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Certain statements concerning the Hubbard model in the atomic limit are clari6ed and corrected. Certain
inconsistencies and difBculties associated with various approximate solutions to the Hubbard model near
the atomic limit are pointed out.

The Hubbard model describes electrons in a single
band moving with their mutual Coulomb repulsion
screened out with the exception of two electrons on the
same lattice site. If two electrons hop onto the same
site, the potential energy of the system is increased by
an amount I. Explicitly, the model Hamiltonian is

H=g T,,c;,rc;,+,'I P n,.n, -

The sum is over Kannier states labeled by a lattice-site
index i. It will be useful to define an effective band-
width 6 as

This model Hamiltonian is, from a conceptual stand-
point, the simplest possible many-body Hamiltonian
describing electron motion in a crystal. Of particular
physical interest is the narrow-energy-band regime
kT«h« I. Many approximate solutions have been
proposed in this regime, each of which in some sense or
another takes advantage of the fact that 6/I((1. The
purpose of this note will be to analyze these approaches.
First, we will discuss the difhculties associated with
any systematic perturbation theory in 6/I. Closely
associated with these difhculties are certain ambiguities
:..n the atomic limit (6—4). After discussing the atomic
limit, we will be in a position to analyze various Green s-
function decoupling approaches. This note will be con-
cerned with arbitrary densities, and the associated com-
ments do not necessarily apply for low densities, nor
for the half-filled-band case, where special approaches
have been developed.

The problem that any perturbation theory will en-
counter can be stated quite generally and quite suc-
cinctly. For simplicity, let the temperature T be zero.

2

We then have two parameters with dimensions of energy
in the problem, 6 and I.For 6«I, we have a dimension-
less coupling constant 6/I and should then be able to
find an expression for the quantity of interest in powers
of ih/I. Such an expansion exists. However, the co-
eKcients are not well defined. To be specific, consider
the case of infinite I. Then the series is "trivial" in that
it only consists of one term. However, in order to eval-
uate that term we must be able to find an exact solution
to a generalized excluded-volume problemI For kT=O
and I—+~, the only energy parameter left is d. One can
write down pseudoexpansions in explicit powers of 6
Pe.g., the mass-operator expansion of Esterling and
Lange' (EL)7, but each term is of the same order. In
the case of the EL mass-operator expansion, the higher-
order terms essentially behave as h(h/&o)", where w

is the frequency associated with the Fourier transform.
Since the frequencies of interest are also of order b, ,
each term is of the same order. ' This point will be
further clarified when we discuss the (related) difficul-
ties with the atomic limit (6~0).

Even lacking a finite-6 solution, one can obtain a
great deal of information about the finite-d problem
from the atomic limit. Harris and Lange' have derived
certain exact sum rules for the spectral weight function
(SWF) . These sum rules are couched in terms of certain
correlation functions. If somehow we knew certain of
these correlation functions for (6—+0), we could find,
say, the zeroth, first, and second moments of each peak
in the SWF correct to O(h). These could then be di-
rectly translated into quasiparticle energy levels (from
the first moment) and lifetimes (from the second
moment) .

Esterling and Lange4 have analyzed the atomic limit
and emphasized the physical manifestations of the de-
generacy, originally pointed out by Harris and Lange.
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Their statements that the single-particle Green's func-
tion G~ is nonlocal even for zero hopping (d~) and
that various nonlocal correlation functions (e.g. , the
density-density correlation function) do not factor
for zero hopping remain valid. However, their claim
to hRvc expressed Rll thc ambiguity in G2 arising fI'om
the degeneracy in terms of the ambiguity in G& contains
certain inconsistencies.

This expression for G2 in terms of Gj is given in Eq.
(70) of I. In order to see explicitly what causes the in-
consistency, it is necessary to include in the expression
for G2 all the terms of explicit order b, that were dropped.
Rather than rederiving such an equation using the
somewhat laborious techniques of I, it will be easier to
derive here a suitable expression for G2 using the tech-
nique of functional derivatives.

The following definitions will be employed:

(3)

F(11'a)=—i&(e, c,.cg.')+), (4)

G(121'2'; oo') =——&(cg.c2. c2.'cp. ')p). (5)

Here the usual expectation values have been redefined
by introducing a fictitious external field. Specifically,

&( )+) &(~ )+)/&(~)+» (6)
where

Af tcr some straightforward matrix IDRnlpulatlon wc
obtain the following equation for 8G/hU, evaluated at
U=O

[h(13)+IF(13o)] hG(31'o)

hU 2'2lr'

=G(12'lr) G(21'o) B., + hF(11'~)
hU 2'2a'

+G(13o)T(33'), , +IG(13o)F(33'o)
BF(3'1'a)
BU 2'2o'

hF(3'1'o), . 8G(1'4—o)
U{22 )

{ ){)
hU(2

—h„G(12'o) (—i) & (np~m. cg.t)+)
.G(12'o) (—i) &(cm.c2 tcm cv.t)+)

+h. ,G(12o) (—i) ((c2 'c2 cm.cv. ')+)

—G(13 ) r(33') (—)
h U (2'2o')

(
.
)

h&(caw~ c8 c1 )+)
8 U(2'2a ')

&= expf i P—Jdg J dt2 U(2'2o)cm, tcs,] (7)
RgRg~e'

is the 5 matrix and all the operators are to be considered,
in the interaction representation. Hence, the equations
of motion for the operators are not modi6ed [they in-
volve the original Hamiltonian in Eq. (1)], but the
equations of motion for the Green's functions pick up
additional terms because of the implicit time depend-
cncc ln S.

