and the (s+p)-wave
approximations to the scattering vertex. Clearly a
reasonable description of the scattering vertex requires
the use of more than simply s waves. As we are exam-
ining only a simple model of the solid to illustrate the
effect of lattice vibrations, in the interest of computa-
tional simplicity we restrict our analysis to only s and

p waves.
In Sec. II we generated a set of matrix equations for

the scattering amplitude Ti(k~, k, ; E). The full solu-
tion of these equations would correspond to the "matrix
inversion" procedure of Tucker and Duke. ' However,
it seems most feasible to proceed in the present case as
in the rigid-lattice case by 6rst examining the conse-
quences of the double-diffraction approximation and
then turning to the matrix inversion calculation. ' 5

This procedure has the advantage that in the double-
diGraction approximation we can isolate explicitly the
dynamical origin of peaks in the intensity pro6le and,
consequently, distinguish between intralayer multiple-
scattering peaks, primary Bragg peaks, and secondary
Bragg peaks. In addition, for small phase shifts the
results of second-order perturbation theory are in rea-
sonable agreement with those of the more accurate
"matrix inversion" procedure. ' As aluminum is a weak
scattering material, we might expect the double-di8rac-
tion analysis to be adequate for it.

Following Duke, Anderson, and Tucker, 4 we have
through second order in the planar scattering ampli-
tudes,
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Making a partial-wave decomposition of T), an(I 7), in

Eq. (62) and using the explicit form of G""', we obtain
In Eq. (63) we first perform the sum over P to obtain

Z expj i(kit kill) ' ] +I I 2 ~(kit kit I g ) ~

Tt,~~'(kr, k,) = rP~'(kr, k,)

+ f L(dk)/(2s)'] Q Q r)~~'(kr, k) I'1,, (Q)
(64)

We then use the 5 function in Eq. (64) to perform the
part of the integral in Eq. (53) over ktt. In doing this
integral we consider the F'r, (Q) to be functions of k;
i e ke

Xyy& Lj.,Lp

X Zexp{ —iLkll k'll] {I'+a(»—l)]
.e., w tai—(ki k—, j.) (dg, —dt, ) I

XG(k, E) Vi„*(Q)ri„~~(k, k,). (63) We thus obtain

I'i, (Q) —= I'i, (ktt, ki.). (65)

2m X){ dpi
2't,"'(k k ) = rt"'(4~ k') — —, , Z Z Z

(2'tl ) 2'tl «gggi z,y, l, g

where

rP~&(kg,
~
k, tt+g'+kgb

~ ) exp[ ig—' a(X& X)—i(k—i k;i—) (dz, —dz)]F1., (k, tt+g', k J)
ki' —ki'(g' E)

XFz,,*(k tt+g', ki)rt, ' '(
~
k;tt+g'+kis ~) k;), (66)

kg'(g', E) = (2m/M)LE —Z(E)]—(k, tt+g')'. (67)

In Eq. (66) the integral over dk can be done by way of a contour integration. For (dt„—d&,) (0 we close the con-
tour in the upper half-plane and for (di„—di) )0 we close the contour in the lower half-plane. Since

Ik*t t+g'~k~(g', E)&
I
=k(E), (68)

we can write our result as

T'i,"'(kr, k') =~i"'(4, k ) —(~i/&')L&tt/(2&)'] Z 2 Lk~(g' E)] '
g~ LI,L2

XI P expL —ig' a(Xi—X)+i(ki(g, E;)+k,i)(dt„—dt, )]rP~'(ki, k(E) )

XI'~ (k'tt+g', —k~(g', E))I'»*(k'tt+g', —k~(g', E))r~'"'(k(E), k')

+ p expL —ig' a(4—)t) i(ki(—g', E;) k;i)(d&—,, d&)]up—~~(kr, k(E) )

I(kf) k~; E) =iVII Xr Xr 8(kfll kill g) F&*(k~ll+g~ —kx(g& E) )
g L,LI

(
„, Eto, g; E) exp( —~a g) s"~'(k(E)))

1—E(0, g; E) exp( ia g)—
mi Stt, , E(0, g', E) exp( ia g')—

ki g', E5' (2m.)' «r, l,,
'

