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This paper reports the results of self-consistent calculations on aluminum of the total energy, bulk modulus,
and band structure by the augmented-plane-wave method. Using a Kohn-Sham free-electron exchange
we calculate a 0°K equilibrium volume 5.8%, greater than observed and a compressibility too large by
16%. We find that a free-electron exchange factor of 0.71340.01 would predict the correct 0°K equilibrium

density.

I. INTRODUCTION

In this paper we report the results of calculations for
aluminum of the total energy, bulk modulus, and band
structure under compression, using the augmented-
plane-wave (APW) method and utilizing the local
exchange approximation. A similar calculation has been
reported recently by Rudge for lithium,! also using the
APW method, and by Liberman? for lithium, beryllium,
aluminum, and iron. Liberman uses a modified Kor-
ringa-Kohn-Rostoker (KKR) method and a spherical
unit cell.

We have used the standard APW method described
in detail elsewhere.? Since some variations of the original
method have appeared recently,* it is worthwhile to
state explicitly that we treat the charge density and the
crystal potential as constants in the space between the
touching spheres and apply the treatment of Slater and
DeCicco® to calculating the Coulomb-potential dis-
continuity at the sphere boundary.

II. CALCULATION OF PRESSURE AND ENERGY

The band calculations were made for 256 points in
the full Brillouin zone. All ten inner (core) electrons
were also treated self-consistently, but in an atomiclike
fashion by using the Noumerov method to solve the
Schrédinger equation, and requiring the wave functions
to be zero at the muffin-tin boundary. The Fermi energy
used in the band calculations was determined, using the
method described by Snow and Waber,® by filling in the
lowest states until the sum of the weights of these
states equaled the number of electrons in the band.
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The total energy may be expressed as
E= Ek+fdr p(1) [Vne(r) +3Vee(r) +%fVeX(r):|+Enn'
(1

Ey is the total kinetic energy and the remaining terms
represent the total potential energy U. p(r) is the total
electron density, V. is the electron nuclear potential,
Ve is the electron-electron-potential, Ve is the exchange
potential, and E,, is the interaction energy of the
nuclei. We use the free-electron exchange approxima-
tion such that

Vex<r) = —3[(3/1)/)(1') ]1/3;

f is the exchange factor and is a constant.
If the eigenvalues satisfy the one-electron equations

Giﬂi(r) = I_-__ V2+ Vne(r) + Vee(r) +fVex(r) ]#i(r) ) (3)

then the variational principle is obeyed and the virial

theorem
PV=3E,+3U (4)

is satisfied.!” PV is the product of pressure and volume.
All of the computations presented here were set up to
satisly the virial theorem. Details of these calculations
are given in the Appendix.

The criteria for self-consistency were such that con-
secutive iterations yielded variations in total energy
less than 5%10~*Ry. The computed pressure and
energy as a function of volume is shown in Figs. 1 and 2.
These calculations were done with an f=%, variously
referred to as the Kohn-Sham-Gaspar or Dirac ex-
change. The pressures were calculated by the virial
4709

(2)

Copyright © 1970 by The American Physical Society



4710 M. ROSS

P (kbar)

J
o (0.72)0 -
(0.75)0
| I I I
0.7 0.8 0.9 1.0 T T.2
vV

I16. 1. Calculated pressure (kbar) versus volume ratio.

theorem. The energy curve was drawn in the bowl by
fitting the energy to a polynomial expansion in volume
and interpolating. The pressures calculated by differ-
entiating this expansion in energy agreed with pressures
from the virial theorem to within 3 kbar. The dashed
lines in Fig. 2 are the derivatives as obtained from the
virial theorem.

The calculations were made using a potential grid
of up to 500 points rather than the 200 points usually
used in the APW calculations. It was only by so doing
that the resultant energy-volume curve would agree
with pressures from the virial theorem to the accuracy
we believed they should. We used a mesh doubling
scheme similar to Herman and Skillman® with doubling
occurring at grid points 80, 160, 240, 320, and 370. The
major limitation in the exact calculation of the energy is
the accuracy to which the core electrons can be com-
puted, and we estimate this to lead to an over-all error of
about 0.01 Ry and 15 kbar.

