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Augmented-Plane-Wave Calculation of the Total Energy, Bulk
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This paper reports the results of self-consistent calculations on aluminum of the total energy, bulk modulus,
and band structure by the augmented-plane-wave method. Using a Kohn-Sham free-electron exchange
we calculate a 0 K equilibrium volume 5.8% greater than observed and a compressibility too large by
16% We find that a free-electron exchange factor of 0.'/13+0.01 would predict the correct O'K equilibrium
density.

I. INTRODUCTION

In this paper we report the results of calculations for
aluminum of the total energy, bulk modulus, and band
structure under compression, using the augmented-
plane-wave (APW) method and utilizing the local
exchange approximation. A similar calculation has been
reported recently by Rudge for lithium, ' also using the
AP%' method, and by Liberman' for hthium, beryllium,
aluminum, and iron. I.iberman uses a modified Kor-
ringa-Kohn-Rostoker (KKR) method and a spherical
unit cell.

%'e have used the standard AP%' method described
in detail elsewhere. ' Since some variations of the original
method have appeared recently, 4 it is worthwhile to
state explicitly that we treat the charge density and the
crystal potential as constants in the space between the
touching spheres and apply the treatment of Slater and
DeCicco' to calculating the Coulomb-potential dis-
continuity at the sphere boundary.

The total energy may be expressed as

E= Es+fdr p(r) [V„.(r)+-,'V,.(r)+-',fV,„(r)$+E„„
(~)

EI, is the total kinetic energy and the remaining terms
represent the total potential energy U. p(r) is the total
electron density, V„, is the electron nuclear potential,
V„is the electron-electron. potential, V,„is the exchange
potential, and E„„ is the interaction energy of the
nuclei. We use the free-electron exchange approxima-
tion such that

f is the exchange factor and is a constant.
If the eigenvalues satisfy the one-electron equations

e;ii, (r) = L
—vs+ V„,(r) +V„(r)+fV,„(r)jii,(r), (3)

then the variational principle is obeyed and the virial
theorem

PV=-ssEi, +-rsU (4)
II. CALCULATION OF PRESSURE AND ENERGY

The band calculations were made for 256 points in
the full Brillouin zone. All ten inner (core) electr'ons
were also treated self-consistently, but in an atomiclike
fashion by using the Noumerov method to solve the
Schrodinger equation, and requiring the wave functions
to be zero at the muon-tin boundary. The Fermi energy
used in the band calculations was determined, using the
method described by Snow and %aber, ' by filling in the
lowest states until the sum of the weights of these
states equaled the number of electrons in the band.

2

is satis6ed. ' 7 I'V is the product of pressure and volume.
All of the computations presented here wer'e set up to
satisfy the virial theorem. Details of these calculations
are given in the Appendix.

The criteria for self-consistency were such that con-
secutive iterations yielded variations in total energy
less than 5%10 4Ry. The computed pressure and
energy as a function of volume is shown in Figs. 1 and 2.
These calculations were done with an f= ,', variously-
referred to as the Kohn-Sham-Gaspar or Dirac ex-
change. The pressures were calculated by the virial
4709
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of the APK'S were truncated at 1=12 of the angular
momentum sum.

The computed equilibrium volume ratio V/Vo at
I' =0 kbar is 1,058 within the accuracy of both methods.
t/"0, the experimental O'K equilibrium volume, is 10.00
cm'/mole. —V(dI'/dV)r, the bulk modulus at I'=0 bar,
is 0.92 Mbar when calculated from the I' —V results
and is 0.94 Mbar when calculated from the polynomial
expansion of the energy that was used to draw in the
solid curve in the bowl of Fig. 2, The good agreement
between these two calculations is another measure of
the degree to which these calculations satisfy the virial
theorem. The experimental bulk modulus is 0.794 Mbar. e

These results are in good agreement with the recent
calculations of Liberman. ' He calculates a compressi-
bility of 0.93 Mbar and an equilibrium volume ratio of
1.070. Liberman uses the KKR method with a muon
potential to calculate the band structure and then uses a
spherical unit cell as in the VA'gner-Seitz model. This
approximation allows him to compute the pressure by
evaluating a surface integral. The greatest difference
between his calculation and ours is in his model of the
exchange interaction. It is a variant of the free-electron
exchange model with f=-,'. For a detailed discussion the
interested reader should see Liberman's paper.

