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Collective Oscillations in a Simple Metal. I. Spin Waves*
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Using the Landau theory of Fermi liquids, we analyze the paramagnetic behavior of the alkali metals
at low temperatures. An integral formulation of the kinetic equations is derived, and this is solved for
arbitrary wavelengths (within the limits of Landau's theory), for arbitrary direction of propagation and
retaining an arbitrarily large number of the Landau interaction coefficients. We derive a practical algorithm
for obtaining the transverse and longitudinal susceptibilities; this enables us to discuss, with the generality
just outlined, all of the collective magnetization modes, as well as the features of individual-particle excita-
tions in a simple metal with spherical Fermi surface. The effects of scattering from dilute, random impurities
are also included. We catalog systematically the dispersion properties as well as the oscillator strengths of
all of these waves. Comparison of the results with the experiments of Schultz and Dunifer is described, and
the feasibility of observing the various spin-wave modes is discussed.

I. INTRODUCTION
The value of Landau's' ' theory of Fermi liquids has,

in the past few years, become widely appreciated.
This recognition is particularly evident in the case of
charged systems, where Silin' ' extended Landau's
work. The best examples of such charged Fermi
liquids are those formed by the conduction electrons in
the alkali metals. Regarded in this sense the metals
may be termed "simple. "

The valuable experimental work of Schultz and
Dunifer'' and Walsh, 7 indicating the validity of the
theory, has triggered the appearance of a host of
papers' '4 pointing out the richness of its detailed
predictions about waves in these "simple" metals. For
the most part these treatments have been directed
towards the analysis of waves of weak spatial dispersion
propagating in directions of high symmetry (with
respect to a constant external magnetic field) and the
effects of collisions usually ignored. For the purposes of
comparison with experiment, to be discussed later,
we have embarked on a more thorough investigation of
the electric and magnetic properties at macroscopic
wavelengths 1/q (q«Fermi wave number kr) and
low frequencies &v (Ace«Fermi energy er) of simple
metals with a spherical Fermi surface (the case of non-
spherical surfaces, with isotropic interaction, is discussed
in Refs. 11 and 12).

In this paper we consider only the magnetic properties
of these paramagnetic materials where the effects of
incipient ferromagnetism are negligible. That is, we
shall examine those collective excitations (spin waves)
involving the magnetization density within the frame-
work of the Landau theory —which imposes the limits
on (a&, q) described above.

In the work of Landau, Silin, and all subsequent
authors, the linear response in this regime of an infinite
Fermi liquid was studied by solving the Fourier-

2

transformed Boltzmann-Landau equation for the dis-
tribution function 8f(q, a&). Here we adopt a diAerent
approach. We shall solve in real space time for 8f(r, t)
by use of Chamber's" integral formulation of the
transport equation by extending his results to the
case of the interacting electron gas. This method,
emphasizing in a clear manner the physical processes
described, has found many applications in solid-state
physics. " " In using it we shall lay stress on the
motion of the individual particles, a salient feature in
Landau's quasiparticle theory. Not only for this
reason have we adopted Chamber's method, but also
because our results are in a form that might be applied
directly to transient phenomena in a bounded system.

We shall also consider the effects of collisions in a
more general fashion than has been attempted before.
In particular, we do not care to limit ourselves to the
case of large-angle scattering. However, we shall
restrict ourselves to the relaxation-time model.

In summary, we present in this paper an algorithm
for discussing all of the collective magnetization modes
in a simple metal when a small rf magnetic field is
applied either along or normal to a static magnetic
field. The results are valid for wavelengths arbitrarily
long or short compared to the cyclotron radius (pro-
vided q«kr) and for propagation at an arbitrary
angle to the static field. In addition, an arbitrarily large
number of the Landau scattering coefFicients, as well
as the dissipative scattering coefficients, are retained.
Use of the algorithm enables us to catalog systemati-
cally the dispersion properties as well as the oscillator
strengths of all of the waves in an infinite medium.
It also permits us to study the transmission of spin
waves in finite slabs. All of these results are applicable
to the neutral Fermi liquid He' by removing the charge-
dependent parameters from the results.

Conduction electron spin resonance (CESR) was
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first observed in reflection from a sodium surface by
Griswold et cl." and treated analytically by Dyson. "
More recently Schultz and Latham" were able to
measure the signal transmitted by a copper slab. Later
Schultz and Dunifer' repeated the experiment using
sodium and observed, in addition to the CESR line, a
complex structure of geometric resonances. The ex-
planation for these, given very successfully by Platzman
and Wold, 22 provided the first really convincing
evidence for the validity of Landau's theory. We shall
reconsider their results and show how a more refined
approach improving the agreement between theory and
experiment permits further information on the nature
of the Landau interaction to be extracted from these
experiments.

In Sec. II we consider the dynamics of quasiparticles
in the combined external and Landau fields —an
exposition of the Landau model first suggested by
Nozieres. '4 In Sec. III we treat the kinetics of the
particles including the eGect of collisions and we also
derive the integral form of the kinetic equations
describing the various types of spin and nonspin
processes. Subsequent sections treat the solution to
these equations (Sec. V), the algorithm for determining
the susceptibility (Sec. VI), and the dispersion proper-
ties and relative strengths of the collective modes
(Secs. VII-IX). Then follows a comparison of the
theory with the experimental results of Schultz and
Dunifer.

I=2 Trf=2 Zf- ~".=l(A~+fii)
s, st

and the corresponding spin density

(2. 1)

5,—=S(o,) =-', Tr(o,f) =-', g (o,)„f, , (2.2)

The components cr; of the spin vector r are, initially,
the Pauli matrices which describe rotations with
respect to the static magnetic field Hz (the circum-
flex indicates a unit vector) . We have, initially,

IL QUASIPARTICLE DYNAMICS

At the basis of Landau's theory is the assumption
that at low enough temperatures there exist energy
states which behave like individual particles. These
"quasiparticles" may be considered localized in space
if we are interested in their behavior over distances
long compared with atomic dimensions. Quasiparticles,
characterized by momentum k (in units 5=1) and
spin o, constitute the Fermi liquid which is described at
point r and time t by the distribution f(a, k, r, t) . The
latter, an element of a 2X2 matrix in spin space, is the
Wigner" distribution function. The related quasi-
particle energy is the element X(o') of an energy matrix.
We shall use f(a') to discuss the dynamics and will
consider its intrinsic behavior in the section on kinetics.

It is convenient to introduce certain spin averages.
We have the number density

Consequently,

S+= (1/v2)fi), S = (1/v2)f)t, S,= ,'( f~~—fii)-.

