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A diagrammatic version of perturbation theory is developed for the description of the influence of lattice
vibrations on the elastic and inelastic scattering cross sections of low-energy electrons from surfaces of
single-crystal solids. The formalism describes the effects on the cross sections of a thermodynamic-equili-
brium distribution of both bulk and surface phonon modes. The relationships between our general formalism
and the conventional single-scattering analysis of inelastic electron-solid scattering are displayed. Multiple-
scattering and virtual-phonon emission from a given ion core are included in the theory via vertex re-
normalizations of the electron-ion-core scattering vertices. Propagator renormalization is estimated to
be small and consequently neglected. The diagrammatic contributions to the elastic scattering cross section
are summed explicitly using the approximation that diagrams with internal phonon propagators are small
relative to those without such propagators. In this approximation we obtain a set of coupled integral equa-
tions for appropriately renormalized scattering amplitudes describing elastic electron scattering from planar

layers of ion cores.
I. INTRODUCTION

Despite a history of experimental work extending
over more than five decades, a reasonably adequate
theoretical model of the elastic scattering of low-energy
(E<500¢eV) electrons from solid surfaces has been
given only in the past few years. The primary reason
underlying the lagging development of the theory is the
failure of any truly elementary model to incorporate all
of the essential features of the scattering process. In
contrast with the situations described by the well-
developed theories of x-ray-and neutron scattering from
solids, the interactions between the incident electron
and the constituents of the solid are not weak and
consequently cannot be described adequately by linear-
response theory. Because of the large electron-ion-core
scattering cross sections, a description of the multiple
scattering between the incident electron and the ion
cores of the solid is an essential ingredient of a theory of
low-energy electron diffraction (LEED)."7 In addition,
the interaction of the incident electron with the valence
electrons in the solid causes a rapid inelastic collision
damping of the elastic wave field within 5-10 A of the
surface.? Consequently the effects of both multiple
scattering and inelastic collisions must be described in
any adequate theory of LEED.%? A phenomenological
description of the influence of inelastic collisions on the
elastic scattering cross sections has provided,® for the
first time, an adequate model description of the qualita-
tive features of experimental data. This paper is the
first in a series of four in which we refine and extend
the inelastic collision model®® to incorporate a micro-
scopic description of inelastic as well as elastic scattering
processes into a description of the interaction of low-
energy electrons with solid surfaces. In this first paper
emphasis is placed on the general features of the
formalism (which, e.g., apply to atom and ion-solid
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interactions as well as LEED). In the second paper we
analyze the influence of lattice vibration on elastic
LEED with emphasis on the sensitivity of the model
predictions to the boundary conditions at the surface.
In the third paper we extend the model perturbation-
theory analysis to calculate the inelastic scattering
differential cross sections associated with large-energy
electronic (i.e., AE>1¢eV) loss processes in the solid.
In the final paper we apply the extended theory to
describe the two-step inelastic diffraction of electrons
from W(100) and A1(100).

Although we utilize standard techniques of quantum
field theory in the construction of our model, the nature
of electronic interactions at surfaces necessitates that
our applications of these techniques differ from the
customary ‘‘uniform-medium” applications in several
significant respects. The combined influence of the
aperiodicity of the potential normal to the surface and
the inelastic collision damping renders the bulk momen-
tum conservation laws inadequate for electron (atom,
ion) surface scattering. Thus, a major aspect of our
diagrammatic analysis is the retention of sums over
scattering sites until the final stages of the calculation
so that appropriate momentum conservation laws are
incorporated in the analysis. For convenience in this
first version of the inelastic collision model we continue
to use plane-wave basis functions for the perturbation
theory. The deficiences of such a basis are well known.8
We expect to eliminate them by use of a distorted-wave
basis in the next extension of the model.

The second distinction between our analysis and bulk
applications of quantum-field-theory methods centers
around the special features of electron diffraction from a
vibrating lattice. As the lattice vibrations are low-
energy atomistic excitations, 7iw <10 meV, they must be
described by a finite-temperature theory. However,
unlike the description of transport processes, the
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thermodynamic probability of electron states at the
energy of the incident electron (E—Ep25eV) being
occupied is negligible. Therefore we construct a collision
theory in which the occupancy of the phonon states is
described using the techniques of finite-temperature
many-body theory and the occupancy of states of the
incident electron is characteristic of a fermion whose
energy is high relative to the energies of the occupied
electronic states. In particular, the initial and final states
of the electron are determined by the experimental
apparatus and hence are not subject to thermodynamic
averaging.

Having noted the distinctions between our general
analysis and previous ones, let us inquire as to which
aspects of this analysis we wish to develop for compari-
son with experimental data. An important aspect of
electron-phonon interactions is the smallness of most
phonon energies (%iw $10 meV) relative to the energy
resolution of typical LEED instruments (AE 20.5 eV).
Therefore it appears most sensible to begin by calculat-
ing the temperature dependence of the elastic scattering
rather than by examining features of the inelastic
scattering cross sections. The temperature dependence
of LEED intensity and angular profiles is a well-
documented experimental fact.*=% The conventional
analyses"~" of these observations utilize linear-response
theory (i.e., the Born approximation), which, as noted
above, is demonstrably inadequate®®'® for describing
elastic scattering intensity profiles. Thus, a major
result of this paper (Sec. VI) is the derivation of a set
of integral equations describing multiple elastic scatter-
ing of the incident electron from a vibrating lattice in
the presence of strong inelastic collision damping due to
high-energy (electronic) loss processes. The solution of
these equations is presented in the second paper of the
series.

The analysis presented in this paper is organized by
first defining the model Hamiltonian and specifying the
electron-electron-interaction-induced propagator re-
normalization in Sec. II. The perturbation-theory
analysis of the electron-rigid-lattice and electron-
phonon interactions described by the model Hamiltonian
is developed in Sec. III. This analysis is based on a
description of the electron—ion-core interactions using
the Dirac (interaction) representation.’® A general
diagrammatic prescription for the elastic and inelastic
differential cross sections is developed in a way that
permits the inclusion of the effects of surface as well as
bulk phonon modes.?~% In Sec. IV we show that our
prescription yields a convenient form of the usual
Born-approximation analysis!™™" when we neglect
multiple-scattering diagrams. In Sec. V we make use of
the fact that the incident electron has a velocity much
larger than the velocity of an ion core to write a re-
normalized vertex function for the individual electron—
ion-core scattering amplitudes. In Sec. VI we isolate and
explicitly sum the dominant diagrams for the elastic
scattering cross section. Finally, we summarize our
results in Sec. VII.
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II. MODEL HAMILTONIAN

We take the Hamiltonian describing the system of
incident electron plus solid as

= 3@0i+5Coe+3(31, ( 1)

where 3C,° is the Hamiltonian describing the motion of
the ion cores in the solid, 3Cy° is the Hamiltonian describ-
ing the motion of the incident electron in the absence of
any interaction with the ion cores, and 3¢; is the perturb-
ative part of the Hamiltonian that describes the
interaction between the incident electron and the ion
cores.

We treat the motion of the ion cores in the harmonic
approximation. Within the framework of this approxi-
mation, the Hamiltonian describing the ion core
motion is given by
o= 20 — (WY 2M1) 45 20w Ver (, b)wf, (2a)

3% i1l

Veb(h, b)) = (8/0R:i,") (8/0R:,*F)
XER;, RO ... R0, (2b)

The quantity E(R;% R0 ...,R;,% 1is the total
interaction energy of the system of ions, and & and 8
are Cartesian indices with the convention of summing
over repeated indices being used;

R;=R{4uy, (3)

is the actual position of the /th ion, which is written in
terms of its equilibrium position R and its displace-
ment from equilibrium u,.

Far outside the solid we expect the motion of 1’
incident electron to be described by the free-elect:
Hamiltonian

3Co°= —Hh2V2/2m. (4a)

As the incident electron approaches the surface of the
solid its interactions with conduction electrons become
important (for instance, they are the source of the image
force). We ignore this added complexity and consider
only the effect of the conduction electrons when the
incident electron is inside the metal. The Hamiltonian
describing the motion of the electrons inside the metal in
the absence of any interaction with the ion cores is taken
to be

v e
f=- %—i—;lr—ril
ﬁ2V1j2 62
-2 +2 . (4b)
T 2m o (| ri—1]

As we are concerned primarily with the effects of
phonons, we are not directly interested in the creation
of excitations of the conduction electrons (such as
plasmons or electron-hole pairs). However, these
excitations remove incident electrons from a beam of
definite energy. We take this into account by using the
propagator renormalization described in Refs. 8 and 9.
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This requires the use of a complex self-energy in the
propagator® describing the motion of the incident
electron inside the solid. Specifically, the matrix element
of the propagator between plane-wave states | k) and
| k') is taken to be

(K’ | (E—3C+in) ™ | k)
=[E—e&—2(k, E) =G (k, E), (5)

where 3¢ is as given in Eq. (4b), 5 is a positive in-
finitesimal,
ex=h2k2/2m, (6)

and Z(k, E) is the electronic proper self-energy.8?
The interaction Hamiltonian is given by
38 = Z v(r—R,) = Z Z exp[iq- (r—R,) ]vqn’ (7
n n q
where »(r—R,) is the interaction between the incident
electron and the nth ion core and v,» is its Fourier
transform. We maintain the site dependence of the
Fourier transform in order to allow for inequivalent
sites. A major problem in any LEED analysis is
deciding what to use for »(r—R,). In principle, the
v(r—R,) are the self-consistent ion-core potentials of
the nuclei immersed in a sea of conduction electrons.
In view of the fact that the ion cores near the surface
dominate the electron-solid scattering, it seems most
practical to assume an empirical form for the »(r—R,)
rather than attempt to calculate them from a micro-
scopic model. The influence on electron scattering of the
lattice vibrations is described using the rigid-ion model
to identify R, with the instantaneous position of the
nth ion core. The position coordinates {R,} have an
implicit time dependence determined by 3¢y’
We use 3C; in its second-quantized form?
Jer= 223 exp(—iq-Ra) v"ksq e

n k,q

(8)

In Eq. (8) ¢ is the operator describing the creation of
the LEED electron in the plane-wave state | k) and ¢
is the corresponding annihilation operator.