These comparisons with experiment neglect the zero-
point vibrational properties. Ke can estimate these by
using the Gruneisen model. "In this approximation the

-480.9200

l'10. I. Calculated pressure (kbar) versus volume ratio. -480.9300

theorem. The energy. curve was drawn in the bowl by
6tting the energy to a polynomial expansion in volume
and interpolating. The pressures calculated by differ-
entiating this expansion in energy agreed with pressures
from the virial theorem to within 3 kbar. The dashed
hnes in Fig. 2 are the derivatives as obtained from the
virial theorem.

The calculations were made using a potential grid
of up to 500 points rather than the 200 points usually
used in the APK calculations. It was only by so doing
that the resultant energy-volume curve would agree
with pressures from the virial theorem to the accuracy
we believed they should. %'e used a mesh doubling
scheme similar to Herman and Skillman' with doubling
occurring at grid points 80, 1, 240, 320, and 370. The
major limitation in the exact calculation of the energy is
the accuracy to which the core electrons can be com-
puted, and we estimate this to lead to an over-all error of
about 0.01 Ry and 15 kbar.

The number of AP%'s used in constructing the wave
functions varied for each state. However, care was
taken that halving the number used changed the eigen-
value by less than the self-consistency requirement. All
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Fn. 2. Calculated total electronic energy (Ry) versus volume
ratio. Dashed lines are derivatives obtained using the virial
theorem.



AI CURAT yPN' ' 'NF g A~p i. A

1
1.0

I

2

re p ared pressurzero-pooint energy

(s)

(6)
0.9—(9/g) Qk&

&

p (v/}') ~.

0.7—

1.05
I

0
1

0.975

a/a

I

0.925
I

0

~. „...I'Ry)p (kbar)

485 ))4~0 0&

483, 66&

483 13'
480 99j

0, 15

90.72
0.0'0 /$3

56
Ref. 9}Fxperiment

inte&PO +a Obtgine& b~ '

m'
W3

lumlnum
pe ualt'

~ 9 and V
Rrameter& q

430.3 Itempera «
~ '

we obt

GrOneisenspa
t re equas .

a po of
the Debye ~

9 From this w
729 I'0 ls

e~
0 3/mole. ro .

y/y, =O.
~

06-

„uals 10. c
'

hest density, .th.„the or er
the lg e9 kbar. At

orrectlons .
b lected .An

are w'These c
be neg

abou
~

l accuracy
se of p

t ~~ gbar. T
and will

2gg oints

f

o
talnty Rrl

ur numerlca
'ses from our u

ttempt tomade n

K1

dditional uncer .
e ~e have ma

Q 8

o e.

K

ln the «ll .
d f this e«o'

exchange
ma nitude o

made using

10.7—

K3

1.QDQ

two unco
f tor which P . t ls based

h t the ex a g
o.01.Theunce „ t ized

RC

ertaln y

0 9QQ

'sP 7j.3~. '

] se«t"e OP

~oK density ' '

This f,gure» c o
+ etko» for

t ce parameter'

the error es
f 072 determ

c problem

d energy E (

timate
dby m

with fattlce p

e» fac~~~ '
lved the a o '

ber .
Change in re

exchang
Kmetko so

(3) for a num
F,o. 3.

atoml
~

nalogs 0 q ' .
were the

alumln
F s. (&)-

used

nce none o

,;„g the ato
h, „g,„func o h, ,hange

]atter may
h rrect co e»v

f exchange
& q„atlons

«ed to as su p
s appear .