(2 3)

Similarly we may define the spin-independent energy

o= 2(&~~+~«)

and the spin-dependent counterparts

(2.4)

3c+= (1/v2) Ki), K = (1/v2) BC)i, 3C.= 2 (3'.))—3Cii) .
(2 5)

The matrix character of the spin vector 0' will hereafter
be assumed. Apart from a portion of Sec. III we shall
not write the spin subscripts explicitly. Thus a' (or a„,)
denotes element (rs) in the matrix of the component
0.; parallel to o. Note also that for brevity we write the
matrix f(a;,) =f„(a)a—nd th'e scalar f(o,) =f,. —

When a small rf magnetic field 5H (~ oH ~&&H) is
applied, '4 the magnetic moments precessing uniformly
in the static field H gain energy. This perturbation
sets up spatial and temporal fluctuations of both the
spin density and also (via the associated electric field)
the number density. The total field experienced by a
quasiparticle changes as a result. Landau expressed the
relationship between the increment in energy ABC(o')

and the change in the distribution bf(o', k, r, t) in the
form of the integral equation

MC(a, k, r, t) = -', Tr g F(k, a; k', a')

X&f(a'', k') +2ya'&H, -(2.6)

where 5 is the Landau scattering matrix. As we shall
discuss later, in an isotropic system from which spin-
orbit coupling is absent, the spin dependence is given by

$(k, a; k', a') = Q, (k, k') +a"o'$(k, k'), (2.7)

where 6, and S are experimentally determinable func-
tions. The sum in (2.6) is to be carried out over the
continuum of momenta up to the Fermi momentum kp.
The last term on the right of (2.6) is just the free-
electron energy arising from its magnetic moment
ya'=gp~ in the driving field 0II, where p~ is the Bohr
magneton and g 2.

We shall classify the di6erent types of scattering in
the following way.

(i) Spin-independent density fluctuations 5e(k)
cause the quasiparticle energy to change, as a result of
scattering, by an amount

&U(k) =-', g e(k, k') sn(k'),
kI

(2.8)

a'= (o+, o, o,), where o~= (1/K2) (o,Wio„). That is,

(0 ~2'r (O O) ('1 O)
0 = 0'+.= 0'

O)
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and we may regard b U as the spin-independent Landau
field.

(ii) Spin-density fluctuations BS(k), depending on
the scattering of the spins with the external field, bring
about an energy increment

=AX(Bf'/Be) +O(h'), (2. 11)

wlMI'e A ~yH/er at vei y low temperatures KT((er.
Just as in (2.6), we have

aX= g e(k, k') aS, (k')+ ',yH= ',qH*, (2.12)--
k~

thus defining an CGective static field H~. The latter is
therefore related to the applied field H by the equation

0
H* 1— e R,R', =II.

Be(k')

Up to now we have described the changes in energy
due to the combined e6ects of the magnetic and Landau
helds. However, we have not yet described the static

where the Landau field BH~(o') is given by

-',&BH (o, k, r, t) = ge(k, k')BS(o, k', r, t). (2. 10)
kt'

In other words, the CGective field bH* is the external
field bH plus the Landau field bH~ due to interactions.
Phrased in this manner, Nozicres'4 pointed out the

similarity between the Landau theory and the molecular
held theory of Weiss. The Landau held varies from
point to point but, unlike the Weiss field, it also
depends on the momentum of the particle experiencing
that field. This momentum-dependent force is the
source of the wealth of phenomena predictable from
the theory. We shall be concerned with type (ii) of the
two types of effects described above. However, in the
interests of uniformity we shall develop simultaneously
the kinetics and dynamics of both processes.

The CGects of interaction do not arise solely as a
result of the oscillatory electromagnetic held causing
(self-consistently) density fluctuations. An enhance-
ment of the free-fermion Pauli magnetization is the
feature associated with static magnetic field applied.
In such situations the spin vector 0' is aligned parallel
or antiparallel to the field III, corresponding to the
spin-up and -down electrons, respectively. The di8er-
ence in population is just

~S*=-' T(ref'(&))=-'I:f'( XPt) —f'( XI)I]

where f' is the Fermi-Dirac distribution and the static
quasiparticle energy is

X))'=e+AX, X)Ie=e—AX,

where e is the kinetic energy. For fields H((er/y or
r.T/y,

AS*=kL(f'(e)+~X(Bf'/Be)+" )
(f'(e) ~X(B—f'/Be)+—" )]

BE(r, t) = —c-ILBBA(r, t)/Bt j,
and the rf magnetic feld is

BH(r, t) = W x BA(r, t) .

(2.18)

(2 19)

We have already discussed the spin-dependent C6'ects
induced by the latter. We see that so far as energy
changes are concerned, the electric field enters only
through the spin scalar be and hence will modify the
singlet energy in the Landau field (2.8),

(2.20)

Summarizing, thc locRl cQcI'gy of R qURslpRItlclc ls
equal to its static equilibrium energy e plus the energy
gained from interaction with the rf electromagnetic
and Landau fields. We have a triplet of states with
energies

X,=e+-',ya", bH* (2.21)

resulting from spin and momentum scattering and a
singlet

(2.22)

arising from momentum scattering only.
From these Hamiltonians we derive directly the

equations of motion. Correct to zeroth order in b we
have

Be(k—(e/c) Ae)

Bp
= (Be/Bk) +O(b) =k/m*,

p = (Be/Br) +—O(b)

or, from (2.15), (2.17), and (2.23),
k=p —(e/c) (d/dt) (Ao)+O(&)

= —(e/c) ( BAe/rB) f+0(b).
= —(e/m*c) (k xH)+O(B) =——ae. (kXz), (2.24)

(2.23)

equilibrium energy with respect to which the time-
dependent changes take place. Functionally, it is
defined as the energy

X=e(k—(%)Ae) (2. 14)

of a particle-hole pair in the static field

H= V xA, (r), (2.15)

where A0 is a vector potential Rnd —e is the electronic
charge. A/t changes in quosiporticle energy result from
time depe-ndent ftuctuations about this equilibrium energy.

With the application of a time-dependent potential
BA(r, t) the above energy changes (if no spin-flip
occurs) by an amount

Be=X(p) —X(k) = —(e/c) BA (Be/Bp) +O(be) (2. 16)

bccRUsc tIic totRI momentum conjugRtc to posltloQ f ls
then

p=k —(%) (Ae+BA). (2.17)

By choice of gauge for the electromagnetic potential
the rf electric field is
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showing that a quasiparticle is accelerated by a Lorentz
force in a direction normal to its momentum and to the
magnetic 6eld.

The last equality in (2.24) is a definition of the
effective mass m*. In this definition are incorporated
the many-body eGects of the electron-phonon interac-
tion. The mass m* is related to the crystalline mass by
the Landau interaction and so should form part of the
present treatment. However, the crystalline mass is
not known accurately from either experiments or from
band calculations. Therefore we shall simply, consider
m* as a phenomenological parameter. It should be
remembered that the definition (2.24) is valid only for
spherical Fermi surfaces and in such cases it determines
the density of states JIi (for a single spin) at Q =Qip

Xp =oi*kp/2~'. (2.25)

It is also equal to the cyclotron mass, as measured by
Azbel-Kaner resonance, " but only in the case of
ellipsoidal Fermi surfaces —another example of the
high degeneracy of the isotropic system.

One important dynamical eGect, especially relevant
to the spin waves, has been left unmentioned. The spin
vector o'(t) behaves like a source of angular momentum
precessing in the total magnetic 6eld';

Bo/Bt )„.„..= —qa x (H*+BH*)

f(o) =f'(X(o) —MC(o) )+Sf(o)

=f'(X( ) )+Bf( )+0(B'),

where the quantity

8f(o) =Sf(o) —(BfQ/BQ) BX(o)

(3 1)

(3 2)

is the deviation of f(o)from it's local equilibrium value
f'(X(o')). Differentiating (3.1) with respect to t and
taking the various spin averages (2.1)-(2.5), we obtain
correct to order 6

III. QUASIPARTICLE KINETICS

We examined the dynamics of a single quasiparticle
by looking at its Hamiltonian X(f(o', k, r, t) ). In order
to obtain results explicit in (r, t) we need to examine the
kinetics of the quasiparticle population change Bf(o). '

One procedure for doing this is to solve a kinetic
equation: the 8oltzmann equation as adapted by
Landau and Silin, We shall derive our results directly
from an integral formulation describing the scattering
process.