In Sec. ITI we calculate the differential scattering
cross section that is predicted by these Hamiltonians.

III. DIFFERENTIAL SCATTERING CROSS
SECTION: DIAGRAMMATIC EXPANSION

Our calculation starts with the standard definition!
of the differential scattering cross section for an electron
being scattered from an initial momentum state k; to a
final momentum state k; and for the lattice of ion cores
going from a state with initial quantum numbers {#;}
to a state with final quantum numbers {#;},

@ _m |k
de dQ ki-kys, {ni} > {ns} (27"ﬁ)3 l k; I

Prr,  (9)

where Pr,p is the transition rate between an initial state
| I) and a final state | F) which we take as a product of
wave functions describing the lattice and the incident
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electron,
[ I)= [{n})| ki), (10a)
[ F)=|{n})| ky). (10b)

In Eq. (9) we have normalized the volume of the
system to unity.

It is convenient first to calculate the total transition
probability Pr.r and then to relate the result to the
transition rate Pr.r. The transition probability is given
by

Prp= |TrLr %

(11)

where T'r,r is the probability amplitude for transitions
between the initial and final states,

lim (F|S(t, t)—1]|1)

>0, tp->—c0

T'rr=

X exp[ —i(E;r—Ep)to/h]. (12)

In Eq. (12), S(4, %) is the scattering matrix which is
defined in terms of the interaction Hamiltonian via

S(t, 1) = [exp < —(i/R) /t t dty 50 (1) )L (13)

where the “+4-” subscript denotes the time-ordering
operation® and the superscript “I”’ on the interaction
Hamiltonian means that its time dependence is to be
taken in the interaction representation

Jeit () = exp((it/1) (30oe+3Co%) )3
X exp(— (it/h) (30°+3C5%) ). (14)

However, the cross section given in Eq. (9) is not
what is measured in a LEED scattering experiment. In
such an experiment only the initial and final momentum
and energy of the electron are observed—not the
initial and final quantum numbers of the lattice. Hence,
what is observed is the sum of all the scattering events
defined by averaging over the initial states of the lattice
and summing over the final lattice states. Note that the
only place the lattice states enter in Eq. (9) is in the
transition rate Pr,r. So the experimentally observed
scattering cross section is given by

_ | k|

de dQ |yin,  (277)3 | K, |

The total transition probability corresponding to
(Pr.r)r is given by

(Prp)r= 2 )P(ni)({”f”(kf [ S(e0, —0)—1] k;)

{ni} {nf]
X [{ni} ){({ni} | (k| ST(0, —0)—1
X | ko)l {ns} )= ((ki | ST(0, —0)—1] k)
X (ks | S(0, —0)—1|Kki))p. (16)

In Eq. (16) p{n} is an equilibrium density matrix®
which depends only on 3y, the part of the Hamiltonian
describing the ion motion. Therefore the average using
p{n;} is a thermal average. This is the origin of the
subscript “T” on the angular brackets. In order to

d’c m?

(Pror)r. (15)
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evaluate Eq. (16) we make use of an expansion of S(f, %) in powers of the interaction,

l

t 1 2 pt
S(t, to) = 1+ <— %) " dtlﬁclf(tl)—i— <—“ ﬁ)/ dtl

Substituting Eq. (17) into Eq. (16), we obtain

i1
dty 31T ()3T (f) 4+ - -.

to t0

a7

Prorte= el (3) [ aw sty )iy (= 3 amsesnto o )

el () sty ) i (= 2 [ an [ e ses ) )

+(k; | (%)2/_: ay’ /t: dty 3T T (1) 3e T ()| ks (K | (— %)/_: dt 3 (1) | ki>>T+- <o, (18)

In Eq. (18) we have shown explicitly terms through
third order in the interaction Hamiltonian. The first
term on the right-hand side of Eq. (18) yields the
familiar first Born-approximation expression for the
cross section. The inclusion of the higher-order terms
constitutes the new features of our analysis.

Equation (18) illustrates one of the unique features
of our theory of LEED which distinguish it from the
conventional treatments of elementary treatments of
elementary-particle field theory on one hand® and
finite-temperature many-body theory? on the other.
Conventional field theory® describes transitions between
states of specified boson occupation number as described,
e.g., by Eq. (9). In finite-temperature many-body
theory,® the occupation of the electronic as well as
boson quantum states are described as a thermodynamic
average over an equilibrium distribution. However, in a
description of inelastic LEED from a vibrating lattice,
the initial and final states of the electron are specified
precisely (as in conventional field theory) whereas the
boson (lattice-vibration) quantum states are averaged
over (as in conventional many-body theory). Therefore
Eq. (18) specifies a “mixed” representation in which the
quantum states of the lattice are averaged over a
equilibrium distribution, but the quantum states of the
electron are taken as specified by the electron source
(| k;)) and detector (| k;)). This mixed representation
leads naturally to the use of (multiple) finite-tempera-

ture Green’s functions for the lattice motion in our final -

expression for the cross sections. The expressions
obtained thereby are not confined to those predicted by
treating the electron-lattice interaction in linear-
response theory. Rather, they constitute a diagram-
matic description of electron-lattice scattering to
arbitrary order in either the electron-rigid-lattice or
electron-phonon vertex functions. Simple Born-approxi-
mation expressions for electron-lattice scattering® are
valid only to second order in the electron-rigid-lattice
vertex (corresponding, e.g., to primary Bragg peaks in
the elastic LEED cross sections). The distorted-wave
Born-approximation extension of linear-response theory
is valid only to second order in the electron-phonon

interaction although it formally includes sums of the
elastic scattering diagrams from a rigid lattice to
infinite order.

In order to illustrate the details of our perturbation
theory, let us examine the term third order in the
interaction Hamiltonian. It is the simplest one that
illustrates the procedure used in obtaining a diagram-
matic expression for the cross section. Using the
second-quantitized form for the interaction Hamiltonian
given in Eq. (8), we obtain the following expression for
the third-order term:

; 0 © t1
(PI—»F>T(3)=_,;§—3 Z/ dtl'/ dh/ dly

l,m,n
X Z exp[iql’ ‘Rf— ’qu *R,9— 1(12 . Rno:]
ki/,q1/;k1,q15k2,q2

X'l’q1’*l7’q1qu2n<ki | ka’f(tll)ckx%m'(tl/)l k)
X <kf l 6k1+q1T(t1)Ckl(tl)Ck2+§2T(t2)Ck2(t2)] ki>
X (expliqi’» wi(4) ] exp[—iqs- un(t) ]

X exp[—iqz+ u,(f) [r+Hec. (19)

In Eq. (19) the superscript (3) on (Pr.r)r® indicates
the third-order contribution and the H.c. stands for
the Hermitian conjugate of the term explicitly shown.
Note that the variables describing the election and the
lattice have been separated. This separation implies
that we have ignored any effect on the incident electron
of the conduction electrons. The ion positions have been
written as the equilibrium position plus the instantane-
ous displacement from equilibrium

Ru(t) =Ru+tn(h). (20)

As noted eariler, the thermal average involves only the
lattice displacement operators u,(¢). For convenience in
discussing elastic scattering, the time dependence of the
electron operators in the interaction representation has
been denoted by cr(#) and we write the interaction
representation of the lattice displacement operators as
ul(t) .

The central feature of our diagrammatic perturbation
theory consists of an expansion of thermal averages of
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products of exp[7q-u(#)] factors. We proceed in three
steps. First, we prove and utilize an appropriate Wick’s
expansion of these averages. The terms in this expansion
are then expressed as functions of the lattice displace-
ment propagators and resummed into an exponential
form. Finally, the exponential forms are expanded again,
with each term in this final expansion being associated
with an appropriate diagram.

Using a harmonic approximation to describe the
dynamics of the lattice displacement operators, the
first two steps are accomplished as described in Ap-
pendix A. The result for the third-order term in Eq. (19)
is given by

(expliqy’+ wi(#') Jexp[—iqu- wn(t) Jexp[ —ige- ua(t) )r
=exp[—W:*(q/') Jexp[— Wan(qu) ]
Xexp[ —W.(qz) Jexp[igi D6 (ity'; mty) ¢ ]
Xexpligi®' D (It ; nty) gf ]

Xexp[ —iqi*D*® (mty; nty) gf ], (21)
where
DeB(ity s mty) = — i (u (0 ) uaf (8) )r - (22)
and
Wi(dw) = 5ig:2D*8 (Ity; ity) o
=2 (wr® () wf (1) )rgf
= 5q1* (i (0) uf (0) )rgsf. (23)

The last step in Eq. (22) follows because of the in-
variance of the correlation function under a translation
in time.?® If the Debye approximation to the phonon
spectrum is taken, Wi(q:) becomes the familiar
Deybe-Waller factor. However, the effects of surface
phonons are included in general form of Eq. (23). The
D’s defined through Eq. (22) are closely related to
phonon propagators®? and we will refer to them as
such. They have the same form as the usual time-
ordered phonon propagator when the first time is
greater than the second time.
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Substituting Eq. (21) into Eq. (19), we find
; © © t1
(Prop)p®=— 2 > aty / dh f dly
hS lym,n v —o0 —o0 —0o0

X 2

k/,a1/; kna; ka,az
X {exp[—Wi(q)') Jeqr'}*{exp[— W (q1) Joq,™}
X {exp[ —Wa(qe) Jog,"} (ki | i T (0) iy (0) | K1)
X By | crrrar’ (1) i (1) Crcapas ' (B2) orcs (1) | K
Xexp[igi®' D8 (It ; my) g Jexp[igi® D8 (Ity' ; ntz) g
Xexp[ —iqi*D* (mty; nty) ¢f J+H.c. (24)

We see that the interaction potentials v, are re-
normalized by the “Debye-Waller” factors, i.e.,

vg"—exp[ — W, (q) Jog™ (25)

This is one of two renormalizations which occur for the
“individual-site” amplitudes v,". The second one con-
sists of summing over multiple scattering at a given site.
It is discussed in association with Eq. (59). Both
renormalizations exert considerable influence on the
cross sections. They are discussed in more detail in
Sec. V.