1—R(0, g', E) exp( ia g')—

XI'~ (k tt+g', k~(g' E))I'r *(k tt+g' k~(g' E))ri'"'(k(E), k')} (69)
Substituting Eq. (69) into Kq. (2), we explicitly perform the sums over X and X&. Assuming that only the surface
layer scatters diGerently from the "bulk" layers an(I that successive layers are spaced a distance "d" apart, the
final result can be written as

LLI P g L2L~ P g
1—E(0, g; E) exp( —ia g)

, (k, + ', k t
' E))I' *(k + ' k (

' E))+
1—R(g, g', E) exp{ ia (g——g')]

X &LLIpg 7-LgLIpg '
7 LLjp@ 7-BLL

1—R(0, g; E) exp( —ia g)

X Fly(@II+K ) k&(g p E) )F&g (kill+@ y k~(g y E) ) +tt 2 'tt(kfll k&ll g)~g (70)
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In Kq. (70) the symbol R is defined by

L= (0, 0) (72a)

E(g, g', E) =—exp(id[hi(g, E)+ki(g', E)]), (71)

re~~'(k(E) ) denotes the scattering amplitude for the surface layer, and re~~'(k(E) ) denotes the scattering ampli-
tude for a bulk layer.

Equations (1), (57), and (70) determine the elastic scattering cross section in terms of the sphericaBy sym-
metric single-site scattering amplitudes of our model. Speci6cally we 6nd for the partial-wave components of the
single-site scattering amplitude

» (k(E) )= (i,'(k(E) )e-'""'&~'(4z.)So(k(E) ),

»i(k(E) )= (i,'(k(E) )e '""&e&x4sSi(k(E) ), L = (1, 1), (1, o), (1, —1) (72b)

w=W(T 0'n") M),

So(k (E) )= sinh2wk'(E) /2wk'(E)

Si (k (E) )= [3/2wk'(E) ]f cosh2wk'(E) —[sinh2wk'(E) /2wk'(E) ]I.

In matrix notation, Kq. (57) becomes

rx(lt (E) )=»(E (E) )+»(K(E) )Gs&(lt, ) ri, (E(E)).
Formally Kq. (76) easily cail be inverted to give

(75)

r~(&(E) )= [I—»(k(E) )G"(& )] 't ~(k(E) ) (77)

The matrices in Kqs. (76) and (77) are 4X4 in dimension with I being the identity matrix. As the components

of »(k(E) ) are specified by Kq. (72), all that remains is to determine G'i'(k, ) in order to specify the second-
order perturbation-theory solution. De6ning

we find from Kq. (46)

G"(P)

2m k(E)G"(lr ) = — —Q G"(P) exp[ilr 'P]
16m' pro

(78)

[—iho&'& (X}] [—e'~h &'& (X)Q-']

[—e '&h &" (X)Q-,'] [—ih "'(X)+-',ih &" (X)]
[—ih "'(X)—ih '"(X)]

[e @hi&"(X)Q-', ]
[——',ie "~kg&" (X)]

(79)

[e'ehi&'& (X)+32] [—-', ie''eh2&" (X)] [ iho"' (X)—+ ,'i4 "~(X)-]

where electron self-energy. %e take' ' '

Z(E) = —Vo—iF(E), (81)

ho "(X)= —ie'x/X,

h '"(X)=e' [ i/X' 1/X—]-
h "' (X) =e'x[ 3i/X' 3/X'+ i/X—], —

(80b) where Vo is the inner potential which should, be ap-
proximately equal to the work function plus the Fermi

(80c) energy for a "free-electron" metal and

I'(E) = (h'/mX. .) (2mE/fi'+2mVO/h2)"'. (82)

and Q=Q(P) is the azimuthal angle corresponding to In Kq. (82) X„ is twice the electron inelastic-collision

the vector P. mean free path and is treated as a parameter in the
Finally to determine k(E} we need to specify the calculation.
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FIG. 2. Elastic energy profiles for the parameters shoran in the
figure. The calculation eras performed for a rigid lattice taking
both the surface and the bulk ion cores to exhibit a phase shift
of —,'m. The positions of several peaks are given in eV.

IV. N'UMERICAL RESULTS

In this scct1on wc discuss thc results of ou1 calcula-
tion of the elastic scattering cross section. %e have
assumed only s-wave scattering from a rigid-ion core
and have used the Debye model for the phonon spec-
trum of the solid. The parameters of the calculation
have been chosen to correspond to the (00) beam
normally incident upon Al(100) .