Let f(o') be the perturbed distribution in the presence
of fields and let f'(X(o') —5X(o')) be its value at
equilibrium where f' is the Fermi-Dirac distribution.
Thus the change in population is given by Lsee (2.21)
and (2.22) j

= —yo xHQ+0(B). (2.26)

This equation could have been derived from the
Hamiltonian (2.21) by regarding o' as the spin com-
ponent of the generalized momenta (p„pQ) the co-
ordinates to which they are conjugated being (g, r),
where the Q is the set of angles generated from the Pauli
rotation matrices.

It is clear, from (2.26), that

where

dS; dfQ B= —o,' —(-',y5H*) + —BS;,
dt de Bt q, , dt

de df'B don—= ——(6U*) +
dt de Bt J, ,„dt

58;=-', Tr(o,bf),

Bn=-', Tr(bf).

(3.3)

(3.4)

(3.5)

(3.6)

and also
r, =const (2.27)

where
oy(t) =op(tQ) expLWiNr, Q(t—tQ) j, (2.28)

Qil.
* PH*= ',g(eH*/mc)——-(2.29)

is the Larmor spin-precession frequency in the field H*.
Returning with this result to (2.2) we see that the
.spin-density precesses

+( ) Ir»«««&&~= +( Q) Pt:~™&*( Q) ] ( )

We could return to consider first-order effects in the
equations of motion and would 6nd that the particles
were accelerated by the electric 6eld, Lorentz forces,
and spatial gradients of the Landau 6eld. However, for
the purposes of calculating transport coeKcients we
shall require explicit forms only for the unperturbed
particle trajectories gc=k(t), r=r(t), and o'=ir(t)].
As we shall see, the function of the first-order terms in
the Hamiltonian is to drive the collective waves through
the explicit time dependence of the Hamiltonian.

These equations describe the rates of population
change of the various components of spin as a result
of particles accelerating in the Landau and applied
fields. Counteracting such processes are collisional
effects. As described by Pines and Nozieres2' the rate of
change of the distribution f(k), in the absence of
spin, is

df/dt= g m(k, k') 8(X(k') —X(k) )

X I f(X(k') )D —f(X(k) )]—f(X(k) )L1—f(X(k') )jI,
where W' is the scattering matrix for real processes
between the states k and k'. Notice that the local
energy X(k, r)—rather than the equilibrium energy
Q(k) =X(k) —MC(k) —is conserved by the collisions.
We recognize the first term in the curly brackets as the
"scatter-out" contribution. This form of the collision
integral accounts correctly for scattering by impurities,
the most important process in metals at low tempera-
tures. "
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The generalization to include spin is straightforward.
Wlfll the dlstrlbutlon fllIlctloI1 f a fllllctloII of a' and k,
we have

df(0'& k) /d& ~co»ision

g % (k o"k' o') ll (X(o' k') —X(a' k) )

X I f(o', k') Ll —f(o, k) ]—f(a, k) L1—f(o', k') ]I.
(3 7)

From (3.1), we have

f(o-) =f'(X( o) )~-+~f(o-)

BC(o„., k) =e(k)+SIC(o;„k).

We then obtain the linearized equation

df(o...k)i« I-» --= Z ~(e(k) —e(k') )

X~(k, o„„k',o„„.)~j(o;;,1') . 'f~—(a-;„k'),

(3.8)

where we have the scatter-out rate dined as

1/r = Q Tr il (e(k) —e(k') )% (k, o; k', o')
k/ a/

which is similar to the form adopted for F [see (2.'/) ].
We can thus interpret XR' as the scattering rate for the
particle-hole system in the spin-triplet state and
(XW+1/r, ) as the rate in the singlet state.

The collision terms diGer from those of Platzman
and Wol822 in several respects. Firstly, they have
neglected the dependence of the scattering on the
deflection angle cos I(Ie.Ie'). Secondly, the spin-lattice
relaxation time v;, introduced here in the same general
scheme as the orbital relaxation time, plays a role in
the spin-wave dispersion relations slightly di6erent
from that in the Platzman-WolG work. Lastly, the
collision terms there are proportional to the deviation
bf from true equilibrium, whereas they should be
proportional to the deviation 8f from /ocul equilibrium. '6

While this is an error its associated magnitude (Sec. X)
is not very great in Na or K. As regards the two other
discrepancies, the inclusion of angle dependence has so
far not been found necessary for comparison with
experimental data' and, since v,»r, little error was
made by Platzman and YVolE in this respect.

The treatment accorded here to the collision terms
is strictly valid only for elastic impurity scattering.
However, for temperatures much less than the Debye
temperature the scattering from phonons is correctly
taken into account if the vE are made temperature
dependent.

If the only loss mechanisms are the relaxation
processes just described then we may write

The result (3.9), written explicitly with spin subscripts
for clarity, follows from our assumption about the
rotational invariance of the system. That is,

Q b(e(k) —e(k'))'Ã(k, o„.;k', o„„.)
k/, r/

=v/I(k) 8„+k a„'//2(k)

since VP is a scalar. Because of parity inversion it is
clear that 'VP2 must be zero. Further, we shall be
interested in cases where e(k) =er, so that we may
regard r as a constant on this constant energy surface.

There are two types of collision processes to be
considered in an isotropic system. One of these results in
the change of orbital momentum k without any change
in the spin r of the quasiparticle. The other concerns
the Ripping of a spin resulting principally from spin-
orbit coupling. "Neglecting the anisotropy of the latter
we may then w'rite

df(o) /«= df(o) i« I-»'-... (3.11)

d BhU* df'—~n(k)+ —= Z ~(e(k) —e(k') )
dt

X[W(k k')+(Xr )-I]Sn(k') — (3 12)
Bn(k)

d, 88II," dfo
»*(k)+—lv~.

' —= Z ~(~(k) —e(k') )
tA 8

X[W(k, k')+(Xr, ) I]i18.(k')—,(3.13)
88.(k)

which is our fundamental kinetic equation. Hence, by
using (3.1)—(3.4) and (3.8)—(3.10) the linearized
kinetic equations for the various spin channels follow:

'N(k, o„„k",a, , ) =W(k, k')8„„.h„.

+ [1/2X(.) r,]S„,S„..., (3.10)

where r, is the spin-lattice relaxation time and X(e)
is the density of states [cf. (2.25)]. This expression
can also be written

%"(k, a;„k', o;, ) =-,'((W+1/Xr, )b„,b, , +Wa;, o, , I,

—88~(k)+ ,'y ~ —0bH~-* —= Q W(k, k')
8$

X&(e(k) —e(k') )&8+(k') — . (3.14)
88~(k)

We note that the channels are completely decoupled
as a result of the assumptions (2.7) and (3.10) about
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the virtual and real scattering matrices F and V7,
respectively.