Rrs that

R

tO glVe
from the

Hartree-Fo
t nergy was

nt the exc g
reasons " p

'rica& m

h gave th
The resu"

~est encl-gles. F
int of view the

ts o recen

or these r
est empir

fa{ tor
hange f

tho s u g
d nam c p

f tor would

mlzed
lcium by the

e factors thermo y.
he exchange

hesive energ e .
b

unpublishe
„t in the optlml

ONCOMI RESSIO

num RtOm

~ORE UNDER

for alum'
h ge facto«02

Ry The e per'

~ND SyRUC&

b d st~~~ture

e

the exc Rn

,32+0 '

was III. B

ba,n

Using
h n to be ~

f the atom w

the varlatlon
h h»rnmetry

the energy o .
25 Ry.' The energy

ram 8 The
Figure 3 sho~s

t ome points« 'g
de wi

mental va .
h Herman-S . T ble I Liber- .

th lattice pa
Th cajculatio

lue ls 0 .
illman p g

r
arameter R

lons were m

wi. th t
iven ln

w .
ln zone

are expresse

calculate
changes are g

the grrllou
The energ&es

( / ) 2 ~&th

resu&ts o
~ „re of 0 2O &'

fraught m
the -', excha"g

„g) [g(E)
„ t (f,) of the

g(o)3 «0

n repor .
f cohesive e e gy

the small
duced units

of the lowest s

lcu]ation o .
e Rre see 1 g

re u
the energyo

states wit a

The cacu . „;„First,we
btaineci from

g 0) equai to
free electron s

aij g/cp.

uncertain le
numbers 0

and For re
nstant at a

1eas "
en t~o i g "

arab&e. Se o"
conguctio '

&*(1~) rs a "
btained b1

i&ereence betw' "
trictly comp '

the ' "
t e mass;

3 were o ta'n

1Ch Rre not s
e factor fo

stant egec
-

hown ln Flg
energy to

two mo
t the proper

r example, lf w
The F rm en

levels near th

~ t ls not c
lntheso ' .

yys f the
6tt'ng th e g

A h of ty e p

ect exc»ng
t a cohes'

'thin 000~ y '
mass a

~ '
de the

the COI rec
d arrive R

~ wit 1

t d egectlve
f ojnts lnsl

7~3 for the so 1
~

h experiment
tjal, " an a ~

A random set .
h elgenvalues

atom R

ll t agreemen
and 0.

which t e e

in exce enenergy '"

the Pseudopo
three electrons

alculated by .
e enclosing t "

of

CR
or at &/Vo

press@re a

energy of the erm .
e e

ars.

fa

uld then be .
008 Ry as s

obtained

, q (Ry)

our Ferm
h Fermi energl .

b the me

0 35~

lf 'onslstent a

0 02 These a,Ie n
b nd cal,cula

„ot the e
lations

—' to~ ln going from 3

0.32
0.30
0.25

0. s
f g abthe relative e0 003 Ry ln



M. ROSS AND K. W. JOHNSON

TABLE II. Pseudopotentials calculated from energies at 8" for a jap = 1.0.

1.0
Exchange factor

0.75
8jap= 1.0

Ashcroft (Ref. 12) Segall (Ref. 13)

0.0073

0.0384

0.016/

0.0430

0.0178

0.0435

0.0197

0,0443

0.0179

0.0562

0, 023

0.043

change occurs in the ordering of the levels, and the Fermi
energy decreases by less than 0.001 Ry. We therefore
assume that qualitative remarks concerning changes in
the -', exchange band structure apply equally to other
exchange factors in this range.