A change in temperature affects the elastic scatter-
ing cross section in two ways: (a) It causes a change
in the lattice constant which can produce a signi6cant
shift in the position of the peaks and (b) it causes a
change in the vibrational amplitude of the ion cores
which can produce a signi6cant change in peak height.
In previous works, "" experimental data on the tem-
perature dependence of the elastic LKKD energy pro-
6le have been analyzed using the Born approximation
to describe the electron-lattice interaction. Although
these analyses are not identical (because of their vary-
ing assumptions about the inelastic-collision penetra-
tion depth of the incident electrons into the lattice),
they share one common feature: the use of Eq. (10) to
extract from the data semiquantitative information
about the mean atomic displacements (Nq')p, in the
surface layers. A major result of the analyses is the
observation that (Nqi')p appears to depend explicitly
on the energy of the incident electron beam. In particu-
lar, (Nqi')r decreases as the beam energy increases
from a "surface" value at low beam energies (E 20
eV) to the "bulk" value at higher beam energies
(E)200 eV). An attempt to describe this phenome-
non quantitatively using the kinematical approach has
been given by Jones, McKinney, and ~ebb. '4 They

0 2 ALUMINUM f IOQ)
~= &g, Xqe=IOA
VO=I6.?eV, e=y=o 4.2 K

UJ
O. l—

C)

UJ

O

O. I
— 2

M

LtJ

z'
, 0

O. I
—)

300 K

800'K

0 50 loo l5Q.ELECTRON ENERGY (eV)

Fro. 3. Elastic energy profiles for a vibrating lattice. The
surface and bilk ion cores mere assumed to be both electronically
and vibronica, lly equivalent. The scattering phase shift of an
ion core was taken as ~w and the Debye temperature characteriz-
ing the vibrational motion gras taken as 426'K. The other param-
eters of the calculation are indicated in the figure. The circled
numbers label the various peaks for reference in Fig. 4.

utilized simple models for (Nqi')p as a function of X

and an empirically determined dependence of the in-
elastic-collision damping on the energy of the incident
beam. Any such model in which the inelastic-collision
damping is taken to decrease with increasing energy
describes the qualitative features of the data. No one,
including Jones e1 ul. ,

2' has provided a semiquantitative
description of the details of the data. Our approach in
this section is to investigate the sensitivity of the pre-
dictions of our double-diGraction model to the values
of the parameters used in the calculation. In addition
to being based on a dynamical model, our analysis
diGers from previous ones" " also because we con-
sider the influence on its predictions of the diGerent
elastic scattering properties of surface and bulk ion
cores. '6@ In fact, one of our major conclusions is the
observation that although an effective Debye temper-
ature can be assigned to each peak in the energy pro-
file, in general this eGective Debye temperature is not
simply related to the rms vibrational amplitudes of
the ion cores. The model predictions do not seem to
permit a well-de6ned distinction to be drawn between
the consequences of the vibronic inequivalence of the
surface and bulk layers and those of their electronic
inequivalence.

%e first investigate the eGect of a change only in
lattice constant. This is shown in Iig. 2 for a rigid
lattice of ion cores, Note that a change in the lattice
constant causes a significant shift in peak position but
negligible change in peak height. Although it is a trivial
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perform such an analysis for all of the peaks shown in
Fig. 3. In this particular case peaks 4 and 5 are pri-
mary Bragg peaks; peak 1 is an intralayer multiple-
scattering peak, and peaks 2 and 3 are the split e= 2
primary Bragg peak. Except for peak 5 both Bragg
peaks and multiple-scattering peaks gave good straight
lines on a semilogarithmic plot of log/ versus temper-
ature. The curvature of the line for peak 5 is due to the
failure of the expansion of the Debye-Wailer factor
using only s and p waves. The breakdown of the
expansion happens first for peak 5 because of its higher
energy. Using the input inner potential of 16.7 eV, we
find the following effective Debye temperatures for the
first four peaks:

.02—

.Ol I I I I

500 600 700 800
TEMPERATURE ('K)

0'g) (1) =429'K,

On(2) = 456'K,

OD(3) =395'K,

(85a)