We next turn to the expression of Eq. (24) in
diagrammatic form. As noted earlier, this expression is
constructed by expanding the exp[ig®D8 (¢, t)¢f]
factors and performing the time integrations in each
term of the expansion. The propagators are written in
terms of their Fourier transforms according to

exp[iq{ . RZO.__ 1,q1 . Rmo— iqZ' Rnoj

d
DB (U, mby) = /i exp[—iw(t'— ) 1D (1, m, w).

(26)

We also display explicitly the time dependence of the
electron operators in the interaction representation and
define the amplitude function

Ak, q1'; Ky, Qu; Ko, Qo 7, m, 5 0, by, 1) =exp[iqy’ - R —iq; - R,0—igsR,0]
X{ exp[— Wi(q) ]vQI'l} *{exp[—Wn (q1) ]vmm} {exp[— W.(qe) vq,"} (ks I exp[iﬂcoetl'/ﬁ]cklr Tck1'+q1'
Xexp[ —isCoty' /]| Ky ) (I | exp[i3Coh/Fi Jowrar 'oxy expl—i3Cotty/ A ] exp[ideect/ fiJoxaras ox, exp[—i3Cota/A ]| K.).

We now perform some of the time integrals involved in Eq. (24).

(27)

Let us first consider the leading term which contains no explicit phonon propagators. It is given by

Po=— i [T [T (M ¥
0= 73 1 1 2
lm,n Y —o0 — —w  ki/,aq1/; ki,q1; ka,q2
=2 2

Lm,n ki/,q1/; k1,q1; k2,q2

Ak, qi'; Ky, qu, ks, Qo5 0, m,n; 4/, 4y, t,) +H.c.
exp['iql’ . Rlo— 1Q1 . Rm()__ iq2- Rn(]]

X {EXP(—Wz((h') ]vm'l}*{exp[_ Wan(a) ]vqlm} {CXPE— Wa(qs) ]'qun}[z"ra(Ei_Ef) ]2<kt I Cky’ TCkl'-{-Ql' I k;)
X (k| Cirtar Gy (Ei=3Co"+in) Cicgyqs ks | k;)+H.c.
=[2m6(E:i—E) P 3 3 {exp[—i(k;—k;) R exp[— W (k,— k;) Jo,i}*

lm,n ki

X {exp[ —i(ky— k1) “Rp"] exp[ — W (kj— k) Jor, 1™} G (K, Ey)
X {eXp[—"l(k]_— k‘L) 'Rno:l eXp[— Wn(kl—' k»;) :]'Ukl_.ki"} +H.C. (28)
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The definition of the electron propagator given in Eq. (5) has been used in the final expression in Eq. (28). The
E; and E; are, respectively, the initial and final energies of the incident electron. An important aspect of our
analysis is the explicit retention of the sums over /, m, » in Eq. (28). The conventional procedure in either field
theory® or many-body?? theory is to use these sums to generate momentum conservation § functions. In the case
of specular reflection of the incident electron, these sums lead to § functions on the component of momentum
parallel to the surface but not on the component normal to the surface. The performance of these sums for the case
of elastic scattering is discussed in Sec. VI, and for the case of inelastic scattering in the third paper of this series.

Let us next consider the terms involving only a single phonon propagator. There are three such terms which are

given below in Egs. (29)-(31).
t1
P@F—m—z da/ %/ dly

tm,n vV—wx

X 2

ki/,q1/; k1,q1; k2,q2

=2 X

t,m,n ki

[27['5(E Ef— ﬁw]z{exp[—z(kf—

Ak, q'; ki, qu; Ko, Qo; 0, m, m5 8, 4, 1) gy D8 (Ity'; mity) P+ H.c.

)« R exp[ — Wi (ky— ki) Jo i} *

X {exp[—i(k;—ki)- R,*] exp[— W, (k,— ki) ]'ka—klm} G(ky, E;)

X {exp[—i(ki—

t
P(3>——— > dh/ diy dtg

lmn —o0

k) ‘R, exp[ — Wa(ki—k;) Joy1,"} i (ky— ki) *D** (1, m; w) (ky—k1)#+H.c.,

(29)

X A (kl , q1 ; kl, qs; kz, (h,l m, n; tl s tl, lg)lqllaD“ﬂ(ltl ,%tg)qu+H C.

ki/,q1/; k1 ai; ke,qe

=2 X

tm,n ki

X {exp[—i(k—ky)-
exp[——i(kl—

t1
P, <3>__ — Z dtl / dly dtz

lmn —

X 2

k1/,q1/; k1,q1; k2,92

=2 X

l,m,n ki

X {exp[—i(k;— ki) -
X {exp[—i(ki—k;) ‘R.”] exp[— W, (ki—k

Each of the contributions to (Pr.r)r given in Egs.
(28)—(31) contains the square of an energy 6 function.
This is a general feature of each contributions to
(Pr.r)r which arises from the final time integral in the
terms of the expansion of ST(c0, — ) and S(w, — ).
It allows us to relate? a given contribution to (Pr.r)r
to the corresponding contribution to the transition rate
(Pror)r. The 6 function squared in Eq. (28) can be
written as

[278(E—E;)
276 (E;— Ey)

== /w dt exp[—it(E:—Ey) /1]

27[‘5(E2—Ef> /‘“" it

¢

(32)

% [211'5(Ei’-Ef—ﬁw) ]2{8Xp[-i(kf— kl) 'Rzo:l exp[— Wz(kf——' kl) ]Y)k,_kil}*

R,"] exp[— W (ky— k) Jox, 1"} G (ky, Ei—Ficw)
k;)-R,"J exp[—W,(ki—k

i) Jokia Vi (ky— ki) 2D (1, m; w) (ky—ks)P+H.c., (30)

A (kl ) ql 5 kl) qs; k2y qz; l; m, n; tlly tl) t2> (_":)QIaDaﬁ(’M, tl; n, lz) Q2ﬂ+H.C.

—[2T5(E E;) P{exp[—i(k;—k;) -R2] exp[ — Wi (ky— k) Jo '} *

R, exp[ — W (k;— k1) Joi,—1,"} G (K1, E;—Fiw)
) Toiiae™} (—4) (ky—ki) 2D (m, n; w) (ki—k;)P+H.c.

(31)

The energy conservation § functions occur because we
took the limit #— o0, f,—— o in Eq. (17). However, the
integral in Eq. (31) is really

t
dt=Ar,

to

(33)

where A is the duration of the interaction between the
incident electron 'and the solid. Therefore to obtain the
transition rate (Pr.r)r, defined by

(Prop)r= (Pr.r)r/Ar, (34)
we simply make the replacement

This procedure allows us to directly relate a given con-
tribution to (Pr.r)r to the corresponding contribution



2 EFFECT OF LATTICE VIBRATIONS IN A..-I.

to (Pr,r)r and hence to the differential scattering cross
section given in Eq. (15). .

The four contributions to (Pr.r)r obtained from
Egs. (28)-(31) are associated with separate (i.e.,
distinguishable) diagrams in the diagrammatic repre-
sentation of the perturbation-theory expansion for the
cross section. To obtain all possible terms nth order in
the interaction that contribute to the thermally
averaged differential scattering cross section, we use the
following prescription:

(a) Draw two vertical lines, the one on the left being
directed upward and the one on the right being directed
downward. On these lines distribute # dots with the only
restriction being that at least one dot must be on each
line. Label each dot with a lattice-site index. The time
variable runs upward on both lines.

(b) Completely interior line segments in this
drawing (those connecting two dots) represent electron
propagators. The four exterior line segments label the
initial and final scattering states of the incident elec-
tron. Label the incoming line segments with momentum
k; and energy E;, and the outgoing line segments with
momentum k; and energy Ej.

(c) Label each of the interior line segments by a
momentum variable (k) and an energy variable (E).

(d) Connect the dots in all possible ways with wavy
lines representing phonon propagators. Label each
wavy line with a frequency variable ().

(e) Construct all topologically distinct diagrams
using the preceding instructions.

(f) With each dot on the left-hand line (the upward-
directed line) associate a renormalized interaction
vertex and phase factor given by

f(; ks, k) = exp[ —i(ky—ky) -R/"]
Xexp[—Wi(ke— ki) Joxsir, (36)

where / is the ion-site label, k; is the momentum in-
coming to the dot, k, is the momentum outgoing from
the dot, W, is defined in Eq. (23), and 9* is defined in
Eq. (7). For example, the vertex given in Eq. (36) has
the diagrammatic representation shown in Fig. 1(a).
With a corresponding dot on the right-hand line (the
downward-directed line) associate f*(; ke, k;). The
quantity (ks—k;) denotes the momentum transfer at
the vertex.

(g) With a wavy line connecting two dots associate a
tensor product between the phonon propagator and the
momentum transfer at the two dots at the end of the
propagator. If both dots lie on either the left-hand line
or the right-hand line such as shown in Fig. 1(b), the
tensor product is to be multiplied by (—1) to obtain the
factor

('—'7’) (ks-kz)"‘D"‘B(‘m, n, w) (kg—kl)ﬂ.

D*#(m, n; w) is defined in Eqgs. (22) and (26) and an
explicit form is given in Appendix A, Egs. (A25)-

(a) (b)

Fic. 1. Diagrams illustrating the rules in the diagrammatic
prescription for the differential scattering cross section. (a) re-
presents the vertex given in Eq. (36), (b) illustrates a phonon
propagator that does not link the two sides of the diagram, and
(c) illustrates a phonon propagator that links the two sides of
the diagram. ‘“Bare” vertices v" are designated by open dots.

