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The coherent potential approximation for the electronic density of states in a disordered substitutional
alloy is applied in detail to a system of muffin-tin potentials. All expressions are formulated in terms of
the phase shifts of the individual atomic scatterers. A simple example, illustrating a tight-binding system
in which the pure constituents have different bandwidths, is discussed.

I. INTRODUCTION

The coherent potential approximation (CPA) has
been introduced by several authors' ' as a reasonable
approach to the problem of calculating the electronic
density of states in a disordered substitutional alloy. It
has been studied extensively' 4 using an approximation
in which the only random element was taken to be a
short-ranged potential. Stating this in terms of con-
ventional tight-binding formalism, it has always been
assumed that overlap integrals, involving localized
functions centered on different lattice sites, were
independent of the particular type of atoms on those
sites. Thus, both pure-material limits of the binary-
alloy problem had identical band shapes, the only
difference being the absolute position of the bands in
energy.

In this paper we apply the general formalism of the
CPA to a system in which all of the potentials are of the
mufFin-tin variety. The potential is assumed to be
spherically symmetric within a sphere surrounding each
atom and to be a constant (taken to be zero) between
the spheres. No further assumptions are made; con-
sequently the formalism can be used to treat any
material for which the assumption on the nature of the
potential is reasonable.

In Sec. II of the paper we review the CPA formalism
and discuss the rather circuitous route we follow in
dealing with the multiple-scattering problem in the
rather complex system of potentials. In Sec. III the
formulas found in Sec. II are reduced to a form that is
more transparent and more amenable to calculation.
Some limiting cases are discussed in Sec. IV, and a
simple example illustrating the formalism is present in
.Sec. V.

II. FORMALISM

The alloy is characterized by a particular lattice
structure and a random arrangement of potentials
V~ and V~. Atoms of type A and 8 are assumed present
with concentrations x and y=1—x, respectively. The
individual potentials are taken to be spherically sym-
metric within some radius E' of their origin, and zero
outside of this "muon-tin" radius. The aim of the cal-
culation is the density of electronic states p(E), which

2

is given by the well-known formula

sp(E) = Im Tr(g),

where g is the Green's function for any particular con-
figuration of the atoms, and the angular brackets
( ~ ~ ~ ) indicate an ensemble average over all configura-
tions.

We do not attempt to apply the CPA directly to the
system of potentials Vg and V~. Instead, we introduce
equivalent (in a sense to be defined shortly) potentials
V~ and V~, which are of a mathematically simpler
form. We shall want to compare Green's functions cal-
culated with both pairs of potentials. When doing this
we shall say that a Green's function is in the exterior
region when both of its arguments lie outside of every
mufFin-tin sphere; otherwise it is in the interior region.

It is implicit in the work of Beeby, ' and is shown
explicitly in Appendix A, that in the exterior region the
Green's function g is solely determined by the phase
shifts of the individual potentials. Consequently, if
V~ and V~ are chosen to have the same phase shifts as
V@ and Vii, respectively, then the Green's function g
calculated with them will be identical to g in the ex-
terior region.

On the other hand, the Green's functions di6er in the
interior region. Let p~ (E) denote the part of the trace in

(1) arising from the integration over the volume within
the sphere surrounding a particular A atom. Then we
have

~p~ (E) = Im f (g (r, r) )~d r.

( )~ denotes a restricted average such that an A
atom is definitely at the site under consideration. We
also define analogous partial densities p~, p~, and p~.
Note that these densities arise from an integration over
the volume inside a muon-tin sphere; consequently,
they are not the complete density of states associated
with any particular type of atom.

Let yl„~' be the exact logarithmic derivative, at
energy E and radius E., of the regular solution, for
angular momentum I, of the Schrodinger equation
involving the potential Vg. Logarithmic derivatives
arising from the other potentials are denoted in a cor-
responding way. ' We also need the angular-momentum
4715
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decomposition of the Green's function':

8(r, r') = Z Yi(r)gii Yi (r'),

It then follows from Anderson's work' that
(3)

&pA (E) = R Im Q (gLL)A (d'rL, A/dE) ~ (4)
L

Similar expressions hold. for the other partial densities.
Since g=g in the exterior region, '0 we have the relation

LL A= LL Ap (5)

which leads to the useful expression

-f..(»-"(E)j=-R I- Z (S-).
Xd (yr. ,g yr. ,g)/d—E. (6)