(85b)

(85c)

FIG. 4. Plot of the logarithm of peak intensity versus temperature
for the peaks shown in Fig. 3.

eGect, this shift in peak position clearly must be taken
into account in any experimental measurement of the
effect of temperature upon peak height. '4 "

In Fig. 3 we illustrate the inhuence of both the change
in the lattice constant and the change in the vibra-
tional amplitude of the ion cores with a change in the
temperature of the system. Note that not only the
over-all height of the energy profile changes with tem-
perature, but also the relative heights of the peaks
within a given profile can change. From the size of
the effect it is apparent that the temperature of the
sample is an important parameter in a quantitative
theory of I.EED.

As described earlier, a common way of analyzing
experimental energy profiles is to try to identify the
Bragg peaks and then to analyze their temperature
dependence using the Born approximation (kinematical
approach) to describe the scattering. " " In this ap-
proximation the intensity of a Bragg peak is expected
to behave like

OD(4) =407'K. (85d)

0,2— ALUMINUM (IOO)
ae= I'5 Ss= ~3 'ee=IOA

V, =I6.7'eV, S=y=O
4.2'K

O.I—

O
O
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Z
IJJI-
Z

I

25 3

300oK

There is about a 5% scatter in these values about the
known inputo+z ——426'K. Such scatter in effective Debye
temperatures from a mean value is apparent in the
experimental work of Refs. 24—26.

The parameters used for the plot in Fig. 3 represent
the special case of equivalent surface and bulk ion
cores. In a real material we expect the surface ions to
have a larger vibrational amplitude than the bulk

I=ID exp[ —2W(T, O~n, M) (kr —Ir, ,)'j. (83)

From the form of W(T, 0'~, M) given in Eq. (61) we
see that for T))0&~ we expect

g (T O~n M)~35 T/2MksQ~n' (84)

O.I—

I I

50 100
ELECTRON ENERGY (eV)

800'K

I

I 50

Hence, a plot of logI versus T (for T))O~n) should
yield a straight line from the slope of which one can
obtain an effective O~~. One possible problem even in
the double-di8raction approximation is that of distin-
guishing the Bragg peaks from the intralayer multiple-
scattering peaks. 4' Therefore, it is of interest to deter-
mine whether the above procedure can serve as a
diagnostic for "primary Bragg peaks. " In Fig. 4 we

Fn. 5. Elastic energy profiles for a vibrating lattice. The
surface and bulk ion cores were assumed to be inequivalent
electronically and vibronically. The effective Debye temperature
for the surface layer is O&~=300'K and for the bulk layers is
OD =426'K. The other parameters of the calculation are indicated
in the figure. Because of the complete breakdown of the Debye-
Waller factor expansion for the surface layer at high energies
and temperature, we do not show the n= 4 primary Bragg peak
in the bottom panel. The circled numbers label the various peaks
for reference in Fig. 6.
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ions" "and also we expect that the surface ions might
be screened less effectively by the conduction electrons
and hence interact differently with the electron beam
than the bulk ions do.""In Fig. 5 we show an energy
profile for a case in which the surface ion cores are
inequivalent both vibronically and electronically to the
bulk ion cores. The additional multiple-scattering struc-
ture due to the larger surface layer phase shift is
apparent when we compare Figs. 3 and 5. The choice
of Debye temperatures for the bulk and surface layers
gives a surface ion core about twice the mean-square
vibrational amplitude of the bulk ion cores at high
temperatures.

TABLE I. Influence of surface-layer scattering on effective
Debye temperature for vibronically equivalent surface and bulk
ion-core potentials. Parameters of the calculation: X„=ip L,
D =O~D8=426 KJ 8+

Peak
Energy'

(eV) ('K) ('K) ('K)

1

2

3
4 (»agg)

12.5
18
21.5

63

429
456
395
407

428
437
417
409

427
432
402
403

a Peak position used in determining effective Debye temperatures (posi-
tion at 600'K).
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Fn. 6. Plot of the logarithm of peak height versus temperature
for the peaks shown in Fig. 5.