(A27). If one of the dots connected by the wavy phonon
line lies on the left-hand electron line and the other lies
on the right-hand electron line, the tensor product is to
be multiplied by (4-7). For example, the wavy line in
Fig. 1(c) is associated with the factor

i(ks—]ﬂ)apaﬁ(l, UX w) (kg— kl)ﬂ.

With each set of j wavy lines connecting the same dots
associate a factor of 1/7!. This factor arises from the
factorials occurring in the expansion of the exponentials
of the phonon propagators which occur in Eq. (24).

(h) With each interior line segment in the left-hand
line we associate a retarded electron propagator,
Eq. (5), and with each interior line segment in the
right-hand line we associate an advanced electron
propagator, Eq. (39). The energy and momentum of the
propagator are specified by the labels on the line
segment.

(i) With each dot we associate an energy-conserving
o function,

208 (Ey— Ey— Y eqfiwa),

where Ej is the energy variable of the incoming electron
propagator, Ej is the energy variable of the outgoing
electron propagator, and w, is the frequency variable
for a phonon line attached to the dot. e,=-1 for an
outgoing phonon line and e,=—1 for an incoming
phonon line. (The terms “incoming” and “outgoing”
are defined in the same sense as the direction arrow on
the electron propagators. Phonon lines joining the two
sides of the diagram are by definition “outgoing” at
each vertex.) The sum is over all such phonon lines.

(j) Multiply the factors associated with each diagram
by

[m?/ (2x5)%]| s |/| ks (2078 (Ei— Ej— 3 Fiwy) T,

where the wy are the frequency variables of the phonon
propagators connecting the left-hand line to the right-
hand line. Sum over all energy and momentum labels for
the electron propagators and all frequency variables
labeling the phonon propagators. .

(k) Finally, sum over all site indices labeling the
dots.

To illustrate this prescription let us consider the
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Ky
(a) (b)

F16. 2. Representative diagrams in the interaction potential
expansion for the differential scattering cross section. (a) re-
presents Eq. (36) and (b) represents Eq. (37). (b) is the Hermi-
tian conjugate diagram to (a).

diagram in Fig. 2(a). Its contribution to the differential
scattering cross section is given by

< d’e ><3> /'dE1 /‘
de dﬂ 15 l m,n k1 271'

< m | k|
(2n1)* | k& |
X[f(’ﬂ, kl, 1) 27!'5(E1—E1—‘ﬁw)]
XG(ky, E1)[ f(m; Ky, ki) 216 (E;— En) ]
XL f*(; ky, ki) 276 (Ei— Ey—fiw) J(+14)
X (kf—k)aDaﬂ(l n; w) (k1—- km)ﬂ
m* | Ky | /’
— §(E;— E;—i
(2 ﬁ2)2|k,lmnk1 ( ~ w)
Xf(n; &y, ki) G (K, Ei—Fiw)f(m; Ky, k) f*(1; &y, ki)
Xi(ky—ki)*D¥(1, n; ) (ki—ki)P. (37)
Equation (37) is simply the contribution to the
differential scattering cross section that comes from the
term explicitly written on the right-hand side of Eq.
(30). The Hermitian conjugate term has the diagram-

matic representation shown in Fig. 2(b), which may be
explicitly written as

[2n7i8 (E;— Ej—Tiw) ]‘1)

(dza' )(3)* /' dE;
de dQ/ 1 lmnk1
m? | k| )
2ri6 (E;— Ej—fiw) |
x((zﬁ)3|k|[ (B Ey—fiw)]

XL f*(n; ke, k) 276 (Ei— Ey—fiw) ]
XG*(ky, E1)[ f*(m; ky, k1) 206 ( E;— Ey) ]
XL f; ky, ki) 206 (Ei— E;—fw) ]

X (+1) (ky—Fk:) 2D (n, 1; w) (hi—k;)?

m? |kf| /
Gt [ | 12 22 | 2 2B ErTe)

Xf*(n; Ky, ki) G*(ky, Ei—fiw) f*(m, ky, ki)
Xf(l; Ky, Ki)i(ky—ks) 2D (n, 1; w) (ky—Fki)P.

(38)

The retarded electron propagator appearing in Eq. (37)
is defined by Eq. (5), whereas the advanced electron

G. E. LARAMORE 2

propagator in Eq. (38) simply is
G*(k, E)=[E—e—2*(k, E) T (39)

Note that iD*¥(], n; w) is real so that Eq. (38) is
truly the Hermitian conjugate of Eq. (37). Our use of
the “conventional” definition®? of the phonon prop-
agator, Eq. (22), requires us to carry the extra factor of
“4” along. As described below Eq. (28), our diagram-
matic prescription does not provide the interaction
vertices. Analytically, we have built this result into the
theory by going over to a diagrammatic formulation
prior to performing the lattice sums. This was necessary
because of the symmetry-breaking property of the
surface. In a “bulk” system we could Fourier transform
the phonon propagator in space, perform the lattice
sums, and obtain momentum conservation to within a
reciprocal-lattice vector. But because of the surface, we
can Fourier transform only in the plane parallel to the
surface. Consequently, the model predicts conservation
only of the component of momentum parallel to the
surface to within a reciprocal-lattice vector describing
the two-dimension periodicity parallel to the surface.
This point will be discussed further in Sec. V. We close
this section by giving in Fig. 3 the diagrammatic
equation for the thermally averaged differential
scattering cross section. The square-box vertices cor-
respond to expressions like Eq. (24) in which the
phonon propagators appear in exponents. We have not
found it practical to work directly with these exponential
expressions and consequently use expansions like those
designated in the last two lines of Fig. 3.

IV. DIFFERENTIAL SCATTERING CROSS
SECTION: BORN APPROXIMATION

Because of the considerable discussion devoted to it in
the literature,'~' we consider next the Born approxima-
tion to the differential scattering cross section. In the
diagrammatic language of Fig. 3, the cross section is
represented by the sum of all two point diagrams.

f it - it £1f [t
WHERE KE, o KE KE TRE CKLE,
KoEe  JKE, - ~ -
NER VA R pE KE
- r} f +m L+
KE  “KLE kB kpEg kioEj kpEy
i frof
< e K, .E X E.
kEe o kik U KoE, Ko
n it ot m
m - . n
- . (. K.E KLE N
KGE,  KLE, KE T NCE

F1c. 3. Diagrammatic equation for the differential scattering
cross section in terms of the power to which the renormalized
interaction potential is raised.



2 EFFECT OF LATTICE VIBRATIONS IN A-««-I. == 4773
Taking
Ei—E;=W (40)
as the energy lost by the incident electron during the scattering process, we find
&’ m? [Ei— W]W
dedQ |k (20722 E;
X X exp[—i(k;— ki) + (Ra?—Ry) ] exp[ — W (ky— k) Jore, ™ exp[ — Wi (ky— k) Joi 1, *?
I,m

(6(W )+i f B (W — ) (= ) DP2(1, ;) (= )P “) ‘;"’1‘21:’:

X8 (W — i —Fiwn) (ky—ka) D8 (1, m; wr) (ky—ki)B (ky— ki) YDV (1, m; w) (ky— k)P4 - ) . (41)

The first term in Eq. (41) gives the elastic scattering cross section. For the case when all sites are equivalent
W (ky— k) =Wi(k;— k) =W (k;— k) (42)

and the elastic scattering cross section exhibits a temperature dependence proportional to exp[ —2W (k;—k;)].
Often experiments are analyzed''~% so as to determine an effective value for W (k;—k;) and hence a measure of the
mean-square ion displacement. Such analyses generally are based upon a Debye model of the phonon spectra in the
solid and hence determine an effective Debye temperature.?® The second term in Eq. (41) gives the contribution
due to single-phonon processes. Higher-order terms are not explicitly shown.

Using the integral representation for the energy 6 functions in Eq. (41), we obtain

2 | @ m2 E,— W]m
de dQ | wior,  (2mH2)? [ E;
X Z exp[— 1(k/—- kz) * (Rmo_ Rlo) :I exp[— Wm(kf— kl) ]vk,_kim exp[— Wl(kf"" kl) :l'ka—k;*l
Lm
d
I:/ — eXp[ltW/ﬁ:H-z/ e exp[it(W ﬁwl)/ﬁj(kf_ aDaﬂ(l m; wl) (k/— z) + (1) dw1 dwz
211' 21r 27rh

X exp[it (W —twr—Tiws) /5] (ky— ki) “D* (1, m; wy) (ky— k)P (ky—ks) YDV (1, m; wa) (ky— ki) = =+ ] . (43)
Using the definition of the Fourier transform given in Eq. (26), i.e.,

Db, myt) = /Z—:exp(——Wt)D“f’(l,m;w), (44)

we obtain
@o/de dQ i, P =[m2/ (22 ] (E;— W) /E; ]2 IE exp[—i(k;—k,) - (R."—R®) ]

X exp[— W (ky—K;) Jox,—x,” exp[ — Wi(ky— K;) Jox, i, * [ (dt/2nh) exp[iWi/#]
X {1+ (ky—ki) 2D (1, m; t) (ky—ks)P+-[ (3) /2 VL (ky— ki) 2D6 (1, m; t) (ky— k)B4 + + - }
=[m?/ (2x#®) ][ (E;~W)/EJ? ZZ exp[—i(k;—k;) - (R,"—Ry) ]