There is a similar expression for p~ —p~. Since the
difference between Tr(g) and Tr(g) arises from the
di6erence in the Green's functions in the interior region,
we have the following equation relating the two traces:

ir ' Im Trt (b)—(g)]=xS(p~—pg)+ylV(ps —ps). (7)

V is the total number of atoms. Combining (1), (6),
and (7), we 6nd the following exact equation for the
density of states:

harp (E)= Im Tr(g) —R'1V Im Q Lx(g,y, )~

Xd(YL,A yL,A)/dE+y(oLL) J3d( rL, B 7L,B)/dE] (8)

Equation (8) is useful only if we can find potentials
VA and V~ for which the multiple-scattering problem is
simpler to deal with than it is for the actual potentials.
We find that choosing the new potentials in the form"

which the atomic potentials are VA and V~. The basic
approach may be summarized as follows. ' ' One intro-
duces a "coherent potential" V, presumably similar in
some respects to VA and V~, but in general a complex,
energy-dependent quantity. (In the present situation
the actual potentials are themselves energy dependent;
the equation presented below impresses an additional
energy dependence upon V. ) One tries to choose V in
such a way so that if we imagine a system having the
same lattice structure as the actual alloy but with V
placed on every lattice site, then the Green's function
G for this system is approximately equal to the en-
semble-averaged Green's function for the alloy:

(O) =G

It is obviously not possible in practice to find a V
for which this will be precisely true. Nonetheless,
recent work'4 has shown that the so-called single-site
approximation is quite useful. The line of argument
employing this approximation goes as follows. Relative
to the "medium" in which V is placed on every lattice
site, a particular A atom appears as a perturbing
potential VA —V. The t matrix describing the scattering
produced by this potential, for a particle moving in the
medium, satishes the equation

Tg= (V~—V)+ (Vz—V)GTg, (14)

where the G in this equation is that entering into Eq.
(13). An analogous quantity Ts may be defined for 8
atoms. Then a useful equation for calculating V has
been shown to be'

xT&+yT& =0,

which after suitable operator manipulation may be cast
into the form

Vg(r, r') = Q Yr, (r)[b(r R)/R'7Wr„g—(E) V= U+ (V—V~)G(V—Vs), (16)

XP(r' —R) /R'$ Yz, (r') (9) where the mean potential U is defined by

leads to particularly straightforward manipulations. A
potential of this form will have the same phase shift as
VA if the amplitudes O'L, A satisfy the equation

Wr„& (E) =R'(f r„~ ~j i'(aR)/j i(i') j. (10)

In this expression j& is the regular spherical Bessel
function and ~=E'". RL,~ is defined in a similar
manner.

We observe that the potential VA is zero inside the
muon-tin sphere. Consequently, the logarithmic deriv-
atives entering (8) are simply"

Vr„p = aj i'(iiR)/j i(~R).

We may then rewrite Eq. (8) in the form

~p (E)= Im Tr(g) —E Im Q Lx(err, )g (dWr„g/dE)
L

+y(O-).«W. ;/dE) j (»)
We now apply the CPA equations to the "alloy" in

U =xi+ yV&. (17)

In our evaluation of Eq. (12) for the density of states
we will replace (g) by the coherent Green's function
G. However, we also need the restricted ensemble
averages of g. Further development of the CPA"
shows that the equation

where GA satisfies
(O).=G", (18)

+yGi„i, (dWr„s/dE)]}}, (20)

where the quantities GLL" and GLL ~ are defined as in
Eq. (3).

G"=G+G(Vg —V)G" (19)

is consistent with Eq. (13).We will therefore evaluate
(12) in the form

~p (E)= Im f TrG—Sg tLxGr, r."(dWr. ,~/dE)
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We now solve Eq. (16) for the coherent potential V. find that substitution of (21) into (2/) yields
It is clear by inspection that with Vz and Vzi (and con-

GQ( f) Py( )+sequently U) in the form (9), V itself may be written

V(r, r') = g V&(r)[8(r—R)/R'7Wzz. Fz (r')
Further integratlons yield

(29)

&&9(" ~)/~ j (21) G" (L, r') =P"(L, r')+ g P„."W ~ -G"(L", r'),
The double angular momentum subscripts on the
"coherent amplitude" t/VLL arise from the fact that G,
and hence V, need only have the point group symmetry
of the lattice. Substitution of (9), and its analog for
Vzi, (1/), and (21) into (16) yields the result

Vzz~ = Uz8zz~i+ P (IVzz" /izz' &z a)Gz" z"'
LllLlll

X (Wz -,z,
—&r:,r:"IVr:,s), (22)

Uz =xWz„g+ yWz, s.
De6ning matrices of the form

W~= I4z VVz, ~}

allows us to rewrite (22) in the compact form

W =U+ (W —Wg) G (W—Ws).