The number of APW’s used in constructing the wave
functions varied for each state. However, care was
taken that halving the number used changed the eigen-
value by less than the self-consistency requirement. All
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of the APW’S were truncated at /=12 of the angular
momentum sum.

The computed equilibrium volume ratio V/V, at
P=0kbar is 1.058 within the accuracy of both methods.
Vs, the experimental 0°K equilibrium volume, is 10.00
cm?/mole. —V(dP/dV)r, the bulk modulus at P=0 bar,
is 0.92 Mbar when calculated from the P—V results
and is 0.94 Mbar when calculated from the polynomial
expansion of the energy that was used to draw in the
solid curve in the bowl of Fig. 2. The good agreement
between these two calculations is another measure of
the degree to which these calculations satisfy the virial
theorem. The experimental bulk modulusis 0.794 Mbar.?

These results are in good agreement with the recent
calculations of Liberman.? He calculates a compressi-
bility of 0.93 Mbar and an equilibrium volume ratio of
1.070. Liberman uses the KKR method with a muffin
potential to calculate the band structure and then uses a
spherical unit cell as in the Wigner-Seitz model. This
approximation allows him to compute the pressure by
evaluating a surface integral. The greatest difference
between his calculation and ours is in his model of the
exchange interaction. It is a variant of the free-electron
exchange model with f=%. For a detailed discussion the
interested reader should see Liberman’s paper.

These comparisons with experiment neglect the zero-
point vibrational properties. We can estimate these by
using the Griineisen model.’® In this approximation the
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zero-point energy E° and pressure P° are
E'=(9/8)Nk©,
P=(y/V)E".

(5)
(6)

7 is Griineisen’s parameter, equal to 2.19 for aluminum?;
O, the Debye temperature, equals 430.3°K ?; and V
equals 10.0 cm?®/mole.® From this we obtain a P° of
9 kbar. At the highest density, V/V,=0.729, P° is
about 16 kbar. These corrections are within the order
of our numerical accuracy and will be neglected. An
additional uncertainty arises from our use of 256 points
in the full Brillouin zone. We have made no attempt to
assess the magnitude of this error.

The same calculations were made using exchange
factors of 2 and 0.72. These results are shown by the
two unconnected points in Fig. 1. Interpolating we find
that the exchange factor which predicts the correct
0°K density is 0.713+0.01. The uncertainty is based on
the error estimate. This figure is close to the “optimized
exchange” factor of 0.72 determined by Kmetko! for
atomic aluminum. Kmetko solved the atomic problem
using the atomic analogs of Egs. (1)—(3) for a number
of exchange factors. The eigenfunctions were then used
in the Hartree-Fock equations and the exchange
factor which gave the lowest energy was referred to as
the “optimized.exchange” factor. The results of recent
unpublished work on calcium by the authors suggest
that the agreement in the optimized exchange factors
for aluminum atom and solid may be fortuitous.

Using the exchange factor of 0.713 we have calculated
the energy of cohesion to be 0.324-0.02 Ry. The experi-
mental value is 0.25 Ry.® The energy of the atom was
calculated with the Herman-Skillman program.? The
results for other exchanges are given in Table I. Liber-
man reports a figure of 0.20 Ry.

The calculation of cohesive energy is fraught with at
least two uncertainties. First, we are seeking the small
difference between two large numbers obtained from
two models which are not strictly comparable. Second,
it is not clear that the proper exchange factor for the
atom will be the same as in the solid. For example, if we
assume that the correct exchange factor is 0.715 for the
atom and 0.713 for the solid, we arrive at a cohesive
energy in excellent agreement with the experiment. We

TaBLE I. Pressure and energy versus exchange
factor at V/V,=1.0.

f P (kbar) Esolid (RY) lgcohesion (RY)
0.75 —44 —485.1744-0.01  0.35+0.02
0.72 9 —483.667 0.33
0.713e 0.0s —483.13= 0.32
2 56 —480.997 0.30
Experiment (Ref. 9) 0.25

% Obtained by interpolation.
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I'16. 3. Change in reduced energy E*(k) with lattice parameter,

suspect that the latter may be the case since none of
the exchanges appear to give the correct cohesive
energies. For these reasons it appears that from the
thermodynamic point of view the best empirical method
of obtaining the exchange factor would be from the
solid properties alone and not from cohesive energies.