Let us consider Eq. (3.14). We can integrate it
directly

BS+(k, r, t) =tIS+(k, r, to)+ dt exp[—(t—t )/r]

right-hand side of (3.17), which gives

tIS~(k(t), q, (v) = dT

I'

X expi
~

&o&a&i,*+— T+q [r(t—T) —r(t) ]r

dfo t, at)H~*x ——
I ,'v, (t-,) (&(4), ~(4), &))l9ti

+ Q W(k, k')()(e(k) —4(k(ti) ) )

X ~-',~ —SH,*(k'(t—T))+ g W(k, k')
A k/

X&( (k) —.(k') )&8~(k'(t—T), q, ) . (3.1&)

where, from (2.23)

k(t )r(T) = dt2 —r(to).
m,*

(3.16)

For the longitudinal spin fluctuations we can prove

58,(k(t), q, co)

dT expi[(co+i/r) T+q (r(t T) —r—(t) )]

Having obtained the result above in real space and
time (r, t) rather than in Fourier space (q, ra), it is
easy to insert initial and boundary value conditions on
bS+. It is somewhat less easy to solve such problems
since time parametrizes the momentum k throughout
and since bII+ is related to 8S~ via an integral equation
in k [cf. (2.6) and (2.7)]. Nevertheless, the result
would be of great value for the study of pulse phe-
nomena, e.g. , spin echoes."

If we consider the "steady-state" problem, the initial
value of 8S~ will not appear in the result. We can set
t)S~(r(to), to)=0 and to= —~ in (3.15). We now

suppose that the small rf magnetic field 6H~ varies as
e '"', thus imparting its timelike behavior to 8S~.
If, in addition, we suppose the Fermi liquid to be
infinite or, at least, translationally invariant (on a
macroscopic, not an atomic scale), then absolute
positions disappear from the pxoblem. We shall assume
that (l)8+, 5H~*) ~ e'&'. Finally, using (2.28) and
(2.30), we obtain the integral form of the kinetic
equation:

4)S~(k(t), q, a&) =

x e pi a "+ -) (i—i,)+4 Lr(i, ) —r(0j

j,(gp —tIH~*(k'(ti) )+ Q W(k, k')
dE. kt'

XS(4(k) —e(k') )&Sg(k'(ti) ) (3 17)

The left-hand side still depends on time, but only
implicitly through k(t) . That explicit dependence
remains can be shown by introducing T= (t—ti) in the

X ia) i2y —5H, ~ (k'(t —T) )

+ Q()(e(k) —e(k'))(W(k, k')+(Kr, ) ) (3.l9)

while, for spin-independent changes,
()n(k(t), q, (o)

dTexpi co ir T q rt —T —rt
0

df' MU*
X — + g )1(4(k) —e(k') )A BT

X(W(k, k')+(Xr, ) ') . (3.20)

These equations summarize the kinetic theory of a
charged Landau-Fermi liquid. For analysis of transport
phenomena we must examine the nature of the scat-
tering of the quasiparticles.

df'/de= t')(4 4i )—. —(4.1)

IV, SCATTERING AT FERMI SURFACE

The Landau interaction matrix &(k, ir, k', o')
describes the scattering of a quasiparticle between the
primed and unprimed states. The energy change in-
volved when interaction with the rf magnetic field
takes place is of order ybB. In alkali metals, if 58 1 Oe,
|)=

~
yl)H/4i,

~

10 '. When interaction with the static
field occuxs and spin exchange results, the energy ratio
involved is b, =

~
yH/eF

~
10 '-10 4 for H 10' 104 Oe. —

So we see that spin scattering is localized to the surface
of the equilibrium Fermi surface. Further, at low
temperatures T the surface is blurred by thermal
eSects to a fractional depth (i(T/4p)~10 ' of the
Fermi sea. Yo this degree of accuracy,
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Thus the integrated kinetic equations (3.18)-(3.20)
really describe only the particles at the Fermi surface,
where the quasiparticle concept and consequently
5 and 'N are well defined, For this reason these quan-
tities should possess the group character of the Fermi
surface. A spherical surface predicates that F be a
scalar in spin space. The most important of such scalar
dependences is that of spin exchange —hence the
choice (2.7) . It also predicates isotropic dependence on
k and k' and so on the angle between the vectors. We
then have

X(k lr') =b(;—.)r(k k')

where k=kpk on the surface. So we shall expand the
components 8 and S in the surface harmonics of a
sphere:

where the density of states Xl is defined in (2.25).
The harmonics I'I (ep) are those of Condon and
Shortley" or Goldberger and Watson. This choice of
spin dependence and momentum dependence for F
also guarantees invariance under time inversion and
space inversion. The matrix VP need not exhibit this
dependence. However, the form chosen, (3.10), is the
most general possible for collisions which preserve the
independence of the scattering of the various spin
channels. Otherwise the momentum dependence of
the total scattering cross section exhibits spherical
symmetry so that we may expand it;

Since quasiparticles are defined only near the Fermi
surface, ' the energy-conserving b function in (3.18)-
(3.20) should be replaced by b(ol —o(k')) and the
coefficients 7~ are now' de6ned for scattering at the
Fermi surface.

The sum over k states can be replaced by an integral
over the Fermi sphere:

b(o~—o(&) )
&(o(&) )

dk b(op —o(lr) )
(2~)o &(o(lr))

and similarly for the spin-density components

G((i;, k) = QGI„'FI (k). (4.11}

Substituting these expansions in (4.9) and using
(4.3) we find that

~E,O5B "(;)=(4 j"%B; ' + Gi ') (4 &2)
1+Bo 1+Bi

after using the orthonormality condition

J d'k 1'I ~(k) 1'I „(k)=bii b (4.13)

Even if the scattering is isotropic {BI=0,t) 0) we see
that bH* is enhanced by the factor 1/(1+Bo) over the
free-particle result. Equation (3.18) now reads, after a
little algebra,

G+(k(t), q, (o) =

Similarly we show from (2.13) that the effective
static 6eld is

H*=H/(1+Bo) .

Since we are concerned with excitations at the
Fermi surface, it is appropriate to introduce the local
density G(0;):

b8(a;, k) = (4or) "'j'7bII(a;) b(op o)—G(0, , k), (4.8)

where we have normalized G(a;) with the driving field
to a dimensionless quantity of order unity. The effective
field b&~(o; k r t) =bH*(o, k q (o)e-'l~' —&'I ex-
perienced by a spin is given by (2.9) and (2.10).
Replacing bS((r,) by the local spin density bs(0;),
(3.2) and (3.5), expressing this in terms of the local
cffcctlve field, (2.9) Rnd (2.10), Rnd llslllg (4.1),
(4.5), and (4.8), we obtain the integral equations

b&*(~,, 0) =m(~, )+(X,/4~) I d&i'e(i i')
XL(4 }'I'bII(;)G(;, k') —be*(,, k') ] (4.9)

for each spin component a;. Duc to Landau scattcllng,
the effective 6eld M* seen by a particle varies from
point to point over the Fermi surface. We expand it in
surface harmonics:

bII*{~,, k) = g bHI *(~;)FI„(k),
'

From (3.9) we have

'= g b(. —o(k-') )t W(k, ir')+ {X,r,)- g=r,-'+r,-'. + Q rI 'Gi +YI„(k(t T)), {4.14)—

(4.6) Rnd R sllllllal' cqllRtloll holds for G*.
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V. INTEGRATION OF KINETIC EQUATIONS IN
INFINITE MEDIUM

In a charged system with a static magnetic 6eld it is
natural to adopt the magnetic axis i as the direction
reference. Without loss of generahty we choose the
direction of propagation j to lie in the x-s plane at an
angle A to the s axis (Fig. 1) . The polar and azimuthal
angles 8 and p, respectively, give the direction of
motion k of the quasiparticle. Ke shall scale time by the
cyclotron period, that is, set t=f/&o, [see (2.24)7.