It should. be observed that the integral equation (16)
has been reduced to an algebraic one,

An essential feature of the CPA is its self-consistency
aspect. The Green's function entering into Eqs. (16)
and (24) is a functional of the potential V. We now
develop relatively simple formulas for calculating it.

If E denotes the free-electron Green's function and
V, denotes the potential V when centered on lattice
site R„ then 6 satisfies the equation

G=P+P(Q V, )G. (25)

Since the potential in (25) is periodic in the lattice,
Fourier transforms can be introduced to simplify the
calculations, If we write

G(r, r') = (1/X) g' G"(r, r'),

where the prime indicates summation over the allowed
wave vectors in the first Brillouin zone, then the Green's
function 6" is related to the Korringa-Kohn-Ros-
toker"" (KKR) Green's function P~ through the
equation

G"(r, r') =P~(r, r')+ JP"(r x)V(x, x')

&&G"(x', r')dx dx'. (27)

Equation (27) is readily solved in the present case.
Introducing the notation

G" (L, r') =fVz(r)P(r —8)/8'jG" (r, r')dr,

Gzz "——JG~(L, r') Fz. (r') P (r' —R)/R'jdr' (28)

together with analogous quantities involving P~, we

Finally, using (26) we have

G = (1/X) g' (1—P&W)-iP&. (34)

%e now develop an expression for the density of
states. According to Eq. (20) there are two different
types of terms. Ke consider them in turn. Using Kqs.
(28) and (32) the first term in (20) becomes

TrG= (1/S) P' fdr }P"(r, r)+ P Pi'(r, L)
LLl

g[W(1—P"W) ')z, z, P"(I', r) } (35)

An explicit expression for P"(r, r') is'4

P"(r, r') = (E/0)

X Z exp[i(lr+K. ) (r—r')3/[E —
I &+K. I'j, (36)

n

where 0 is the crystal volume and K„denotes a recipro-
cal-lattice vector. Using (36) and (28) it is easy to
show that

fP"(r, L)P"(L', r)dr= —X(BPz;z"/BE), (3'/)

in which case (35) takes the form

»G= Z' (Z [E—
I &+K- I'j '

—P (BPz z~/BE) [W (1—PkW)-'$z z.). (38)
LiLl

VVe show in Appendix 8 that the poles of the first
term, occurring at the free-electron energies, are can-

whence, by matrix inversion,

G"(I., r') = Q [1—P"W] 'zz, P"(L' r'). (31)

Here and below matrices P" and G~ are de6ned analo-
gously to G. Equations (29) and (31)may be combined
to yield

G"(r, r') =P"(r, r')+ g P"(r, L)
ILl

&([W(1—P"W) 'jz,zP" (I-' r') (3.2)

While (32) is useful for finding the density of states,
the self-consistency equation (24) only involves Gzz.
Using (30) and (29) we find

Gzz ~ = Q [(1—P"W)-'Jzz, -Pz"z, ", (33a)

which may be written more compactly as

G"= (1—PkW) 'P".
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celled by corresponding poles in the second term. The
first term of (20) then has the simple form''

Im TrG= —Im Q' Q (BPL L~/BE) [W(1—P"W)—'jLL. .

(39)

We also need the quantities G»" and their analogs
for 8 atoms.

These may be calculated by starting with Eq. (19)
and performing manipulations identical to those used
in passing from Eq. (29) to Eq. (35). The result is

GLL" = Q [(1—(WA —W)G) 'jLL GL L. (40)
L1

Our formula for the density of states then becomes

harp (E)=—Im g g (BPL~L"/BE)
k L,L~

X[W(1—P"W) ']LL —SIm Q GLL

X ((xdWL, A/dE) [(1 (WA —W) G—)—']LL + (A~B)).
(41)

This expression is not quite as complicated as it appears.
Considerable simplification will be effected in Sec. III.