X exp[— W (ky—K:) Joi,—i™ expl — Wi(ley—Ki) Jowe,x,*! exp[—i(k;—k:) D8 (1, m; 1) (ky—k;)P].  (45)
Equation (45) gives the cross section accurate to second order in the v’s but to all orders in the phonon effects.
With the limited instrument resolution of present detectors it rarely is possible to directly measure either the elastic

or the inelastic differential cross sections for losses due to phonons. The quantity measured experimentally is the
quasi-elastic scattering cross section defined by

do | @ A/E?2 a2
g / aw ——=
aQ | 4 —AE/2 de dQ

(2

ik (46)

where AE is the experimental energy resolution. Taking AE>>iw, where fiw is a typical phonon energy, we always
get a contribution from the energy 6 functions in Eq. (41) and so we perform the integral over W trivially. We also
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assume ES>AE and hence obtain

DUKE AND G. E. LARAMORE 2

d (2) 2
=N = s 2 el =iy ) R R ] expl — Wil ) T s expl = (I ) T i
. dw1 dw1 dwz
el —_— .a B —
><(1+z/27r (ky— k) =D (1, m; ) (ks k>+ s
X (kg— ki) <D (1, 15 2) (hy— i) (g ) "D (1, 5 ) (ky— )+ )
(2 ﬁz)zzexp[ 1(kr—K;) « (R®—RY) ] exp[— W (ky— k) Tore, 1™

XexpL =il Ik) T exp (= (= [ 52 D080 ms ) k=209 . (a7

By definition
deo
f2—paﬁ<z,m;w)=p(z,m;t=o>. (48)
T

Therefore we rewrite Eq. (47) as

do |®
|- e D el k) (Re—RD)]
Xexp[ — W (kr—K;) Jog,—x™
Xexp[— W (kj—k;) Joi,—x*!
Xexpl[i(ky—k:) 2D (1, m; t=0) (ky—k;)?].  (49)

Equation (49) is our final expression for the quasi-
elastic scattering cross section (in the Born approxima-
tion). It constitutes a simple, compact form which
describes the temperature dependence of the elastic
scattering,’315 the thermal diffuse scattering,'? and
“multiphonon” scattering.”* We now turn to a brief
outline of its application to the derivation of sum rules
for the quasi-elastic scattering cross section which have
been proposed by Webb and collaborators>! as
approximate relations.
In the Debye model of the solid (see Appendix A)

DE(l, m; ) < 6%, (50)
Consequently, both W;(k;—k;) and
Fim(ki—K;)=1(ks—k;)2D¥(l, n; t=0) (k;—k;)?  (51)

depend only on | k;—k; |. If, in addition, the potentials
only depend on the magnitude of the momentum
transferred, we can integrate Eq. (49) to determine the
total scattering cross section

7= Ty ﬁg s Z expL=TWon(] ly—dki ) s ™
XeXPE*Wz(I k!'—kz ! :lvlk{—k;'l*l eXp[Flm(l kf— k; I)]
(4” sin(| &~k || R'— R D) . (52)
&~k [ RO~ R/ |
For any reasonable lattice parameter ¢ and momentum

transfer | k;—k; |
4 Sil’l(l kf'—k,, ” RMO_RLO D
| ky—ki || R>—R/ |

is a very sharply peaked function of | R,’—R |. In the
limit that | k;—k; | &>1, Gi,» may be taken as

Gl.m([ kf—'k,, |) m6l,m,

Gz,m(! kf—k@ |)E (53)

(54)
and hence

0 qe® o 3 exp[—2Wa(| k;—k;|)]
I exp[ Fom (| By—K; [) J= 20 013 ™ 2

(55)

The last step follows from Egs. (23) and (51).
Therefore in the limit that (54) is valid, the total cross
section for a fixed magnitude ¢g= | k;—k; | of momen-
tum transfer is independent of the temperature; i.e., all
of the strength which is lost from the elastic peak simply
is transferred to the phonon sidebands. Perhaps a more
familiar form of Eq. (55) is one in which the second
exponential is expanded:

g lqe(Z) & Z exp[_ZWM(I k—k; l):” Ve~ | !2
X 3 C2Wa(] s ) T/
j

In Eq. (56) the term in [2W,(] k;—k:|) /4! is
associated with the 7 phonon process. The sum rule in
the form of Eq. (56) was proposed in Refs. 12 and
14 from other considerations and was used there to
discuss the thermal diffuse and multiphonon scattering
of electrons. The discussion presented in this section
relates explicitly the analysis presented in these
references to our general theory.

V. DIFFERENTIAL SCATTERING CROSS
SECTION: QUASISTATIC APPROXIMATION

In Sec. IIT we developed a formal diagrammatic
theory for the differential scattering cross section which
was expressed in terms of the interaction potential

X | Ok jrs ™

(56)
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between the incident electron and the ion cores in a
single-crystal solid. In order to relate our analysis to
that of previous multiple-scattering theories, it is
necessary to renormalize the individual electron-ion-
core scattering vertices, that is, to rewrite the diagrams
in terms of the effective scattering amplitudes for the
ion cores. In the earlier rigid-lattice models™7 the
prescription for this renormalization was obvious. One
solves the Schriédinger equation for the scattering from
a single ion core and then writes the multiple-scattering
formulas in terms of the resulting “energy-shell”
scattering amplitudes. However, it is well known?:%
that this prescription fails in the case of a dynamic
rather than static scatterer because off-energy-shell
amplitudes are required to completely specify the
scattering. In our discussion of electron-phonon interac-
tions we resolve this difficulty by noting that our use of
the rigid-ion model in Eq. (7) implies the validity of the
adiabatic hypothesis for electronic motion relative to
that of the vibrating ion cores. Thus, in constructing
our model we already have assumed that electronic
relaxation times 7, are much more rapid than the lattice
vibration frequencies w™. Consequently, we argue that
in our model the appropriate vertex renormalization

Prap=(F|S(e, —®)—1]1)
i

4775

for electronic scattering from a given site is given by
first calculating the energy-shell scattering amplitude
for a static ion core at that site and subsequently
assigning relative phases for electronic scattering from
various sites according to the instantaneous locations of
the ion cores. A physically sensible plausibility argu-
ment for this prescription may be constructed by noting
that the velocity of the incident electron is much greater
than the thermal velocities of the ion cores. Therefore
during a multiple-scattering process involving the
electron and a single ion core, the electron “sees” only a
stationary ion core, hence the origin of the appellation
“quasistatic” approximation. This result would not be
true when considering the scattering of a slowly moving
particle such as a neutral atom. Presumably one would
have to work directly with the general perturbation
theory in such a case.

In performing this multiple-scattering renormaliza-
tion it is necessary to write the expression for the total
transition amplitude given by Eq. (12) taking into
account the multiple scattering from a single site before
performing the thermal average in the expression for the
scattering cross section. Ignoring the (irrelevant) phase
factor in Eq. (12), we can write

=(F| z [<_ —f.;)./w dh 3. exp{_’iql'[Rmo+um(t1)]}vq1m5k1+q11(tl)ck1(t1)

-~ k1,q1

1 \2 o t1
+('— %)[_ dh 2 a3 exp{'"'iql'[Rm0+um(tl)]_iQ2'[Rm°+um(t2)j}7’q1m7’q2m

k1,q1; k2,q2

X tesrar” () it () ipras () ia (1) ] 1)

+HEl 2

m,n; mEn —

<_ %)2/ : ah f_h dty 3, exp{—iq:[Ra’+un(t) ]-iqe:[R,O4u, (1) ]}

o ki,q1; k3,q2
vam'”qznckﬁqlf(tl) s (1) Ck&qz]\(&) Ciez (1) ' FHE TETIN (57)

In Eq. (57) we have rearranged the perturbation series to group together terms corresponding to successive
“scattering” from a single site. In making the “quasistatic” approximation we ignore any motion of the ion during
the multiple scattering from a given site. This is equivalent to equating all of the times associated with the ion
displacement operators in the single-site multiple-scattering series. We find

Trsr |qs=(F | % [(— %) / ) dh 37 exp{—iqs+[Rn+ tn () 1} va,™0ksrar (1) iy (B1) + (_ %)2 /;: dt /_ Z dty

—00 ki,a1

qu 'Zkz exp{—i(ih-l-(h) ERm0+um(t1)j}vqn""l)qg'”Ckﬁmf(h)Ckl(h)ckﬂqz*(tz)ckz(tz)+ .o .] l I)
+F| X (— i>2/°° dt /tzdt > exp{—iqi-[RpO4+u,(4) ]—i RO+t (t) ]
mn; mzEn i/ ' —c0 2ln,ql; k3,q2 P ! ™ 1 9 u,(22) 1}

qulquznckﬂqx*(tl) Cxs(B) Ckz-}—‘qz*(tz) Ciy(f2) ' I>+ cee . (38)
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Substituting Eq. (58) into Eq. (16), we find that the
analysis is carried out exactly as before except that
instead of being identified with the potential vy, ;" the
interaction vertices now are identified with the energy-
shell scattering amplitude for the site. This amplitude
is defined to be ¢*(ky, ki, E;), which satisfies the equation

tm(ky, ki; Er) = vy iy™ 4 2 0y G (K, E) i)+ ++
k
=y 1™+ 2 VoG (K, Ey) (K, ky; Ey).
k
(59)

Concomitantly we require that two successive interac-
tion vertices on a given side of a perturbation-theory
diagram cannot correspond to the same site since this
process is included in the over-all multiple-scattering
site renormalization.

In summary, the site-renormalized diagrams are
constructed in the way given by the prescription in
Sec. IV with the following modifications:

(1) Rule (f) is modified to read as follows: With each
dot on the left-hand line (the upward-directed line)

| k|

do \® dE; [ do ( m
(dedsz)lb_l,m,gmkzlf 2r J 20 \(20h)% | ks |
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associate a site-renormalized interaction vertex and
phase factor given by

B(l, k2, kl; E1) = exp[—i(k2~— k1> 'Rlo:l
X exp[— Wl(kz— kl) ]tl(kz, kl; El) ’ (60)

where / is the ion site label, k; is the momentum in-
coming to the dot, and k, is the momentum outgoing
from the dot. For example, the vertex given in Eq. (60)
has the diagrammatic representation shown in Fig.
4(a). With a corresponding dot on the right-hand line
(the downward-directed line) associate B*(I; ky, ky; Ey).
The quantity (k,—k;) denotes the momentum transfer
at the vertex.