III. BAND STRUCTURE UNDER COMPRESSION

Figure 3 shows the variation of the band structure
with lattice parameter at some points of high symmetry
in the Brillouin zone. The calculations were made with
the % exchange factor. The energies are expressed in the
reduced units E*(K)=[E(K)—E(0)](a/a,)? with
E(0) equal to the energy of the lowest state (I'y) of the
conduction band. For free-electron states with a con-
stant effective mass, E*(K) is a constant at all a/ao.
The Fermi energies shown in Fig. 3 were obtained by
first fitting the energy levels near the Fermi energy to
within 0.001 Ry with an Ashcroft-type pseudopoten-
tial,’> an adjusted effective mass, and a wave function
of nine plane waves. A random set of points inside the
Brillouin zone was generated at which the eigenvalues
were calculated by the pseudopotential method. The
energy of the Fermi surface enclosing three electrons
could then be determined. The estimated accuracy of
our Fermi energy is 40.008 Ry as shown by the bars.
These are not the Fermi energies that were obtained
in the self-consistent band calculations by the method
of Snow and Waber.

Changes in the band structure in going {from % to
0.72 exchange are small, the maximum change being
0.003 Ry in the relative energy of Wy’ above I'l. No
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Tasie II. Pseudopotentials calculated from energies at W for a/ao=1.0.

Exchange factor a/ap=1.0
1.0 0.75 0.72 2 Ashcroft (Ref. 12) Segall (Ref. 13)
Vi 0.0073 0.0167 0.0178 0.0197 0.0179 0.023
Vaoo 0.0384 0.0430 0.0435 0.0443 0.0562 0.043

change occurs in the ordering of the levels, and the Fermi
energy decreases by less than 0.001 Ry. We therefore
assume that qualitative remarks concerning changes in
the 2 exchange band structure apply equally to other
exchange factors in this range. '

Ashcroft, on the basis of a very careful analysis of the
Fermi surface using pseudopotential theory to interpret
de Hass-van Alphen experiments at normal density,
concluded that W, was above but very close to the
Fermi surface. Our results also indicate that W' is very
close to the Fermi surface but we cannot make a finer
distinction, due to the inaccuracy in our Fermi surface.
In this paper we make no attempt to examine the
details of the Fermi surface using the present theory.
Our objective is to predict what qualitative changes
will occur under pressure. It is clear, for example, that
the Wy is moving below the Fermi surface at about
normal density.

It is possible to get some idea as to which exchange
factor gives best agreement with Fermi surface data by
comparing the pseudopotentials obtained from each
band structure with the empirically determined pseudo-
potentials of Ashcroft. Ashcroft used a wave function
made of four plane waves. The energies at W are
related to pseudopotential coefficients Vi and Vago by

Wi—Wy =4V
and
Wo' —Ws=2Va0—2V11.

In order to make a consistent comparison with Ashcroft
the pseudopotential coefficients in Table II were ob-

tained by solving these equations using the actual band-
structure points at W. Comparison with Ashcroft’s
results indicates that the best exchange factor in terms
of Fermi surface experiments lies very close to the best
exchange factor from thermodynamic stability and
very accurately predicts the splitting between the W,
and W,'. Tables III and IV list the band-structure
calculations at a number of points of high symmetry.
Shown for comparison are the results of Segall.® It
may be noted that the exchange factor has relatively
little effect on the band structure. The most sensitive
point being the W, state. We have compared the
results in Table IV at f=0.72 and f=1.0 with recent
unpublished calculations of Snow.* Our results differ
on the average by +0.0002 Ry. The largest difference
occurs in the Wy’ state and is 0.0007 Ry. This state is
obviously very sensitive to the potential.