Figure 6 shows the results of a Born-approximation
analysis of the temperature dependence of the peaks
shown in Fig. 5. In this case also good straight lines
are obtained both for the "Bragg" peaks and the multi-
ple-scattering peaks. We obtain the following effective
Debye temperatures for the first four peaks:

On(1) =299'K,

OD(2) =323'K,

O'D (3) =311'K,

On(4) =336'K.

(86a)

(86b)

(86c)

(861)
Again we notice about a 5% scatter in the values ob-
tained. We also note that although the effective Debye
temperatures are greatly influenced by the surface
layer, for the Bragg peaks the effective Debye tem-

TABLE II. Influence of surface-layer vibration on effective
Debye temperature for electronically equivalent surface and
bulk ion-core potentials. Parameters of the calculation: )„=10 A'. ,
ODD=426'KJ 8~=88= &m.

Peak
Energy O~~ ——426'K O~D~ ——36P'K OD ——3P0'K

(eV) ('K) ('I) ('K.)

1 12.5
2 18
3 21.5
4 (»agg)

429
456
395
407

389
377
360
386

335
341
308
359

a Peak position used in determining effective Debye temperatures (posi-
tion at 600'K).

peratures lie between the surface and the bulk values
as might be expected.

Having established that both "Bragg" peaks and
multiple-scattering peaks can be characterized by an
eGective Debye temperature, " we proceed to investi-
gate the dependence of the effective Debye temper-
ature on the parameters of the model. In Table I we
show the effect of varying the scattering power of the
surface ions relative to that of the bulk ions for the
case of all ions being vibronically equivalent. Although
there is some shift in the effective Debye temperatures,
all values remain within about +5% of the input
Debye temperature of 426'K.

In Table II we show the effect of varying the vibra-
tional amplitude of the surface ions relative to the
vibrational amplitude of the bulk ions for the case of
all ions being electronically equivalent. The vibrational
amplitude of the surface layer has a large effect on the
values of the eGective Debye temperatures. In all cases
the effective Debye temperature decreases when the
surface layer Debye temperature is decreased. How-
ever, we note that the eGective Debye temperature is
always between the surface and the bulk values. This
is because the electrons penetrate the solid to some
degree and do not simply scatter from the surface layer.

In Table III we show the effect of varying the
scattering power of the surface ions relative to that
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TABLE III. Influence of surface-layer scattering on eRective

Debye temperature for a vibronically inequivalent surface layer
of ion-core potentials. Parameters of the calculation; )„=10A. ,
O~ =426'K, O~g)~ ——300'K, bg = —',m,

Peak
Energya

(eV) ('K) ('K) ('K)

1

2

3
4 (Braggl

12.5
18
21.5
63

335
341
308
359

313
331
309
350

299
323
311
336

' Peak position used in determining effective Debye temperatures (posi-
tion at 600'K).

of the bulk ions for a case in which the surface layer
is vibronically inequivalent to the bulk layers. For the
Bragg peak (4), increasing the scattering power of
the surface ions relative to that of the bulk ions moves
the eGective Debye temperature towards that of the
surface layer. The intralayer multiple-scattering peak
1 also exhibits this behavior. The split m=2 primary
Bragg peak (i.e., peaks 2 and 3) does not exhibit a
simple behavior.

In Table IV we show the effect of the electron
inelastic-collision mean free path on the effective Debye
temperature for a case in which the surface and bulk
layers are both electronically and vibronically inequiva-
lent. The calculation is performed for a surface layer
which scatters more strongly than the bulk and also
has a larger amplitude of vibration. As might be ex-
pected, for the Bragg peak decreasing the electron
mean free path enhances the influence of the surface
layer. This also occurs in the case of the split m=2
primary Bragg peak but not for the intralayer multiple-
scattering peak 1.

It appears in general that the "simple" Bragg peaks
respond in the expected manner to variation of the
parameters of the system but that the intralayer
multiple-scattering peak and the components of the
split n=2 Bragg peak behave in no set way. It also
appears that the effective Debye temperatures not
only depend on the vibrational amplitudes of the sur-
face and bulk ions but also depend quite sensitively
on the inelastic-collision mean free path and on the
relative scattering power of the surface and bulk ions.
Therefore, the model does not seem to provide a diag-
nostic tool for distinguishing between the electronic and
the vibronic inequivalence of the bulk and surface
layers. Although such a situation is not desirable, it is
predictable from the fact that the eGective ion-core
scattering amplitudes, the bi(ki, k;; E) defined by
Eq. (5), contain the product of the electronic vertex
t&, (kI, k;; E) and the phonon renormalization factor
exp) —Wq(k~ —k,)j. In principle, the electronic factor
can be determined in part by analyzing low-temperature
data for which Wq becomes independent of the temper-