Since we refer only to particles on thc Fermi surface
k=kpk(8, Q) we may write explicitly the spatial ex-

ponential in (4.14):

q (r(t—T) —r(t))
qk p „. „&-~dP'

(x slnA+z cosk) '
m* N8

X (x s1118 cosf +p sll18 sing +z cos8)

/PE= —Ising s1118[slii($—4') —sin/7 —4' cosA cos8I,

FIG. 1, System of coordinates used. H is the static magnetic

6eld, q is the direction of wave propagation, and tlat, is the direction
of quasiparticle momentum. All careted quantities are unit
vectors.

C-(8) =F.(8, ~)s-'-', {5.7)

where Jr(x) is a Bessel function of the 6rst kind, of
order I' and argument I, and where

(5 1) X(8) = (qvp/M ) sink S1118, (5.8)
where we have used (3.16) and defined the Fermi
velocity

I"g(8) = (au+&oz*+i/r qvp COSA—cos8)/co. , (5.9)

(5 2) m& ——greater of (m, m'), m~ ——lesser of (m, m').
Ke also note that

vp = kp/m

From (4.11) we have

G. =|d'~(8~) F.*(l (W))G'(l (8~)), (5 3)

where the unit element d'k, =dpd8 sin8. Substituting
(4.14) into the right-hand side of this equation, it is

clear that the resulting expression will involve terms
which we shall hereafter label

(l'm'
[ E

~

lm)=(lm
~

E [l'm') (5.10)

The solution to the integral equation (4.14) is given in

(4.11) in terms of the coefficients Gl +, where the latter
satisfy the inhnite set of coupled. algebraic equations

Gl„+= Q [Bp/(1+Blf') 7(l'm'
~
E(X, Fg) ~

lm)Gl. „+
Zl, mr

+(00
/
E

f lm)/(1+Bo)+ g (i/carl )
l«,m«

X(i"m"
~

E
~

lm)Gpi~ri+. (5.11)

2F 1r

(l'm'
~

E
~

lm) = —— dP d8 sin8 Fl„*(8$)
cue 0 0

Xexpi[(u&~r, *+i/r —qsp COSA cos8) 4/~, 7

Gl *——g [Bl /(1+Bi )7(l'm
( E(x, 7,) )

lm)G1.„.*

X exp I (iqvp/~. ) sinn, sin8[sin(y —C) —siny7I
In an entirely analogous fashion we solve the kinetic

X F&'~'(8~ 4 C') (5 4) equation (3.19) for 88. and find that the corresponding

In Appendix A it is shown how this "average over
trajectories" is performed. We And

(lm
/
E (X, F) /

l'm')

27rlo
d8 sin8 Cl„(8)Cl (8)

Z leer

(00(E(lm) +i
1+Bo ~rr, ~rr M'T~PI 4)V 8

X
J„(X)J + ~ (X)

F—(e+m')

2x co= (—1)"& d8 sin8 Cl„(8)Cp ~ (8)

Jr ((X)J (r &)(X)
X

sine F'

X (l"m"
~
E

~
lm)Gl" "', (5.12}

where all quantities are as dined earlier except that
here

Y'(8) = F,(8) = (o)+i/r qvp cosh, cos8)/(o.—, (5.13)

which is independent of the enhanced spin-precession

frequency coL,*. Ke shall not consider the remaining

kinetic equation (3.20) in this paper.
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Xg(q, oI) =My(q, o))/8H~, (6.1)

VI. SUSCEPTIBILITY TENSOR;
GENERAL ALGORITHM

In this, as in all transport theories, the physical
entity investigated requires calculating not the dis-
tribution function itself but rather integrated moments
of the distribution. Here vre are interested in spin-
density phenomena, which involve the zeroth moment
with respect to momentum. They are characterized by
the susceptibility tensor x which, in the case of the rf
magnetic held 8H polarized either parallel or perpen-
dicular to the static field H, is diagonal. Defining y in
terms' of the magnetic induction bH, the transverse
components are

ter qoi/oo„nor (iii) choose a specific direction of

propRg Rtlon.
Retaining an infinite number of the B~ and 7.

~ means
that an infinite sct of coupled equations (5.11) or
(5.12) lias to bc solved. HowcvcI', lf LRIidRii'8 theory
is meaningful when applied to the alkali metals, for
instance, then we are at liberty to assume that the B~
decrease rapidly with increasing l so that we may
truncate the system of equations. Ke shall deal likewise
%'ltll thc Tg.

FoI' arbitrary dlIcct1011 of propagation Rnd lncludlng
an arbitrary number of the 8& and r&, we may discuss
without recourse to numerical Inethods the spin waves
at wavelengths long (gE,((1) and short (qE,»1)
compared with the cyclotron radius

(6.5)

x*(q, ~) =~.(q, ~)/~H*

Tile magnctlzatlon 3II(0';, q Io) ls givcII by

M (o;, q, Io) =y Q 85(o.;, Io', q, oi)

(6.2) At lnteI'IncdlRtc %'Rvclcngt1is JEST~ i w'e must perform
numerical calculations. Examples of such results will
lnd1CRtc thc pI'RctlcRllty of thc algorithm.

d'Io'(4Ir) I~'-,'ybH (o;)

H 28H(a, ) 2»LGoo(ir;, q, oo) —1j,

where we have used (4.11) and (4.12) for each com-
poIicIl't OIFI'0Iil '(6.1) Rnd (6.2) ~ tllc susccp'tlblllty
components are

x+-*(q ~) =xo'(Goo~'(q ~) —1), (6.3)

x.*=2»Lv'/(1+Bo) 3—=xo/(1+Bo)

The factor of 2 arises from the definition of X&, the
density of states for a single spin. %e see that the static
susceptibility xo* is enhanced by the factor 1/(1+Bo)
(&1 for alkali metals) over the free-electron value xo.
Also, the dynamic part of x is altered as a result of the
Landau interaction: The free-electron result is recovered
by setting BI=0 (E&0) in (5.11) or (5.12).