Ashcroft, on the basis of a very careful analysis of the
Fermi surface using pseudopotential theory to interpret
de Hass —van Alphen experiments at normal density,
concluded that 82' was above but very close to the
Fermi surface. Our results also indicate that 8 2' is very
dose to the Fermi surface but we cannot make a Gner
distinction, due to the inaccuracy in our Fermi surface.
In this paper we make no attempt to examine the
details of the Fermi surface using the present theory.
Our objective is to predict what qualitative changes
will occur under pressure. It is clear, for example, that
thc t/I/2 1s Inovlng below thc Fclmr surface at about
normal density.

It is possible to get some idea as to which exchange
factor gives best agreement with Fermi surface data by
comparing the pseudopotentials obtained from each
band structure with the empirically determined pseudo-
potentials of Ashcroft. Ashcroft used a wave function
made of four plane waves. The energies at W are
related to pseudopotential coeKcients Vg.j. and V2pp by

~x—~'2'= 4Vux

t/I/2' —5'3 = 2 V2pp —2 Vyyy.

In order to make a consistent comparison with Ashcroft
the pseudopotential coeKcients in Table II were ob-

tained by solving these equations using the actual band-
structure points at O'. Comparison with Ashcroft's
results indicates that the best exchange factor in terms
of Fermi surface experiments lies very close to the best
exchange factor from thermodynamic stability and
very accurately predicts the splitting between the S'~
and W~'. Tables III and IV list the band-structure
calculations at a number of points of high symmetry.
Shown for comparison are the results of Segall. " It
may be noted that the exchange factor has relatively
little effect on the band structure. The most sensitive
point being the H/'2' state. We have compared the
results in Table IV at f=0 72 and. .f= 1.0 with recent
unpublished calculations of Snow. "Our results di8er
on the average by +0.0002 Ry. The largest difference
occurs in the 52' state and is 0.0007 Ry. This state is
obviously very sensitive to the potential.

Melz'5 has recently explored the effect of pressure on
the Fermi surface of aluminum with de Haas —van
Alphen experiments. He measured the changes with
pressure in the y cross section, which is the extremal
orbit around the point U. This cross section is the Fermi
surface area 5„, in the third zone near the U point.
Melz measured the change in this cross section ES/Ss
up to 7 kbar where Sp is the 1- atm, 4.2'K value and
obtained the pressure derivative d (AS/Ss) /dE=
—(4.7+0.6) X10 '/kbar. As a model of this region of
the zone he assumed this cross section to be approxi-
mated by S„=C(E —Ef). C is assumed to be a con-
stant. Ey and E„are the Fermi energy and the energy at
U' nearest to Ef. He then used the experimentally deter-

TAnLs IH. Conduction band energies relative to r~ variation with lattice parameter at f= s.

1.05

X4' (1,0, 0)
Xg
L2' (4, 4, k)
L,g

&3 (~4i 4, 0)
K$
Xg
8'3 ($, 1, 0)
5'g'
8'g

QpS

gpb

0.5623
0.6135
0.4461
0.4378
0.6318
0.6566
0.6869
0.7014
0.7580
0.7603
0.712

0.5842
0.6481
0.4598
0.4665
0.6568
0.6844
0.7289
0.7294
0.7827
0.8215
0.740
0.776+0.008

0.6082
0.6835
0.4747
0.4968
0.6839
0.7107
0.7/61
0.7596
0.8088
0.8876
0.782
0.894

0.6628
0.7564
0.5084
0.5639
0.7449
0.7656
0.8800
0, 8271
0.8654
1.0359
0.867
0.894

0.7279
0.8314
0.5484
0.6376
0.8166
0.8259
0.9942
0.9055
0, 9274
1.0294
0.940
0.984

~ Calculated as part of band-structure calculation.
Calculated by fitting the band near the Fermi energy to a pseudopotential and discussed in text.
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TABI.E IV. Conduction band energies relative to 1'r variation with exchange factor at a/ap ——1.0.