ature [see, e.g. , Eq. (61)j.However, even in this limit
the theory clearly predicts that the consequences of the
electronic scattering properties of the ion-core poten-
tials are inextricably intermixed with those of the zero-
point motion of the ions. Only for low-energy scattering
from heavy ion cores (i.e., Wi,—&0) does the electron-
solid scattering cross section depend solely on the
individual electron-ion-core potentials.

TABLE IV. Inhuence of inelastic-collision mean free path on
the eRective Debye temperature for a vibronically and elec-
tronically inequivalent surface layer of ion-core potentials. Pa-
rameters of the calculation: OD ——426'K, OD~ ——300'K, 8~ ——

—,'~,
~S= 3

Peak
Energy &ee = 15 A &ee = 10 A &ee =6 A.

(eV) ('I) ('K.) ('K)

1

2

3
4 (Bragg)

1.2. 5

18
21.5
63

299
395
322
362

299
323
311
336

321
297
303
311

' Peak position used in determining effective Debye temperatures (posi-
tion at 600oK).

V. SUMMARY AND CONCLUSIONS

We took as our starting point for this paper a set of
integral equations" describing the elastic scattering
cross section for low-energy electron scattering from
a vibrating lattice. In this paper we discussed the
reduction of these integrals to a set of algebraic equa-
tions with subject only to some general assumptions
about the form of the ion core potential seen by' the
electrons. We then investigated the predictions of these
equations using a very simple model of the solid—
taking only s-wave scattering to describe the electronic
interaction with a rigid-ion core using the Debye model
for the phonon spectrum of the solid. Specifically, we
chose the parameters of the calculation to correspond
to electrons scattering from Al(100). Our main con-
clusions can be summarized as follows:

(i) The effective single-site scattering vertex con-
sists of the rigid-ion scattering vertex multiplied by a
"Debye-Wailer" factor. The Debye-Wailer factor can
introduce a significant amount of higher partial waves
into the calculation. It also renders ambiguous the
distinction between "electronic" and "vibronic" effects.

(ii) Therinal lattice expansion can significantly shift
the positions of the peaks in the elastic energy profile,
but it has negligible effect on their heights.

(iii) Thermal lattice vibration can change not only
the over-all height of an energy profile, but can also
change the relative heights of peaks within an energy
profile.

(iv) The temperature dependence of both Bragg
peaks and intralayer multiple-scattering peaks can be
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characterized quite well by an eGective Debye tem-
perature obtained from a "Born-approximation" (kine-
matical) analysis. However, the dependence of these
eGective Debye temperatures upon the parameters of
the material can be quite different for peaks with dif-
fering dynamical origins.

(v) The effective Debye temperatures obtained from
a kinematical analysis of intensity profiles do not de-
pend solely on the vibrational amplitudes of the surface
and the bulk ions. They also depend sensitively on the
scattering power of the surface ions relative to the bulk
ions and the effective penetration of the electron beam
into the solid.

(vi) Because of point (v) we conclude that one can
utilize the conventional "Born-approximation" analysis
of the temperature dependence of the low-energy Bragg
peaks to obtain reliable semiquantitative information
about the vibrational amplitudes of the surface ions,

only if independent determination both of the differ-
ence in the scattering of surface and bulk ion cores and
of the inelastic-collision damping of the incident beam
are available.

Finally, we recall that we can speak of "primary"
and "secondary" Bragg peaks only because we are
using a finite-order perturbation-theory solution to the
equations for the scattering amplitudes. 4 In the case
of a complete matrix-inversion analysis, the kinematical
"Bragg" condition usually is rejected in the intensity
profiles as an envelope function for the intensity of
various multiple-scattering peaks. ~ ' Therefore unless
the electron —ion-core scattering amplitudes are small, '
we anticipate that a matrix inversion analysis will en-
hance further the difFiculties in semiquantitative data
analysis described in conclusions (i), (iv), (v), and
(vi) above.
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