The use of (6.3) (which defines the relevant com-
ponent of the, susceptibility) together with (5.11) or
(5.12) which give Goo+ or Goo*, where the latter quan-
tities are defined through the matrix elements driven
in (5.6)—(5.9) and (5.13) forms a general algorithm
for the study of spin waves in paramagnetic Fermi
liquids. In deriving these results at no stage (i) did we
limit ourselves to the number of Landau parameters
Bi 01' collisioii coefficients v'I included, 110I' (ll) did wc
restrict the wavelength as characterized by the parame-

PI= BI/(1+BI)+ (1/oui)

When the Fermi liquid is completely uniform and
q=0 we may, by use of the properties of Bessel func-
tions (Appendix 8), show Drom (5.5) or (5.6) j that

(r~'(z jr~)=
oi+i/7 Ioi,* IIIoo, — —8II 8„„.. (7.2)

III tllls liilllt, tllc IIiatiix of cqllatioiis (5.11) bccoilics
diagonal. Sy mea, ns of Cramer's rule we can express 600
Rs tlic I'Rtlo E/D of two dctciIIIIIIRllts E, D. TlicII in
(6.3), X liRs SIIlglllRrltlcs Rt D=O. IIispcctioii of this
determinant shows that in the uniform medium the
normal modes are given by

pg~ ( Z
(
f~)=1. (7.3)

That is, from P.1) and (7.2), and (4.6),

oII ——(1+Bi)(oii,*+bio, i(1/ro 1/~I+1/r, —)), (7.—4)

and~ 1Q pRrt1culRI'

oooo ——(1+Bo)(oii,o—i/I;) =oui, —o(1+Bo)/r. . p. 5)

Thc tI'RnsvcI"sc components of thc sUsccptlblllty
will occupy the greater part of our attention since the
results for the longitudinal case, as we saw ea,rlier, may
then be obtained by a simple specialization to that case.
Furthermore, we shall consider explicitly only the
element x (q, oi); the element x~(q, &o) is identical if
wc I'cpIRcc oii, by +oui,

Lct, ils tRkc tllc system of cqllRtloIis (5.11),dropp1ng
all spin-direction superscripts, and truncate it at some
I=I., i.e., set B~, v-g=o, l&L. Retaining the same
(arbitrarily large) number of the Bi as the oI, it is
convenient to introduce the notation
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o)&~ (1+=8&)[m&o, —(i/ro) + (i/ri) ], (7.6)

which is the same result as that obtained for the
transverse case if we set &dr,

*——1/r, =0.
Unlike any of the other modes (l, m) the mode (0, 0)

of the transverse magnetization M (otherwise known
as CESR) is broadened only by the spin-lattice time rt t

Let us now turn to finite wavelengths and consider
the dispersion of these waves:

An interesting point concerning these results is that
the collision times appear to be modified by the Landau
eoeKcients. For instance, the mode (0, 0) seems to have
a vanishingly small linewidth as Bp~—1. It will be
recalled that the B~ are coefficients of the spin-exchange
part of the Landau scattering matrix 8 and Bp is
proportional to the number hS, [cf. (2.11) and (2.12)j
of correlated spins. If a scattering center tries to Rip the
spin of an individual electron, it must fight the tendency
of the spins to be correlated. So, in effect, it must Rip
many spins at once. This difhculty increases as the
ferromagnetic condition (Bo + 1) is-a—pproached for
then all of the (10") spins must be flipped. Conse-
quently (rs) effective~tc ~

The normal modes of the longitudinal magnetization
may be treated in the same way as those of the trans-
verse components. From the algorithm (5.12) we find

Introducing the set of basis vectors e~ and their
respective dual bases e', we can project out Gpp.

Goo= (~ G)= Z (~, 4( ) &[1/&( ) 3Q( ), 8&

= P [I/~(~)]y (~)&/,„(~)(00
I
Z

I /m&/(I+a, )
a, l,m

(7.12)
by using (7.10) and (7.11).

With q as a small parameter, let

X= X&o)+X&" (7.13)

Then consider Gi„and g'" as components of their
respective vectors G and g. The system of equations
(5.11) becomes

XG= g, (7 8)

where the elements of the matrix X are [from (7.4) ]
(/m ( X (

l'm') =)8&(/m
~

X
~

l'm') —5)i /)„~ (7.9)
and

g' = (00 (
If

~
/m&/1+@ . (7.10)

We wish to find the eigenvalues $(n) belonging to the
right and left eigenvectors p(n) and ))/(n}, respectively,
such that, in (7.8)

(7.11)

&o(q) =o)i +D(l, m) q'. (7.7)
where

The reason for this particular form of dispersion will be
apparent presently.

If we take the system (5.11), truncating at some
/=L (i.e. , 8&=0, ri=0, /&L), then there will be

Q il„&——Q (2/ —1) =L'
t=p m=—i

equations to solve, in general. For the general matrix
element (l'm'

~

It
~
lm), we use the Bessel-function

expansion (see Appendix B) correct to O((qE,)').
This gives J„(X)J„(X)~ (-,'X) v+", where p= (Y—m&),
v= —( Y—m&), X=qR, sink sine. Hence only diagonal
elements (m& = m&) can be of order unity, since
elements for which m'=m, /'W/ will be excluded (to
this order) since, in (5.6), we may apply the orthogo-
nality condition (4.13) to prove the point. Then, as
can be easily verified, the determinant D is equal to the
product of zero-order parts of the diagonal elements
plus terms of second order in q arising from multiplying
such diagonal contributions with (i) products of pairs
of elements for which 6m=m& —m&=1, (ii) products
of pairs of elements for which 5m=0, /'W/, (iii) the
second-order contributions from the diagonal elements.

It is now evident why we made the ansatz (7.7).
Because the diagonal terms dominate, the system (5.11)
is amenable to a perturbation treatment with the small
parameter q. It is easier to consider q (rather than qR, )
as the formal parameter because we shall assume that q
is small wherever it appears, i.e., qual((~„coL, co, etc.

(/m
~

X&'&
~

/m&=P&
&t)+1/r Mi, m&t)g

= (&o) (/, m) . (7.14)

There is no reason to assume that all the //i are not all
distinct. Then we can use nondegenerate perturbation
theory to second order for the perturbed eigenvalues f:

&&o)(l, m)

$&"(l, m) = (lm
~

X")
~
As), (7.15)

(7.16)
(lm (

X&'&
~

l'm'&(l'm'
~

X&'&lm)

&« i)w«) $"'(/m) —P&') (l'm')

The first-order eigenfunctions are (omitting order
superscripts)

so that

(l'm'
~

X&"
~
lm)yt'-'(/ m} =

$&" (/m) —$&') (l'm') '

(lm
~

x&')
~

l'm')
&o) (lm) —bio) (l'm') '

&)/
«"'(/m) = i/""'(/m) (Pt /)9&),

(7.17)

(7.18)

(7.19)

using (7.9).
The evaluation of the eigenvalues and eigenvectors is

somewhat tedious. First, we must calculate the three
types of matrix elements that contribute to O(q').
This is shown in Appendix C. Armed with these results
it is straightforward to compute, from (7.15) and
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(7.16), the perturbed eigenvalues

i (iran (l 1 l"l'
g(') (lan) = (2l+1) (q»)' Q (2l'+1)

~

i ~=
I i—11,+ « „0 0)

x (7.20)2( P)'—.'I, ~1 { ~1)j
t'1, l. ls )

nsl m2 f53

is the 3—j symbol of Wigner ' (see Appendix C) . The quantity cd) is to be calculated at a&= ~( . The indices + in
the summation refer to the second term where we add both contributions.

Similarly, we obtain

»+ P (l 1 l"I(l
, Z (»'+1) P-P «00)E o -)
2l+1 (2P+1)P (1 1 l ) (1 1

+
2P' ("P'+")f"(O' P')+"~j (0 0 0) Er)i +1

%e can now obtain the eigenmodes from the zeroes of the eigenvalues. That is, we

0=$(bn) =$("(les) +$("(its) + $")(18$)

"-+ {' )q 1+ ()~((2)
a))„+D(lm) q'+i/r a&z~ m(d-. —

where we have used (7.7) and (7.14). From (7.1) and {7.4) we find that to O(q'),
given by

D(l ) q (1+ill)P)~l pf(" (l)ri) +5")(l ) 3.