Melz! has recently explored the effect of pressure on
the Fermi surface of aluminum with de Haas—van
Alphen experiments. He measured the changes with
pressure in the y cross section, which is the extremal
orbit around the point U. This cross section is the Fermi
surface area .Sy, in the third zone near the U point.
Melz measured the change in this cross section AS/.Sy
up to 7 kbar where S, is the 1 atm, 4.2°K value and
obtained the pressure derivative d(AS/S,)/dP=
—(4.740.6) X10-3/kbar. As a model of this region of
the zone he assumed this cross section to be approxi-
mated by S,=C(E,—E;). C is assumed to be a con-
stant. E; and E, are the Fermi energy and the energy at
U nearest to E;. He then used the experimentally deter-

Tasr III. Conduction band energies relative to I'; variation with lattice parameter at f=2.

a/a 1.05 1.025 1.0 0.95 0.90
X/ (1,0,0) 0.5623  0.5842 0.6082 0.6628 0.7279
X 0.6135  0.6481 0.6835 0.7564 0.8314
LY 3,4, 1) 0.4461  0.4598 0.4747 0.5084 0.5484
L 0.4378  0.4665 0.4968 0.5639 0.6376
Ks (3,%,0) 0.6318  0.6568 0.6839 0.7449 0.8166
K, 0.6566  0.6844 0.7107 0.7656 0.8259
K 0.6869  0.7280 0.7761 0.8800 0.9942
Wi (3,1,0) 0.7014  0.7294 0.7596 0.8271 0.9055
Wy 0.7580  0.7827 0.8088 0.8654 0.9274
Wi 0.7603  0.8215 0.8876 1.0359 1.0294
Eg® 0.712 0.740 0.782 0.867 0.940
Egb 0.776:£0.008  0.894 0.894 0.984

8 Calculated as part of band-structure calculation.

b Calculated by fitting the band near the Fermi energy to a pseudopotential and discussed in text.
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I'; variation with exchange factor at a/ao=1.0.

Segall
f 2 0.72 0.75 1.0 (Ref. 13)

X (1,0,0) 0.6082 0.6078 0.6076 0.6066 0.622
X1 0.6835 0.6829 0.6825 0.6779 0.698
LY 3,11 0.4747 0.4751 0.4754 0.4786 0.483
Ly 0.4968 0.4952 0.4943 0.4860 0.512
K; (3,3,0) 0.6839 0.6836 0.6835 0.6831 0.699
K, 0.7107 0.7114 0.7118 0.7144 0.723
K, 0.7761 0.7736 0.7721 0.7598 0.802
Ws (3,1,0) 0.7596 0.7595 0.7594 0.7596 0.776
w' 0.8088 0.8108 0.8120 0.8217 0.819
W, 0.8876 0.8820 0.8788 0.8509 0.923
Ep® 0.782 0.781 0.780 0.771
Egb 0.8144-0.008

# Calculated as part of band-structure calculation.

b Calculated by fitting the band near the Fermi energy to a pseudopotential and discussed in text.

mined changes in S to obtain changes in E, and thereby
the change in the Ashcroft pseudopotential under
pressure. We use the same model for S,, but calculate
this cross section directly from our computed pressures
and energy levels. We calculate d(AS/So)/Ap=
—3.0X107%/kbar. Part of this discrepancy can be
accounted for by the theoretical compressibility being
169 high. Using the experimental compressibility, we
calculate d(AS/So)/dP=—3.4X10"%/kbar which is
too low, but in reasonable qualitative agreement. Also,
our results are based on taking differences in calcula-
tions extending over a much wider pressure range. The
results predict E, will move above the Fermi surface
near a/a,=0.92 or about 500 kbar. Note that points K
and U are degenerate.