0.72 0.75 1.0
Segall

(Ref. 13)

X4' (1, 0, 0)
X1
L '(l, k, k)
L&

X (-', —,', 0)
E1
EI
W3 (~~ 1, 0)
W2'

5"1
E&a

Epb

0.6082
0.6835
0.4747
0.4968
0.6839
0.7107
0.7761
0.7596
0.8088
0.8876
0.782
0.814+0.008

0.6078
0.6829
0.4751
0.4952
0.6836
0.7114
0.7736
0.7595
0.8108
0.8820
0.781

0.6076
0.6825
0 ' 4754
0.4943
0.6835
0.7118
0.7721
0.7594
0.8120
0.8788
0.780

0.6066
0.6779
0.4786
0.4860
0.6831
0.7144
0.7598
0.7596
0.8217
0.8509
0.771

0.622
0.698
0.483
0.512
0.699
0.723
0.802
0.776
0.819
0.923

Calculated as part of band-structure calculation.
Calculated by fitting the band near the Fermi energy to a pseudopotential and discussed in text.

mined changes in S to obtain changes in E and thereby
the change in the Ashcroft pseudopotential under
pressure. We use the same model for S„,but calculate
this cross section directly from our computed pressures
and energy levels. We calculate d(ES/Sp)/Ap=—3.0X10-'/kbar. Part of this discrepancy can be
accounted for by the theoretical compressibility being
16% high. Using the experimental compressibility, we
calculate d (6S/ Sp) /d P= —3.4X 10 '/kbar which is
too low, but in reasonable qualitative agreement. Also,
our results are based on taking differences in calcula-
tions extending over a much wider pressure range. The
results predict E„will move above the Fermi surface
near a/ap ——0.92 or about 500 kbar. Note that points X
and U are degenerate.

Burton and Jura" have measured the Fermi momen-
tum of aluminum from 0 to 100 kbar at room tempera-
ture through the use of positron annihilation. They
found that over this range which is from a/ap ——1.0 to
0.97 (0 to 100 kbar) the Fermi momentum was well
described by the free-electron model. Our results as
shown in Fig. 3 are in good agreement with these
experiments.
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APPENDIX

In this section we discuss the details of our total-
energy calculations. We assume the reader is familiar
with the work of Slater and DeCicco.'

We first discuss the total Coulomb energy Ezo &

which may be written as

Ec.„i=-',fp(r) LV..(r) +V..(r) ]dr
+-',Jp(r) V„.(r) dr+8„„. (A1)

V(r), the Coulomb potential, is

V(r) = V„,(r) +V..(r) . (A2)

In the muffin-tin approximation, p(r) and V(r) are
treated as constants p, and P, outside of the muffin tin.
p, = (charge outside muffin tin) /(volume outside muffin
tin). Rater and DeCicco have shown that in an fcc
lattice with the muffin-tin potential,

where
$p= —(0.81.63482/a) q, X 2, (A3)

q, = — p,dr. (A4)

~.„i=-,'X p(r) V(r) dr

——,
' g Z [p(r) dr/~ r—R. ~)+E„„. (A5)

7 is the number of cells, and the first term on the
right-hand side is integrated only over a single cell,

6 represents an integration over the unit cell; a is the
lattice constant of the unit cell. The factor 2 converts
the Gaussian units of Slater and DeCicco into atomic
units (Ry) with a in atomic units. Slater and DeCicco
have also shown that V(r) must satisfy Poisson's
equation with the boundary condition at the mufIin-tin
radius E, such that

V(RB) —pc= 0 107123(q./a) X 2

leading to a discontinuity in the Coulomb potential.
Equation (A1) may be written as
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A9 becomesEquation (A9

p(r) dr
(r) V(r) dr —-', Z

X 2

Z= p(r) dr= Z,+Z„ (AS)

where
Zs= gsZc 'gc )

of E s. (A7) and (A8) into (A6) gives

+-Z— p,(r)dr, Z,

~ I Rpl

+1Z Z' '
( ), I R~l
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