III. REDUCTION OF FORMULAS

Our aim in this section is twofold in nature: We want
to reduce the results of Sec. II to a form more amenable
to calculation while at the same time demonstrating
a certain internal consistency to the theory. It is
intuitively clear that when all is said and done the
density of states in a muffin-tin system can only depend
upon the phase shifts of the individual potentials and
upon other quantities which describe the structure of
the material but do not depend upon the particular
choice of muffin-tin radius. As we shall see, the two
terms in Eq. (41) do not separately have this property
while their sum in fact does.

The algebra leading to the results of this section is
straightforward but somewhat long. For this reason we
will set down only enough of it to indicate the general
way in which the calculation proceeds.

According to Ref. 14, the KKR Green's function,
for values of its arguments interior to the muffin-tin

sphere, may be expressed in the form

P"(r, r') = K p YL (r ) [bLLj l (Kr&) n l («& )
L,LI

+i' "j l (Kr)j l. (Kr')BLL.~]YL (r'), (42)

where r& is the smaller, and r& the larger, of r and r'.
Using the definition of the matrix elements given in

(28), it follows that we can write

PLL' = K[j lnleLL +i "j jll'BLL'"]. (43)

Here and henceforth all Bessel functions may be as-
sumed to have the argument f(E. The potential ampli-
tudes WL, A are defined by Eq. (10). Using the expres-

WL, A [Kj—i(j lCL,A nl) j . (45)

We have mentioned that the coherent potential
amplitudes lV«are nondiagonal in general. Nonethe-
less, in many cases of practical interest, e.g. , cubic
materials for which only s, p, and d phase shifts are
important, the off-diagonal elements of G, and hence
of W, vanish because of the symmetry. '~ For simplicity
in what follows, we shall assume this to be the case, and
simply denote the diagonal elements 5'«by WL.

Under these circumstances, we can express 5'L in
terms of a complex "phase shift" using an equation
similar to (45),

WL= —[Kjl( jlCL —nl)] ', (46)

which should be viewed as the definition of the quan-
tities CL. Substitution of (43) and (46) into Eq. (32)
may be shown to lead to

GLL' jKl(j «L «)tiLL' «—' "(jiC—r, nl)—
X(j,C.,—., )(C+B )-... (4~)

where C and B are matrices formed from CLbLL and
8« ", respectively. Summation over the Brillouin Zone
results in the following expression:

GLL ——Kjl( jlCL—nl) —K(j lCL—nl)'gL,
where

gL
——(1/1V) Q' (C+Bi')LL '

k

(48)

(49)

We can now find a simple form of Eq. (24). Sub-
stitution of (45) and its analog for B atoms, (46) and
(48) into (24) yields the system of equations

CL=CL, , +(CL,A CL)gL(CL, a CL), —(50)—
in which

CL, sv =xCL,A+yCL, ii. (51)

One should note that the various CL are coupled,
because each gL depends upon all of them. "

We now consider Eq. (41) for the density of states.
Substituting Eqs. (43) and (46) into the first term of
(41) yields

[W(1—P"W) ']LL = i' "(Kj&j—P) '(C+B")rL ', (52)

where B"is the matrix formed from the BLL "of Eq (43)
and C is the diagonal matrix formed from the complex
cotangents CL. The energy derivative occurring in (41)
may be determined using (43):

(B/BE)P„."=i' "pLL (d/dE) (Kj,nl)-
+BL;L"(d/dE) (Kj Pj l)+Kj lj l(B/BE)BL L j. (53)

sion for yL, g given in Schiff, "
YL,A = K(CLAj l, nl ) (CL,Aj l 'nt), (44)

where CL,~ is the cotangent of the phase shift for the
/th partial wave, the following alternative expression
for the amplitude is easily derived:
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Combining (52) and (53), the first term on the right-
hand side of (41) takes the form

Im g }Q' f(z&8"/z&E) (|:+8")')»

+l&rgz(&ijP) 'Dd/dE) (xj «&) Cz,—(d/dE) (xjP))}, (54)

where gz is defined by Eq. (49).
The second term in (41) may be reduced as follows.