! sin'6 (7 21)
—(nsa1))
solve

(7.22)

the dispersion conc&ent D ss

{7.23)

Consequently, using the expressions (7.20) and (7.21) for the perturbations to the eigenvalues we obtai~, on
substituting these in (7.22), the dispersion relation for the mode (l, m):

~,~(q) =~ +)fD~~(les) cos'd+Di(bn) sin'Ajq'=0, {7.24)

where the component along the magnetic 6eld is

211+1 l 1 l')' l 1 l
D~)(l~) = {2l+1)»'

I,o 0 0) t,m 0 —mj
and the normal component 18

{7.25)

1'') (l
D*(lm) = -', (2l+1)»'(1+8))P((u) g (2l'+1) !«0 0) (~ +1 —(m+1))

X , , + — . {7.26)
1 Pi

(~)Ai)' —~.' Pi (~( P(~~.) f~(-(P(—P) ) +~.1
'

From the properties of the 3—j symbols (see Appen-
dix C) we see that the q' coefficient for the mode (lm)
involves the coefficients Pi, Pi+i, Pi i. The exception is
the (0, 0) mode which depends obviously on Po, Pi.

These waves were 6rst considered at in6nite wave-
length by Silin. 4 More recently he has considered the
dispersion properties of the 3=0, 1 modes. "Ke disagree
with his results for the l=1 cases. The procedure
adopted in that work, namely, taking moments of the
kinetic equation with spherical harmonics, is valid if

it is recognized that for the study of the mode (l, m),
the relevant moments are the l and the (1&1)th.
In Ref. T3 only the zeroth and first moments were
retained; therefore correct results were found only for
the mode (0, 0). Here we have avoided the tricky
procedure of taking moments by actually soking the
kinetic equation (without restriction on q) and of then
carrying out the expansion in powers of q'.

To complete this section we shall calculate the pole
strengths for each of the (l, rw) modes. For simplicity
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we shall set 'N=o and so shall consider the relative
strengths of the modes rather than the hnewidths of the
associated resonances. For the latter, it is more useful
to consider the experimental situation, in which a wave
propagates through a finite dielectric (Sec. X).

The pole strength of the mode (l, ohio) is

~i (q)= »m I:«i (q) —«lx(q, «)
co~au gla(q)

=xo* lim
I (oi„(q)—(o)Goo(q, oo),

au~co gee(q)

from (6.3) and (6.4), assuming that the mode derives
from a pole of first order, That is, wc de6ne the total
rcsponsc

Goo(q) = Z ~i-(q)/I «i-(q) —«3

and using (7.12) for Goo, we have

&i-(q) =xoLBij(1+Bo)j«i-0"(igloo)

X Q Pp (lm) (00 I
K

I
l'ohio'}. (7.27)

~oo/xo= I:Bo/(1+Bo))«i(00 I
&

I 00}=«~+O(q'),

(7.28)

where Rll quantitlcs hRvc bccn cvaluatcd Rt ao =&@00=oui, .
For the higher modes we must include terms of O(q'):

~i /xo= LBij(1+Bo)0»-4 "(l~)

X {00
I
E

I lm}+ y«(loN) (00 I
K

I 00}
Bo 1+Bi
Bi(1+Bo)

From (7.17) we have

goo(l, m)

=I (1+B.)B /(1+B) (B-B.) 3(00 I
ff Il ),

so that, for //0

VIII. SHORT-WAVELENGTH REGIME (pe&1)
In this regime, only the case where the waves

propagate normal to the magnetic field (A=-', ir) do
they avoid Landau damping (see Sec. IX). In Appen-
dix D we show that the X-matrix elements are, at
most, of order 1/qR, . As before we write Goo

——iV/D.
Then, referring to (5.11) and (5.12), the denominator
tRkcs thc symbolic form

where o represents terms of order (qE,)-' and (qR, )-o~'.

Thus, to O(o), only products of the diagonal terms can
contribute so that correct to this order the dispersion
relation, corresponding to D=o, is

1= P P P,(i~Is Il~}. (8.1)
lcm l

The details of the calculation of these diagonal matrix
elements arc conta1ned ln Appendix D. Wc 6nd that)
correct in O(qR, } @o Lsee Kq. (D11)g,

M
(&io

I
E

I
bs}= csc oo os, tNÃ—q+-

(gc g~c OPc

OO

X g Ey,~ cos td —col, 'rriM~+—
—1/2

+Q,„sin(2',—-'~), (8.2)
gE~

where I'i, and Qi, are pure numbers. The term with
the former coeKcient should dominate as the asymp-
totic limit

I qE, I~cc is approached. We shall foster
this by setting

&i-/xo=LBi'(1+Bo) j(Bi—Bo) (1+Bi)3

X»„((00 I
Z

I im))'.

It is now straightforw'Rrd to calculate

%,o/xo =
I (1+Bo) (1+Bi)'/(Bi —Bo) '«i, oj

X -', (qop) ' cos'A, (7.30}
ov Q„,( 1)m&-m

X g I')„+ '

„, sin(2'. —-„'m), (8.4)
q&. '"

to 6rst order in g. Substituting this in (8.1) we see that
I qR. I

', which satisfies our requirement. Then,
from (8.3) we have the dispersion relation for short
W'RVCS:

A,gi/xo

I (1+Bo)(1+Bi) /(Bi Bo)»,+1+(1+Bo)«eg
X-', (qoo)

' sin'A. (7.31)

Only the (0, 0) mode is of order unity. The higher
modes (l, m) have strengths ~ q" and in the calculation
shown here we can calculate correctly only the 7=i
modes. For i&1, Ri (q) is an increasing function
of q for small q. Therefore these Inodes have a maximum.
oscillator strength for some 6nite q beyond. the range of
validity of the expansion used and we are'unable to
study them w'ithout either considerable algebraic
CGort or a numerical computation. We have adopted.
the latter alternative.

pp
cu„(q) = (&ol.*+neo.—o/7') 1+ Q

g/yg/ 'FgEg

ov Q, ( . 1)m&~
I')„„+ '

„, sin (2',——,'ir), (8.5)
x-o qA

where Pi is to be evaluated at «=ooi„(0). Unlike the
long-wave limit

I
cf. (7.5) j, the dependence on the

ooto =os, +ska7o &/'f+ Me'g (8.3)

(7.29) and search for solutions ensuring Ig I&&1. Perturbing
about this trial function we shall require that

~ j
(l' 'II~I1' ') I.=.= ' ' (qa)-'( ~)-'
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12

The scattering rate r~ does not appear, in order
unity, in the short-wave dispersion relation. This is
equivalent to saying that in this regime the scatter-in
term t cf. (5.11) and (5.12)] is negligible.

Finally we note that in this asymptotic limit the
strength of any of the modes (l, zzz) is also independent
of the Landau parameters. This is seen most easily by
writing out (5.11) and (5.12) explicitly for Gss in-

cluding an arbitrary number /=I. of the J3&. Then, since
the matrix elements are at best of order (qR,)
including the driving term (00

t
E

~
00), which enters

only multiplicatively, so all corrections to this term

l0— I I I I
)

I I

7r
2

l~
CD

8—o
3

Iq
(I, I)

l2—

10—

2
.0 150

q {cm I)

300

(I,O)

I~
Ã 8—

Fn. 2. Excitation spectrum for 6=0, i.e., propagation along
the static magnetic Geld. We have used values for the parameters
appropriate to sodium, except that B& has been taken equal
to 0.1 in order to improve the visibility of the l=1 modes;
us=6. 1264)&10M rad/sec. Modes with

I
m I)1 are not shown,

and the l=2 modes not appear because we have taken B~——0
and they are therefore Landau damped. For this special angle,
m is a symmetry quantum number, and the spin waves (00)
are not Landau damped by the as= —1 continuum. Collisions
have been neglected. (2, —I)

returns to its respective continuum m:

Go~= (Gdr, +zrzrdg z/1 ) ) (8.6)

accompanied by oscillations of diminishing amplitude
and increasing frequency.