(ii) Rule (k) is modified to read as follows: Finally,
sum over all site indices, labeling the dots but noting in
the summing procedure that two successive dots on the
same side of the diagram cannot correspond to the
same lattice site.

For illustrative purposes let us consider the diagram
in Fig. 4(b). Its contribution to the scattering cross
section is

—— (278 (E;— E;—fiw) ]“1>

X[B(n, k1, ki; El) Zré(Ei—El—ﬁw) ]G(kl, El) [B(m, kf, k1; El) 21r5<Ef— El):]
XLB*(I; ky, ki; Eq) 2m6 (Ei— Eg—fiw) J(+1) (ky— ki) *D* (I, n; ) (la—k:)*

=[m?/ (2et?)?](| ks /] ki) 32
l,m,n; m##n

g J(des/2m) 8 (Ei— Ey—Ticw)

XB(%, k1, ki; Ei)G(k1, El—ﬁw)B(m, kf, k1; E,—hw)B*(l, kf, kq;; El) (+1) (kf—ki)aD“ﬂ(l, n; w) (k1— kl)ﬁ

This is simply the site-renormalized version of the
diagram in Fig. 2(a).

We next use this site-renormalized perturbation
theory to calculate the elastic scattering cross section.

VI. ELASTIC SCATTERING CROSS SECTION

From step (j) of the diagrammatic prescription
specified in Sec. IIT we see that the inelastic scattering
cross section associated with an energy loss W is given
by the sum of all diagrams with left- and right-hand
electron lines linked with an arbitrary number # of
phonon propagator lines such that

W="3 fic,.
=1

The elastic scattering cross section is given by the sum
of all diagrams such that the left- and right-hand elec-
tron lines are unlinked by phonon propagator lines.
However, an arbitrary number of phonon propagators
linking points on each electron line with other points on
the same line can occur in the elastic scattering diagrams.

(61)

Therefore, in our theory, even the elastic scattering
diagrams contain terms of arbitrary order in the
electron-phonon coupling constant. An obvious way to
systematize this aspect of the theory is to extend our use
of the concept of skeletal diagrams to include the
influence of electron-phonon interactions as well as
electron-electron interactions on the renormalization of

(a)

F1c. 4. Site-renormalized diagrams using the quasistatic
approximation. (a) illustrates the site-renormalized §cattering
vertex given in Eq. (51) and (b) is the diagrammatic version
of the contribution to the differential scattering cross section given
in Eq. (52). Site-renormalized vertices are designated by solid
dots.



2 EFFECT OF LATTICE VIBRATIONS IN A...I.

electronic propagators and “internal” inelastic vertices
within a given electron line. Upon investigation, how-
ever, the effects associated with. these additional
renormalizations seem to be small. Therefore we present
in Appendix B an order-of-magnitude estimate of the
lowest-order diagram containing internal phonon
propagators, argue that these effects are sufficiently
small to be negligible under most conditions, and turn
to developing summation methods for evaluating the
combined effect of all multiple-scattering diagrams
which contain no internal phonon lines. As the further
renormalizations do not lead to results which are useful
in the present context, we do not present them here.
We anticipate that the summation of elastic multiple-
scattering diagrams can be reduced to the solution of a
set of coupled algebraic equations for appropriately
defined elastic scattering amplitudes. Beeby already has
performed such an analysis for muffin-tin potentials
with spherically symmetric ion cores.” Our analysis
constitutes a generalization of his to arbitrary electron—
ion-cores potentials (which, in general, overlap and are
nonspherical). In the second paper of this series we
show that for such potentials a set of algebraic equa-
tions, analogous to Beeby’s but in the momentum
representation, are the final result of the theory. In this
section our final result will be a set of coupled integral
equations for various elastic scattering amplitudes.
The approximate diagrammatic equation for the
elastic electron-solid differential cross section is in-
dicated in Fig. 5. Denoting the scattering amplitude
associated with the shaded “renormalized” vertex by
R(ky, k;, Fy), we write
&o |© m?

de dQ) = (27rﬁ2)2 5(Ef'°E1)l R(kf, ki; El) |2' (62)

ki~>ky
If we denote the single-scattering vertex by B(n, k’,
k, E;), then R(ky, k;, E;) can be written as

R(kys, ki; Ei) = 3 B(n; ky, ky; E)

X X X B(n; ky ki; E;)G(ky, E;) B(m; ky, ky; E)

n,m; n#Em ki

X > 2 B(n; ky, ki; E))G(ky, E))

n,m,l; n#<m; m#l ki,ke

) XB(m, kz, kl, Ei)G(kz, E,)B(l, kf, kz,E,)"f-' ve, (63)

For notational convenience let us write the interaction
vertex as

B(%; kg, k1; E,) = exp[-—i(kz- kl) ’Rnojbn(kb kl; Et) ’

(64)
where

bu (Ko, Ky, E:) = exp[— W (ke k) Jin (Ko, Ky, Ei). (65)

We next evaluate the right-hand side of Eq. (63) under
the assumption that all scattering sites in a given
subplane parallel to the surface are equivalent. That is,
we take the potential at a given site to depend only on
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F16. 5. Approximate diagrammatic equation for the elastic
scattering cross section. Diagrams containing internal phonon
lines have been neglected on the grounds that they are small.

the distance of that site from the surface. Hence, we
label a site both by the subplane in which it lies and by
its position within the subplane; i.e., we take

n=(\,1), m=(\y, i), etc., (66)

where A denotes the subplane and / the site position
within the subplane. The equilibrium site position
becomes

Rn0= 91+>\a+d)\é, (67)

where \a is the position of the origin in the Ath subplane
(this is to allow for a shift between successive sub-
planes) ¢ g; is the position of the site relative to the
origin, and dy is the distance of the Ath subplane below
the surface which is taken to be the plane z=0.

Grouping all sites lying in a given subplane together,
we obtain

R(ky, ki; E;)
= 2}\: exp[—i(kra—kir)dh—i(ky—kyy) -2y ]

X {ZI: exp[—i (ks —ki) - 01 J0n (ky, ki3 E)

2 2 expl—i(ky—ki)) - 0,00 (K, k3 E)

1l I ky
XG(ky; E:) expl —i(ks—Kuy)) « o1y 10n (ky, ky; )4+ -+ }
+ X X exp[—i(ky— ki) - (o1+ay)

MAL AN LG
—i(k1a—k;1) drJon (ky, ki; E;)G(ky, E;)
Xexp[—i(ks—ky)) - (ortan,) —i(kri—ky 1) dy,]
Xbr (ks ky; Ey) -0, (68)

In Eq. (68) we next perform the sum over the ¢
indices. We define the subplane normalization N Il by

;‘expf"i(k:m—km) c0]=Ny X 8(ke—kyy —g),
(69)

where g is a vector in the two-dimensional reciprocal
lattice of the subplane, and note that in passing to the
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continuum limit

z:_: —[(dk)/(27)3, (70a)

N || becomes
Ny—(2m)%/ A, (70b)

where 4 is the area of a primitive unit cell of the sub-
plane.
We obtain from Eq. (68)

R(kf, k,-; Ei) =N[| Z Z eXp['—’i(kf.L—ki.L)d)‘—'ig'a)\]
L 4

XT\(ky, ki; Ei)o(ky — ki —g), (71)
where
Ti(ky, ki Br) =\ (ky, kis E)+ 20 2 n(ky, k; E)
| DS HRSTON
XGM‘I(k; kh Ei) T)\(k} k‘f; Ei)) (72)
™n(ky, ki; Ei) =b\(ky, ki; E))+ 3 b (ky, k; E;)
k
XGr(k, ki; E)n(k, k;; E), (73)
GM™(k, ki; E;) = X exp{—i(k;—kq) -[P+a(u—N)]
P
'—‘i(kl'—'kil) (d)\l_d)\)}G(ky Ez)) (74)
and
G*(k, ki; E;)= 3 exp[—i(k)—ki) -PIG(k; E)).
)
(75)

In Egs. (74) and (75), P is a vector in the Bravais net
of the individual (identical) subplanes.

Equations (62) and (71)-(75) completely define the
elastic scattering cross section—including its tempera-
ture dependence. As noted earlier, they are similar in
structure to the set of equations first written down by
Beeby? for a muffin-tin potential. In a subsequent paper?
we present a solution of these equations. However, in
our present context they constitute the final formal
results on which our detailed analysis of the effects of
lattice vibrations on LEED is based.

VII. SUMMARY

In this paper we have developed a general diagram-
matic perturbation theory for the differential scattering
cross section in which the effects of multiple scattering
and lattice vibrations are included simultaneously. The
formalism is set up to allow for the inclusion of surface
as well as bulk phonon modes. It was found that the
rigid-lattice ion-core potential is renormalized by a
factor characterizing the mean-square vibrational
amplitude of the site. The various renormalizations
characteristic of the theory were discussed and an
approximate set of integral equations relating the
elastic scattering cross section to the ion-core potentials
was derived. The relation of our general theory to
earlier Born-approximation analysis"~™" of phonon
effects in LEED was displayed in detail. The conse-
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quences of the interaction of the incident electron with
the conduction electrons in the solid were not examined
because they are not required for the specification of the
formal results given here. In the subsequent papers in
this series the electron-electron interactions will be
described using the inelastic collision model as proposed
by Duke and co-workers.3?