Because of our assumption on the high symmetry of the
system, all of the matrices appearing there are diagonal.
Slit&stitutioii of (45), (46), and (48) yields tlie relation

Im} (xdWg/dE)[1{W, g——W)G) '}zz,

=y ImL~i i'(Cz.~ Cz)) —'

X [~j P (dcz, ~/dE)+Cz, ~(d/dE) (~i i') (dldE) —(xj«t))
(55)

We note in passing. that (55) is an equation relating
the imaginary parts of the two expressions; the real
parts are not identical. Adding Eq. (55) to the cor-
responding equation for 8 atoms, and making use of the
defining equation (46), the entire second term of (41)
takes the form

E Im Q—tiy(cz, g Cz) '(dc'„—g/dE)

+x(cz,a Cr.) '(dc—z,r/dE)+(xj P) 'gz,

X [(d/dE) (Kj «i) Cz(d/dE—) (xjP))}. (56)

Our expression for the density of states is obtained by
adding (54) and (56). All of the terms involving Bessel
functions cancel, The result is

~p(E) = Im Q Q' L(C+8") '(88"/BE))»

+S Im Q [y(cz—Cz„,g) '(dcz, g/dE)

+x(Cz, Cz,rr) '(dc'„rr/d—E)}. (57)

IV. SPECIAL LIMITS

Ke first consider the case in which the atoms are
identical. Using Eq. (50), it is clear that as Cz,r&~z, g,
CL—+CL,~ as well. The limiting value achieved by the
second term of (59) may be determined by using the
CXPI'CSSlOn

y(cz Cz,~) '+x(C-z; Cz„,rr) '=gr. , (58)
which follows immediately from Eq. (50). In view of
the definition (49), the equation for the density of
states becomes

m p'(E) = Im g' Q } (Cg+8")-'

XLd&~/dE+»'/~E) }». (59)

Equation (59) represents an exact, if not particularly
useful, expression for the density of states of an ordered
system of A atoms. It may be shown to reduce to the
correct result in the limit of free electrons.

Vehckg et a/. ' have shown that, for the tight-binding
model they considered, the CPA reduces to the exact
Koster-Slater'9 result as the concentration of one of the
constituents vanishes. It is of interest to study the same
limit for the present forn1alism.

%C consider the limit y—+0 and deduce a formula for
the density of states correct to the first order in y. The
quantities gL and CL may be expanded as a power series
in f1

gz= Z gz'"&y"

and similarily for CL. If we substitute this expression in
Eq. (50), and introduce the notation dz ——Cz, rr

—Cz,~,
then we find the expression

Cz, =ca„~+y&z(1+~zgr."&) '

+ {y~z)'(1+~zgz"') 'I:gz"'(1+~zgz'") ' gz—'"), (61)

correct to terms of order y', Using this result the second
term in Eq. (5'/) may be written

gz(0& (dCz, ~/dE)+yg, &'& (dC, ,/dE)

+ygz&'& (1+Azgz"&) (diaz/dE)) (62)

correct to 6rst order in y. It is clear that gL&') =gL,~, the
quantity to which gL reduces when CL~CL,~. The terIn
gzo& is obtained by expanding (49) in a power series in
y. The result is

gzo'= —(1/E) Q Az, (1+hz gz. i'&)
Ltr

X Q' (Cg+8") 'z z(C~+8")» '. (63)
k

The first term in (57) may be expanded to yield

Z' Z L(&+8") '(~8"/~E)7»

—y Z' Z ~z(1+~zgz"&) '

XC(t:~+8) '(»"/~E)(&~+8) ')» (64)

Combining (62), (63), and (64), the expression for the
d ty f tt d t

.(E) ="(E)+my/-) I Z (1+~.g...)-
L

X (d/dE) (~zgz.~) (65)

The second term in (65) is, except foi' tlie fac'toi' X, tlie
change in the density of states per 8 impurity. It is an
exact result for the single-impurity problem and may
also bc dcI'ivcd by morc dlI'cct tcchnlqucs, 0 Bound
states occur when 1+hzgz, ~ vanishes outside of the
bands of the pure A material. It may be shown that this
condition for a bound state is iden. tical to that derived
by Beeby2& and Johnson. "

V. ELEMENTARY EXAMPLE

In order to illustrate the formalism, as well as to
make contact with earlier work using the CPA, we
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consider a particularly simple example. We assume that
the only nonvanishing phase shifts are the s-wave ones.
n a ition, we neglect the oG-diagonal components of

the matrix B" and consider only the diagonal one cor-

singular at the free-electron energies. For negative

varying functions of energy. To construct a tractable
pro em we assume that the single component of B that
we keep has this smooth behavior. In fact, we will
assume it to be constant in energy and to depend only
upon the wave vector.