Burton and Jura'6 have measured the Fermi momen-
tum of aluminum from O to 100 kbar at room tempera-
ture through the use of positron annihilation. They
found that over this range which is from a/a;=1.0 to
0.97 (0 to 100 kbar) the Fermi momentum was well
described by the free-electron model. Our results as
shown in Fig. 3 are in good agreement with these
experiments.
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APPENDIX

In this section we discuss the details of our total-
energy calculations. We assume the reader is familiar
with the work of Slater and DeCicco.5

We first discuss the total Coulomb energy Ecom

which may be written as
ECou1= %fp(r) [Vne(r) + Vee(r) ]dr

+3/p(1) Vae(1)dr+ Epn. (A1)
V(r), the Coulomb potential, is
V(I') = Vne(r) +Vee(r) . (A2)

In the muffin-tin approximation, p(r) and V(r) are
treated as constants p, and ¢, outside of the muffin tin.
p.= (charge outside muffin tin) /(volume outside muffin
tin). Slater and DeCicco have shown that in an fcc
lattice with the muffin-tin potential,

do=— (0.8163482/a) ¢, X2, (A3)

where

o=~ [ par. (A4)
A represents an integration over the unit cell; @ is the
lattice constant of the unit cell. The factor 2 converts
the Gaussian units of Slater and DeCicco into atomic
units (Ry) with @ in atomic units. Slater and DeCicco
have also shown that V(r) must satisfy Poisson’s
equation with the boundary condition at the muffin-tin
radius R, such that

V(Rs) —¢.=0.107123(g./a) X2,

leading to a discontinuity in the Coulomb potential.
Equation (A1) may be written as

Foour=3N /A o () V (1) dr

~3 22 [[o(0)dt/| —Ra [+ Eun.  (A5)

N is the number of cells, and the first term on the
right-hand side is integrated only over a single cell,

Vae(t)=— 3 (Z/| 1—Ra )
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and

En= % Z Z <ZZ/R0£13)

Z is the nuclear charge, R,z is the distance between
nuclei @ and 8, and the prime indicates a7g. Since all
cells are identical, let R;=0, and the Coulomb energy
per atom may be written as

Ecoul o(r) dr

= 2/ p(r)V(r)dr—lZ/

1 p(r)dr
-1z [ 5

The prime now indicates 8% 1.

The 0 denotes a volume integration outside the cell
Ry=0. The last two terms on the right-hand side of
Eq. (A6) represent the interaction of the nuclei with
the charges on the other atoms. Equation (A6) may be
simplified by the following steps:

Z’ (A6)

IR,g]

Let
p(1) =p, (1) +pe. (A7)
Since p(r)=p, outside the muffin-tin radius, then
ps(r) =0 outside the muffin tin.”
Then
4=~ [ miyar,
7= / p(r)dr="Z,+Z., (A8)
A
where

Zc: —{e, Zs: —{s.

Substitution of Egs. (A7) and (A8) into (A6) gives
Ecou 1 d
Boou _ ;/ p(£) V(£)dr—1 z/ p(r)dx

2 Ja

v
e [P
EARARRRE o
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It can be shown that the term in square brackets on
the right-hand side of Eq. (A9) is zero. Since p,(r) =0
outside the muffin tins, the integral over the space
outside the central cell is only over the muffin-tin
spheres. By Gauss’s law each integral over each muffin
tin is cancelled by a corresponding term Z,/R and the
bracketed term becomes zero.

The term in curly brackets on the right-hand side of
Eq. (A9) is the potential at the origin due to a con-
stant electron charge distribution p, outside the cell
and a lattice of positive ions of charge Z,. The well-
known Ewald potential ¢F is related to the term in
curly brackets by

E:,__/ Pcdrfpcdr+z, Z,
A B

r Jo r [Rg |

(A10)

Equation (A9) becomes
ECoul (r) dr

lef”
‘Z/r) rzAr

a
1z (<¢>E+pc /A f) (A11)

For an fcc lattice®
¢F= —4.584850(Z,/a)

|
A

as obtained by numerical integration.
E., the total exchange energy, is obtained by direct
integration using the muffin charge distribution:

=y f o(1) Ven () dr.

E; may be calculated in the usual manner by re-
arranging Eq. (A3) and summing over the individual
electron kinetic energies. This is written as

E
J=Zei—

and

X 3.821656

HlE;

Z;
a

N
The total energy is

E= Ek+ ECou1+ Eex~

fA (1) Ve (1) - Vo () - f Ve (1) T

* Work performed under the auspices of the U.S. Atomic Energy
Commission.
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