Finally, although we have not been concerned
specifically with the energy-band structure of the solid,
it is obvious that our temperature-dependent effective
potential

v(k, T) =exp[—W(k, T) Jox (76)

alsohas consequences for such calculations. Inparticular,
Eq. (76) predicts a temperature dependence for the
energy-band gaps in solids in addition to that usually
calculated by second-order perturbation theory in the
electron-phonon interaction.®® The consequences of
Eq. (76) on the energy-band gaps in PbTe have been
investigated by Keffer ef al.,*' who proposed it on the
basis of an unpublished analysis of Yu.®? They found
the temperature dependence of the band gaps near L in
PbTe were adequately described by Eq. (76) although
its use to describe other materials is not customary.30.3
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APPENDIX A

In this section we consider the evaluation of the
thermal average of the exponentials containing the
lattice displacement operators.

For notational simplicity we shall write the ion dis-
placement operator at time 4 and corresponding to the
site at equilibrium position Ry as

u(l)=u(Ry, 4). (A1)
We wish to consider the general function
Fa(1,2, ..., n)=(exp[iqi-u(1)]
Xexpliqe u(2) ]+ - -exp[iga-u(n) Jr, (A2)

where (-:+)r indicates an average over a thermal
ensemble using a harmonic Hamiltonian such as given
in Eq. (1). We also define the phonon propagator as

D(1, 2) = —i(u*(1)uf(2) )r. (A3)
We first consider F(1).
F1(1) = {exp[iqi+ u(1) I)r
= 3 ()X ligeu(r))e,  (AD)

where the last expression follows from expanding the
exponential. Using the harmonic Hamiltonian, the
thermal average of a product of an odd number of



2 EFFECT OF LATTICE VIBRATIONS IN A-..-.1I.

displacement operators is zero. Hence,

© (_l)n

Fi(1) =2 =7 ((geu=(1) )*).
We next make use of the fact that in the harmonic
approximation, a thermal average of 2» displacement
operators can be written as the sum of all possible
permutations of the thermal averages of pairs of the
operators.* The basic ordering of the operators in a
given two-point correlation function is the same as it
occurred in the 2#-point correlation functions; i.e.,

(1) (2)ur(3) b (4) o= (w*(1) % (2) )r (w(3)* (4) )r
+ (@ (1) w7 (3) )r (wP (2)u* (4) )r

+ (w (D)% (4) )r (WP (2)u?(3) )r.  (A6)

In Eq. (AS5) the operators are identical, so there are

(2n) !/n12" ways of factorizing the {((g®u®(1))* )

into a product of # two-point correlation functions

((g®u*(1) )*)r. [There are (2x) ! ways of permuting the

operators but this overcounts since there are #! ways

of ordering the ((g:#*(1))?)r terms and two ways of

ordering the #*(1)’s in a given ((g2u*(1))®)r term.]
Therefore Eq. (A5) becomes

= (=" [(2’“)] (e (1) )2

= 2n)! | iz

- 5 ED Ggoun(ny e
n=0 n:

=exp[—3{(g*w*(1) P)r J=exp[—W1(q) ].

(AS)

F(1)=

(A7)

At the end of this section we show that W1(q;) becomes
the familiar Debye-Waller factor when the Debye
model of the phonon spectrum is assumed.

We next consider

Fa(1, 2) — (expligiu=(1) Jexp[igfuf (2) I)r. (A8)
Expanding the exponetials in Eq. (A8), we obtain

5,(1,2) = gﬂ ,ZZ, (nD)=1(m1)2

X ((igr*u=(1) y"(igfuf (2) )™)r.  (A9)

The contribution of a given term in the series is zero
unless (#+m) is an even number. Each nonzero term
can be factorized into a product of two-point correlation
functions such as exhibited in Eq. (A6). We classify
terms in the expansion of Eq. (A9) according to the
number of linked two-point correlation functions that
they contain. A linked two-point correlation function is
one which contains a term from u(1) and a term from
u(2);i.e.,

(0)?qu* (1) 4P (2) o= (—1) gu* D (1, 2) gf

is such a linked function.
We define F,”(1, 2) as the sum of all terms in Eq.

(A10)
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(A9) that contain “j” linked two-point correlation
functions. Consider first the terms involving no linked
correlation functions,

FO1,2)=[3 > ()= (m])~

n=0 m=0

X{Ggeus (1)) (igfuP (2))") s, (A11)

where nfl denotes no linked functions. Only those terms
for which “#” and “m” both are even contribute to
Eq. (A11). Hence, we can write

F0(1,2) ={ z [(2) T Gigitu(1) Yy}

X {é [(2m) (T2 GigfuP (2) Yy}
S XOEAC)
=exp[—Wi(qu) ] exp[—Wa(q) J. (A12)

Consider next the terms involving a single linked
correlation function. When forming the linked function
from the terms in Eq. (A9), we can choose the #*(1)
term in “n” ways and the ##(2) term in “m” ways. We
obtain

F,0(1,2) = i f‘, (n))7H(m!)~1(4)?

X {greur (1) 4P (2) g8y (mm)
X[ Gareu (1) Y (igsf (2) Y 1)r Jnnr
=(—1)g*D*(1, 2)¢#

X{3 3 [(n—1) [ (m—1) 1T

X (Ggu= (1))~ Gigluf (2))" )} lan (A13)

Note the change on the lower limit of the sums since we
must have at least m=1, =1 to get a linked function.
We next change variables

w'=n—1,

(A14)

m'=m—1 (A15)

to obtain

FO(1,2) = —igeDa(1, )¢ 3 3% (n') 3 (m )

n/=0 m/=0

(Ggeu (1) ) (igfuP (2) Y yr} | nar

=—iq*D*(1, 2)¢.fF,® (1, 2). (A16)

Fy®(1, 2) is the sum of terms in Eq. (A9) involving
two linked correlation functions. From a given term in
Eq. (A9) we can form the two linked correlation func-
tions in #(n—1)m(m—1) /2! ways. (The factor of 1/2!
comes in since the order of the two linked correlation
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F16. 6. Diagrams contributing to the electric scattering cross
section that illustrate the effect of adding a phonon propagator
to a “bare” diagram. (a) is the “bare” diagram which is evaluated
in Eq. (B1) and (b) is that evaluated in Eq. (B2).

functions does not matter.) We thus obtain

Fa® (1, 2) ___i Zw: ()1 (m') (%(n—— l)m(m—-l))

n=2 m=2 2!
XL ()X giu (1) (2) ¢ )r¥]
X[ Ggeue (1) )2 (igPuP (2) )" 2)r |
_ [—1’41“0“251, 2)g’ P FRO(1,2).

In a completely analogous manner we obtain for the
sum of terms involving ‘“‘4” linked functions

Fy9 (1, 2) = {[—ig*D*(1, 2)gf /j } F2® (1, 2). (A18)
We now explicitly sum the Fy)(1, 2) to obtain F5(1, 2):

(A17)

5,(1,2)= 3 Fy9 (1, 2)
7=0

(O)(l 2)2 [ ’qu Ddﬂfl 2)9 ]j
7!
=F,0(1, 2) exp[—1g:*D*(1, 2)¢f ]
=exp[— W1(qn) ] exp[—W2(qx) ]
Xexp[—igi*D*#(1, 2)¢f]. (A19)
The general case of N exponentials is equally straight-
forward. We define
Fn(1,2,...,N)

= (exp[qu- u(1) Jexp[iga-u(2) ]+ - -exp[iqu- u(N) )z
= Z E Z COn D)™ (mg!)™te e« (ny 1)71]

n1=0 ng=0 nN=0
Gign ur (N) )™¥)r.

X (igieu(1) )" (igPuf (2) Yn2e -
(A20)

Again, we classify terms as to the number and kind of
linked two-point correlation functions that they con-
tain when they are expanded in terms of products of
these functions. We define the sum of the terms having
71,2 linked functions involving u(1) and u(2), 71,5 linked
functions involving u(1) and u(3), ..., and jyaw
linked functions involving u(N—1) and u(N) as

Fyt2.d1.8,0 ., N).
By an extension of the argument leading to Egs. (A7)

jN—-l,N)(l, 2, ..
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and (A11) we find
Fy©00(1,2, ... )
=51(1)F1(2) - - - 51 (V)
= exp[ — W1(qu) Jexp[—W1(qy) ]+ - -exp[— Wy (qw) 1.
(A21)

The same procedure as used above gives for a general
term

FN(J'l,z.ix,s,...jN—l.N)(l’ 2, ..., N)
_ [—ig*D*5(1, 2) gf
N Jra!
[191"‘1)“5 (1, 3)gf 0
Jis!
[—igy1*D¥(N—1, N)gyPJv-1¥
' Jvaan!
XEy©0.0(12 ... N). (A22)
From Eq. (A22) we obtain
Sv(1,2, ..., N)
i i i FN(J'I,ZJ'L&...,J'N—LN)(1’ 2, ..., N)
,2=0 71,3=0 IN—1,N=0
FN(oo ..... 0(1,2, N) exp[ —iq:2D*(1, 2) g ]

Xexquf"D“ﬁ 1, 3)¢"]

«rexp[—igy1*D¥(N—1, N)gn®]. (A23)

This argument completes the derivation of Eq. (21),

and of the general diagrammatic expansion of Sec. III.

We conclude this Appendix by evaluating W1(q)

using the Debye model of the phonon spectrum. From
Egs. (22) and (A7)

Wilan) =g (wtuf )rgf = 3iqi*D¥ (1, 1) gf.  (A24)

In the Debye model we assume an isotropic phonon
spectrum. In this case we obtain®

D¥(1,2)=N % [ (dw/2T)
Xexp[ik- (R'—Ry?) —iw(h—1) 1D* (k, w), (A25)
where
D8(K, w) =[fida,s(21) /2Mw (k) TN (—w) ]
X[ (w—w(k))—d(wtw(k))], (A26)
N{(w) =[exp(fiw/ksT)—11", (A27)

where M is the ion mass, w(k) is the frequency spec-
trum, and 6.5 is the Kronecker 4. Substituting Egs.
(A25) and (A26) into Eq. (A24), we obtain

W1(Q1) | pebye= (Ag1?/4M N) % [w(k) I

X{N[—w(k) ]—-N[w(k) ]}
= (fig:*/4MN) Zki [w(k) I

X {2N[w(k) J+1}. (A28)
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Passing to the continuum limit in Eq. (A27), we take
kD df k?