The lfself-consistency equation revolves around the
quantity gz, defined in (49). We introduce a distribution
function for Bk by the relation"

I.S—

X
OI-

~C

5
I- IA)—

I-

0.5—

-I -5

(a)

I I I I I I

a5 I.O I.S 2.0 2.S LO

ENERGY

f(b) = (&I&) Z' ~(b—&"),
k

in which case g is given by

(66) I.S—
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g =2L~—(&'—~)'"j
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(68)

(69)

It is known that tight-binding character of energy
bands arises from a resonant behavior of one of the
phase shifts. '4 We accordingly assume that C& has the

It is clear that the integral off(b) over the domain of b

is unity.
For reasons which will be clear momentarily we take
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(c), respectively. The energy is in dimensionless units.
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C.(E)= (E.-E)/r. , (70)

with an analogous equation, involving E& and I"&, for
Cs. Use of Eq. (59) shows that the state density in a
pure A system is given by

pg (E)= (2N/s )[(I'g)'—(E—Eg)']'" (71)

Equation (71) shows that the model is very similar
to that considered by Velicky et a/. ' in their analysis of
the CPA. But whereas in the work of those authors
both pure materials had identical bandwidths (the
whole effect of alloying arising from a quantity analo-
gous to Eii Eg) in t—he present case the pure materials
can have different bandwidths as well.

Figures 1 and 2 show the density of states, for four
different concentrations of constituent 8, for three
different alloy systems. In all three systems we took
E~=O, I'~=1.0, and E~ ——1.0, but I"~ was given the
values 2.0, 1., and 0.5. The case where F~=1.0 is
identical to one of those treated in Ref. 3, while the
other two show the effect of alloying materials with
different bandwidths. The arrows in Fig. 1, which
illustrates the results for a rather low concentration of
type 8, indicates the position of the bound state of an
isolated 8 impurity in.otherwise pure A material. The
position of the bound state was calculated using Eq.
(65). While we have not discussed the question of the
localization of states near either type of atom, it is clear
that starting from Eq. (4) formulas for the local density
of states can be developed. The results of such calcula-
tions indicate that the states in the upper part of the
split band illustrated in Fig. 1 are largely localized
about8 atoms. The width of the upper peak is, however,
overestimated by the CPA. ' The three parts of Fig. 2
show what happens as the concentration of 8 atoms is
increased. It is clear that the relative widths of the
pure material bands is an important parameter. In case
I, for example, the diagonal perturbation Eg—Eg =1.0
is, for small concentrations of 8, a rather large one
compared to the bandwidth of the dominant material.
But as more A is added it becomes relatively less im-
portant. Hence the transition from the split-band limit
of Fig. 1 to the relatively structureless single-band
limit of Fig. 2 (c). Case II is symmetric in the two con-
stituents, while III illustrates behavior essentially
epposite to that of I.

APPENDIX A

We prove in this appendix that if r and r' lie outside
of the range of every potential of the system (i.e, they
are the position vectors of points in the zero potential
region) then the value of b (r, r') is determined solely
by the phase shifts of the two potentials. Using the
language of scattering theory, the previous statement is
equivalent to one to the effect that only the on-energy-
shell matrix elements of the atomic t matrices are
needed to describe propagation in the zero potential
region.

The proof is based upon Beeby's work. ' Let t„denote
the t matrix corresponding to the potential centered on
site R, and let I' be the free-electron Green's function.
The complete t matrix of the system is given by

T= Qt+Q Qt Ptp+ ~ ~ ~ (A1)
a a P/a

and the exact Green's function by

g =P+PTP.
Each atomic t matrix has the form

(x I
t

I
x') =t (x-R, x'—R ),

where

(A2)

(A3)

t-(3, 3')= Z I'.(3)ti,.(y y')I'. (3') (A4)
L

The radial part ti,, (y, y') vanishes if y and/or y' are
greater than E..