The functional derivatives will yield relationships
among the various Green's functions. Essentially,
taking a functional derivative yields a higher-order
Green's function. In par ticular,

hG(11'o) = —[G(121'2'; a 0') —G(11'a )G(22'o') ].IU(2'2o')

Suppose we were to drop the last three terms, Rll of
explicit order d. Now in the 6—4, J-+~ limit, the re-
maining terms simplify somewhat since in that limit
F-+0, hF/8U~, and

IF(11'o)~ h(11'). (12)

Further, evaluate Eq. (11) for 2'=2+, 2=1, and o'=
—a. In that case, Eq. (11) becomes

(i) (1—e ) [F(11'o)—e G(11'o)]

=iG(11'~)[&(e, e, )+)—e '] (12')
ol

(g) (1—N )F(11'a)= —G(11'a)[&(eg eg )+)—e ].
If we make the definition

G'(12) '=i(8/W~)h{12), (9)

then the equation of motion for G becomes

[G'(12)—'—T(12)—U(12o) ]G(21'a)

=h(11')+IF{11'o). (10)

In a similar fashion, an equation of motion for I' may be
derived. Next, an equation for the two-particle Green's
function may be derived by taking the functional de-
rivative of Eq. (10). This involves 8F/BU, which may
be obtained from di6'erentiating the equation for F.

(12ll)

For I~~, the left-hand side is zero and the right-hand.
side is nonzero. Hence, wc have a contradiction. Hence,
we were not justified in neglecting the terms of explicit
order d, even for 5~0.

These terms of order 6 are of the form G&& TX (cor-
relation function) . In order to see explicitly how these
terms remain noniero as h~, it will be useful to ana-

lyze the simple free-electron-gas (FE6) problem.
Indeed, it was just such an analysis of the FEG problem
which led EL to recognize the importance of the non-

locality of Gj in the Hubbard atomic limit.



4688 D. M. E STERLING

of Hubbard' and others' suffer from the defect that the
assumed factoring is incorrect to zeroth ord. er in d.
This point has already been emphasized, in I, and follows
from the nontrivial nature of the problem even as 6—+0
which we have just discussed.

More sophisticated decoupling schemes have been
proposed. ™.In particular, these approaches preserve
the Harris-Lange moments just as the EL mass-operator
expansion d,oes. However, they suGer from a similar

difhculty in that the results are couched in terms of
certain correlation functions. The moment-preserving
scheme of Tahir-Kheli and Jarrett does not in its present
form provide any proced, ure for evaluating the correla-
tion functions. Roth uses an RPA-like factoring in
Rd'. 9. This suGers from the Qaws associated with any
factoring in that zeroth-order terms are neglected. In
Ref. 10, she provides a procedure for evaluating the
correlation function. However, even given that the
variational principle is valid, her prescription LEq. (32)
of Ref. 107 has only been shown valid for operators in
her original basis set (in her notation, the set }2„}).
For the new operators given in Eq. (33)—(36) of
Ref. 10, a more complicated prescription is required,
involving yet more complicated correlation functions. "

Recently, Appelbaum and Penn" have proposed, an
approximate solution to a similar model in which the
Coulomb interaction was con6ned to a single site, inter-
actions being neglected on other sites. The inconsisten-
cies associated with factoring in the Hubbard, mod, el
carry over to their model. Ind, eed, they obtain a con-
tradiction in their paper which is similar to the one we
have obtained in Eq. (12"). Although they feel that
a better factoring scheme will remove this difhculty,
this author is of the opinion that contradictions will
always remain for any factoring.

In conclusion, although several approximation
schexnes have been proposed for the model Hamiltonian,
none of the approaches discussed in this note yields
meaningful or consistent results. Further, even the
atomic limit of the model remains an extremely non-
trivial problem.

The author acknowledges with pleasure several stim-
ulating conversations with Professor R. V. I.ange, Dr.
R. Bari, Dr H. S. Jarrett, and Professor J. B. Sokoloff.

The equation of motion for G~ in the FEG case is

Go(12)—'G(21') =8(11')+T(12)G(21'), (13)

G(11') =Gj'(11')+G'(12) T(23)G(31') . (14)

By definition, G is local. If we dropped, the second term,
wc would obtain a local Gy. HowcvcI', thc cxpllclt sohl-
tion to Eq. (14) is

—z
Gn = —Q exp} ik (Rg—Rp)7

X t 8(tg —tg )ng —8(tp —tg) (1—ng) 7

&( exp| —icy(tg —f~.) 7

. —Q expr ik (R,—R,,)7

&& t.8(&x 6') '+a 8(6 —4) (1 n~—)7, (15b)

(15a)

so that, for example,

(~&~&'t)l&g-&g = E expLslr (Ri—Rv)7
kgb

sinks E.—kgb coskpE

(ATE)'

where e= (4'/6'') '" is the density and E=}R,—R& }. —
Manifestly this Gy is nonlocal and the second term

in Eq. (14) is nonzero even for 5~0. Crudely speaking,
wc can say that the implied integration over the time
variable for G~ in Eq. (14) introduces a factor of 1/eq
arising from the last exponential in Eq. (15a) .This com-
bines with the explicit eI„so that the second term is
zeroth order in explicit powers of h. However, the
momentum dependence in nI, remains even as d—4.
Through its dependence on eI„ the second, term is
momentum dependent, or equivalently its Fourier
transform is nonlocal.

This term in Eq. (14) for G~ has a structure similar
to the terms we neglected in Eq. (11). Lacking a com-
plete solution, we can only conjecture that these terms
conspire to give a nonlocal contribution in an analogous
fashion.

Finally, we consider the various Green's-function fac-
toring schemes. The straightforward factoring schemes
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