Zk:_)V‘/(‘) w-/dﬂ%’

where V is the volume of the system, A\, is the phonon
polarization index, and kp is the cutoff wave vector
defined by

> = N=kp/2n2,
k

(A29)

The phonon dispersion relation in the Debye approxima-
tion is given by
w(k) =v.k, (A30)

where v, is an average sound velocity. We thus obtain
from Eq. (A27)

3ﬁql2V
Wl (Ch) IDebye— M st 471'2
Capn|—L 1] (A31)
X /0 I:exp('usk/kBT) -1 T 2]’

and in terms of the Debye temperature defined by

Op="7vqp/kg, (A32)
Eq. (A31) may be rewritten as
3h2q12 [1 <T>2 /GD/T x ]
= - — d , (A33
Wi(qy) 22hon 13T \6; e (A33)

which is the expression for the Debye-Waller factor.
Strictly speaking, exp[—2W(q;) ] is referred to as the
Debye-Waller factor® in the literature.

APPENDIX B

In this Appendix we show that the contribution of a
diagram containing explicit phonon propagators to the
elastic scattering cross section usually is small com-
pared to the corresponding “bare” diagram. In partic-
ular we consider the diagrams in Fig. 6 in order to
provide an order-of-magnitude estimate of the size of
this phenomenon.

The contribution of the “bare” diagram in Fig. 6(a)
is

Ro=[m*/(2x7®)*"J6(Ei—E;) Y. 3 B(n;k; ki) E))

l,m,n; m#n ky_

XG(ky, E;) B(m; ky, ky; E) B*(I; ki, ky; E),  (B1)
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whereas the contribution of the diagram in Fig. 6(b) is
R,= I:’WLZ/ (21&'%2) 2]5 (E,,— Ef)

X ¥ 3 (;—:B(n;ki, ky; Ei)G(ky, Ei—fiw)

1,m,n; m#n ki
XB(m; Ky, ky; E;—fiw) B*(1; ki, k;; E;)
X (—1h) (ky— k1) 2D (m, n; ) (ki—k;)B.  (B2)

A typical phonon energy is on the order of %305 ‘so
E>fiw for any experimental situation. Hence, in
Eq. (B2) we may take

Ei—ﬁngi.

This approximation leads to the result

(B3)

RbERa[(—iﬁ) /%Q"D"ﬁ(m,n;w)@"] =R.C, (B4)

where Q is a typical momentum transfer at a scattering
vertex. As we are interested only in an order-of-mag-
nitude estimate of the coefficient C in Eq. (B4), we
shall use the Debye model of the solid in our evaluation
of C. The relevant quantities are defined in Eqs. (A25)
and (A26). We obtain the expression for the coefficient

C=(—1) /%‘:Q"‘Daﬂ(m, n; w) Q8

exp[ik: (R,'—R,%)]

hQ?
>y w(k)

T T MN 4

X (exp[ﬁw(k) JksT]—1 +1> - (BS)

Passing to the continuum limit as in Eq. (A28) and
taking

w(k) =v,k, (B6)
we obtain
co IOV o ik
MNy, J, (2m)3
( 1 1) sin(# | R."—R,? |] (B7)
exp[fivsk/ksT]—1 "~ 2/ k|RO—RL|

In Eq. (B7) we perform the integral involving the
constant term to obtain

/kn dk sin[% | R,0—R,0 ]
o 4 |R—R/|

{1— cos[%p | R."—R,? |}

= 472 | R,9—R,0 |2 (B8)
Next, we note that in the high-temperature limit,
1 ksT
. (BY)

exp (Fwsk/ksT) —1 = hook
and so most of the contribution to the other integral in
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Eq. (B7) will come from & near zero. Hence, let us approximate

# dk sink | Ru—R.0 [] 1 N EsT /ku sin[%| Ru—RS[]
o 2 |RS-RO|  exp(huk/ksT)—1  2n%o, | RO—R |/, k
EsT

Si(kp | Ri*—R,0|), (B10)

2n%7i, | RA—R,0 |

where the last expression in Eq. (B10) follows from the definition of the sine integral.® From Egs. (B8) and (B10)

we obtain
3hQ2V [[1— cos(kp | Rp*—R,0|)] (@T) ) o }
I C l - 277'2MN'U.9 I Rmo_RnO I 2 ] ng__RnO | + ﬁvs Sl(kD ! Rm _Rn I)
3HQ ([1— cos(kp |RO—RON]  koT >
- —— Si(kp | R"—R0|) ). B11
MksOpkp? | R,O—R,? | 2| RO—R,| + op i( | ) (B11)

Taking “typical” values of

7202/ 2m~25 eV, 0p~300°K, T~300°K,
|RO—R,0 | ~4 A, M~100 amu, kp~1 A1,
we obtain
| C|~10-2, (B12)
which means
R>R, (B13)

and so it is reasonable to neglect the diagram in Fig.
6(b) when compared with the diagram in Fig. 6(a).
Diagrams containing “w#” phonon lines will have a

contribution roughly equal to the “bare” diagram con-
tribution multiplied by | C |* and so become completely
negligible as “n” becomes large. Hence, in evaluating
the elastic scattering cross section, it is reasonable to
consider only the “bare” diagrams shown in Fig. 5. It
is important to observe, however, that the magnitude
of C depends on #2Q%/2M. Thus for large momentum
transfers (as encountered, e.g., Bragg scattering at high
energies), the contributions from diagrams containing
internal phonon propagators can become large. In this
case, one should view the approximation for the elastic
scattering vertex developed in Sec. V with caution.

* This research was supported in part by the Advanced Research
Projects Agency under Contract No. SD-131.

1 NSF Postdoctoral Fellow.

1E. G. McRae, J. Chem. Phys. 45, 3258 (1966); Surface
Sci. 8, 14 (1967).

2 K. Hirabayashi and Y. Takeishi, Surface Sci. 4, 150 (1966).

3D. S. Boudreaux and V. Heine, Surface Sci. 8, 426 (1967).

4F. Hofmann and H. P. Smith, Jr., Phys. Rev. Letters 19,
1479 (1967).

( 5 P‘})M. Marcus and D. W. Jepsen, Phys. Rev. Letters 20, 925

1967).

6J. S. Plaskett, Proc. Roy. Soc. (London) A301, 363 (1967).

7J. L. Beeby, J. Phys. C 1, 82 (1968).

8 C. B. Duke and C. W. Tucker, Jr., Surface Sci. 15, 231
(1969) ; Phys. Rev. Letters 23, 1163 (1969).

9 C. B. Duke, J. R. Anderson, and C. W. Tucker, Jr., Surface
Sci. 19, 117 (1970).

10 A, U. MacRae, Surface Sci. 2, 522 (1964).

E, R. Jones, J. T. McKinney, and M. B. Webb, Phys. Rev.
151, 476 (1966).

12 ], T. McKinney, E. R. Jones, and M. B. Webb, Phys. Rev.
160, 523 (1967).

13R. M. Goodman, H. H. Farrell, and G. A. Somorjai, J. Chem.
Phys. 48, 1046 (1968).

14 R, F. Barnes, M. G. Lagally, and M. B. Webb, Phys. Rev.
171, 627 (1968).

15 J. M. Morabito, Jr., R. F. Steiger, and G. A. Somorjai, Phys.
Rev. 179, 638 (1969).
< 16 H) Yoshioka and Y. Kainuma, J. Phys. Soc. Japan 17, 134

1962).
( 7R. F. Wallis and A. A. Maradudin, Phys. Rev. 148, 962
1966).

18 See, for example, I. H. Khan, J. P. Hobson, and R. A. Arm-
strong, Phys. Rev. 129, 1513 (1963); G. Gafner, Surface Sci. 19,
9 (1970).

19 See, for example, S. S. Schweber, An Iniroduction to Relativistic

Quantum Field Theory (Row, Peterson, and Co., Evanston, Ill.,
1961), Chap. 11.

20 B, C. Clark, R. Herman, and R. F. Wallis, Phys. Rev. 139,
A860 (1965).

2R, F. Wallis and A. A. Maradudin, Phys. Rev. 148, 962
(1966).

22R. F. Wallis, B. C. Clark, R. Herman, and D. C. Gazis,
Phys. Rev. 180, 716 (1969).

23D, Pines, The Many-Body Problem (Benjamin, New York,
1962).

24 W. A. Harrison, Pseudopotentials in the Theory of Metals
(Benjamin, New York, 1966).

25 A, A. Abrikosov, L. P. Gor’kov, and I. Ye. Dzyaloshinskii,
Quantum Field Theoretical Methods in Statistical Physics (Per-
gamon, New York, 1965).

26 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic,
New York, 1963), Suppl. 3.

2L, 1. Schiff, Quantum Mechanics (McGraw-Hill, New York,
1955), Chap. VIII. .

28 See, for example, C. Kittel, Introduction to Solid State Physics
(Wiley, New York, 1963), Chap. 6.

29 G. E. Laramore and C. B. Duke, Phys. Rev. B (to be pub-
lished) .

30 G, D. Mahan, J. Phys. Chem. Solids 26, 751 (1965).

31 C, Keffer, T. M. Hayes, and A. Bienenstock, Phys. Rev.
Letters 21, 1676 (1968).

325, C. Yu (unpublished).

3Y. P. Varshni, Physica 34, 149 (1967).

3 This is merely a consequence of Wick’s theorem. See, for
example, Ref. 25, Chap. 2.

8 C. Kittel, Quantum Theory of Solids (Wiley, New York,
1963), Chaps. 19-20.

3 . Jahnke and F. Emde, Tables of Functions (Dover, New
York, 1945), Chap. I.