Consider the series (A1). The second term has the
form

(x I t.Ptpt
I
x') =ft. (x—R, y)P(y y'+R, —Rp)—

Xtp(y', x'—Rp)dy dy'. (A5)

Using the expansion'

P(y—y'+R» —Rp) = g F&(y)p&(i~y)Sr&. (R.—Rp)
L,L~

Xj i (iiy') &r, (y'), (A6)

which is valid if y+y'(
I
R —Rp I, together with the

decomposition (A4), it is clear that the y and y'
integrations reduce to terms of the sort

fti»( I
»—R» I, y)ji(iiy)y'dy—= tl, »( I

x R» ly &)p (A7)

using Beeby's notation. The quantities S&1, only depend
upon the relative position of the sites in question. In
the higher-order terms of (A1) one encounters terms
of the type (A7) as well as others of the form

fj & (i') t&» (y, y')j & (iiy')y'dy y"dy'= t&» (ii, i—i). (AS)

Thus the second- and higher-order terms of (A1) are
composed of expressions of the form

Vr, (x—R.)t,.(I x—R. I, .)[ "]t,,p(, , I

»' —Rp I)

X I'r, (x'—Rp), (A9)

where [ ~ ] represents many factors of Sr.r, and of
terms (AS). The first term in (A1) is simply a sum over
n and 1.of the expressions

I'~(»—R-)«-(I »—R- I I

»' —R- I) I'i(x' —R.). (A1O)

We expand the term PTI' in spherical harmonics
centered on some particular atomic site. Then using
either (A6) or the familiar expression

P (x y) = & Q +L (x)[+l (K*)+iji (~*)]ji (iiy) I i (y)
L

(A11)
valid if x&y, one is led to the conclusion that the t
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enter the formulas only through expressions of the form
(A8). But Beeby has shown that t~ (x, x) depends only
upon the phase shif ts at the energy E=~'. Consequently
the Green's function g (r, r') is uniquely determined by
the phase shifts provided that

~

r—R,
~
)R and

j
r' —R

( )R for every R..

APPENDIX 8
The point to be proved is that Eq. (38) does not have

poles at the free-electron energies E=
~
M+K ~'. Let

q=E—O'. Then we must show that, e.g. ,

lim g Q (BPz z"/8E)[W(1 —P~W) ']zz =1. (81)
I,I ~

Use of Eq. (36) shows that one can write

P~=g 'A+P,
where

Azz ——(X/0) (4')'i' "j((kR)Vz(h) jt (kR) I'z (k)

and F is an analytic function of energy near p=0. Using
(82) one finds the relation

Expand
~~ rlX —A (~ as a sum of powers of g. Using the

rule for differentiating determinants, it follows that the
coefficient of g" (0&m&X) is the sum of all determi-
nants formed from e columns of the matrix X and
(E s)—columns of tile Illatllx (—A). But (83) sliows
that Al.l, ~ Is a pI'oduct of a factor depcndlng only upon
I. times another factor depending only upon I.'. Con-
sequently, any such determinant in which two or more
columns are taken from (—A) necessarily vanishes.
We are therefore led to the expansion

~~
rlX —A

~~
= —q" ' Q Azz Mzz (Y)+0(q"), (88)

I.u
where the coefIIcient of q~ ' is the sum of all of the
above described dctclITllnants with only one column
coming from (—A).

Since the minor Mzz (AX
—A) is an (Ã—1)st-order

determinant of the same form as
~ ~

qX—A
~ ~, the lowest

power of q occurring in it must be g+ '. Consequently,
the term in I'zz contributes nothing to the limit (36)
and may be neglected.

Using (86)—(88), the point to be proven becomes

lim [—P Azz Mzz (gX+A)j
W (1—P"W)-'= g (qX—A)-' (84) ~ J„,zl

X=V( '—F.

Consequently (81) takes the form

lim Q [ Azz +rP —(BFzz /BZ)][(gX A) 'jzz. —=1.—

(86)
Assume that we are dealing with S&(S matrices.

(The result is independent of 1V, but it is easiest to
proceed in this way. ) Let Mzz; (Q) denote the (I-, I')
cofactor of some matrix Q, and () Q ~~

be the deter-
minant of Q. The usual formula for the inverse of a
matrix tells us that

[(AX A) 'jz z=—Mzz (rlX—A)/~~ AX
—A )~. (87)

X[—g" ' g Azz'Mzz'(X)] '=1. (89)
II ~

The numerator of (89) is the sum of all deterzninants
formed by successively replacing one row of the matrix
gX—A by the corresponding row of the matrix (—A).
If we let DI. denote the I.th such determinant

Dz= —Q Azz Mzz (qX—A), (810)

then arguments identical to those used in deducing
(88) show that

Dz= q~ ' Q Azz M—zz (X). (811)
Il

Consequently the numerator of (89) is identical to the
denominator, and the limit is indeed unity.
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