Landau parameters has been relegated to the correction
term, and so, corresponding to the integer m there is
but one mode, instead of (21+1).That is, as qR,~eo
the mode (f, m) which, for qR, =0, began (see (7.5) ]as

cd(„——(1+8))(~r,*+ma&. z/r+z/r ()—

0 1000 2000
q{cm )

FIG. 3. Excitation spectrum for 6= ~~, i.e., propagation across
the static magnetic field. The parameters have the same values
as in Fig. 2. The continua have degenerated to the dotted lines.
Note that the scale of q is di6'erent from that used in Fig. 2.
The L=2 modes now appear at finite q, because of the greater
range of q values free of single-particle excitations. The frequencies
co(q) actually oscillate at high q as they approach the continuum,
as can be shown by mathematical analysis of the general equa-
tions.
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will enter as coeKcients of terms of order (qE,)-',
and smaller. The Landau coeScients B~ and the col-
lision rates vg appear as coefFicients of these correction
terms only.

As before, the longitudinal modes are amenable to
the same procedures and the analogous results readily
obtainable by setting al.*——O.

rx. rmERMEDu, rE-WavELmmH REGurE
(qR, 1); NUMERICAL RESULTS

The matrix elements (5.6) possess branch points.
'These arise from the end-point singularities of the g

integration, that is, at 8=0, m, where the argument of
the sine function becomes equal to an integer multiple
of m. At these points

(9.1)

Then, except for the case 6=-',m we shall always have a
cut in the complex ~ plane when investigating the
dispersion relation for &v(q). The cut, of course, arises
from the crowding or continuum of poles from each
value of 8 in 0&8&m. Ke may interpret this continuum
as a Landau-damping type of phenomenon. In the
presence of the static magnetic 6eld H, we can visualize
a particle precessing at a frequency ~=col~+mco, . The
radius of its cyclotron orbit depends on its transverse
velocitv v~ sin8. This describes the motion in the plane
normal to H. Along it, particles stream with all ve-
locities e, ranging from 0 up to np in either direction.
The wave, meanwhile, propagates at an angle 6 with

respect to the 6eld and consequently the frequency
experienced. by a precessing particle will not be cv but
rather the Doppler-shifted frequency au —pep cosA cos8.
Qn adding up the various contributions from the
particles on the Fermi surface we 6nd that the inter-
action between the wave and particles is greatest
whenever condition (9.1) is satisfied. We may regard
it as the condition for the onset of collective-wave
damping or alternatively of the excitation of individual
particles.

The intermediate-wavelength regime (qE, 1) is

practically inaccessible to analytic investigation. In-

stead, straightforward numerical methods have been
adopted. The results for the spectra of excitations
of the transverse susceptibility in the cases d =0, ~~+

appear in Figs. 2 and 3, respectively. Collision eGects
have been ignored. Ke use the values Bo= —0.21,
B~——0, I)2 (which are roughly appropriate to sodium)
and have set Bi=O.i in order to amplify its eGect and to
render the l=i modes more visible. The numerical
work having been carried out for comparison with
experimental data (Schultz and Dunifer'), dimension-
less variables were not used. The Larmor frequency had
the value cur, =6.1264)& 10" rad/sec, e~ =0.82)& 10'
cm/sec, so that q 2000 cm ' corresponds to qE, 35.
for the frequency range considered (co &ol. &o,) .

Notice that the continua start at co=&or,*+neo.,
m=O, 1, 2 ~ ~, as described above. Moreover the
continua are limited by wedges (locus of the branch
points) centered about these starting points with the
apex angle 2 arctan(cosh) in units tp ——l. When we
recall Lsee (7.4) j that the mode (I, m) begins at
~= (1+B~)(&oJ.*+~,), it is clear that it can remain
outside its respective continuum m and hence be a
propagating mode only by virtue of its respective
Landau parameter being 6nite.

In the case d =-', 7r the continua collapse to a line. It
was for this rea, son that we considered only this case in
the large qR, regime. Notice (Fig. 3) the oscillatory
behavior of co(q) for large q as discussed in Sec. VIII.

A number of curves in Fig. 3 do not appear to be
explained in the theory as presented so far. These are
the curves that appear to emerge from the various
continua m at finite values of q and so would seem to
contradict our contention that 6nite Landau parameters
are necessary to avoid the damping of these collective
modes. Firstly, these "spurious" modes appear in the
case h=~~, where the continua are compressed to a
region of measure zero. Secondly, they are nothing but
the remnants or "ghosts" of the modes (I, m) described
when the respective coefFicient B~ is set equal to zero.
To see the reason for this we look again at the general
dispersion relation ('/. 24)-(7.26), setting 6= ~s. For an
1=2 mode we have Di(2, m) WO even if we set B&——0.
Similarly) if B)=0 then

a)„——{a)I,*+mes, ) 1+-', (2l+1) (qadi )' Q (2l'+1) 1+Bp

(I 1 P)(I
x !((ul,*+num. ) a(a,

L,O 0 0) (~ ~1 —(~~1)) '+B~

So, even without the respective B~ the mode (I, te) is present if qWO, that is, but may be visible only in this direc-
tion of propagation or close to it. Ke see this from the condition for visibility at long wavelengths, namely,

! B((~~'+ m .)+(D()(Em) cos'S+Di(lm) sin'a)q'! )qi, cosa.

On account of the greater multiplicity of modes
possible in the case 6= &x, a certain amount of conges-
tion results in the co-q plot (Fig 3). At fin. ite q they
appear to cross each other and even to pass through

the continuum. In Figs. 4 and 5 we illustrate the effect,
neglecting collisions, for clarity. In the top part of
Fig. 4 we show, with 6=-',s, the dispersion of the {1,1)
mode, using Bo= —0.21 for three values of B~. With
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h ~~/&

9o ~ -0.21

(h, 5) Mode

~ (30 sec )
40

5 2.6—
uum (closed)

I 2.2—

5 5.8
~II

Rq)(q)

Roo(0)

O.O
0 500 &COO

q (cm ~)

Fro. 4. (top) Dispersion curves~(q) of the mode (11)with &=$~ for Bo= —0.21 and various values of 81. (bottom) Oscillator
strength of the (11) mode with 81=0.1. The same values of euL„v~ as those in Figs. 2 and 3 were used.

8~=0 the mode begins in the we= j continuum line.
For Bi=0.03 it begins above this line and intersects
it at finite q. With 8~=0.1 the region of intersection is
magni6ed and the mode splits into two components,
each residing on its own side of the continuum. The
oscillator strength En(q)/R00(0) of the mode (with
B~——0.1) is shown at the bottom of Fig. 4. While the
contribution of either section of the mode to the oscil-
lator strength diminishes rapidly close to the con-

tinuum, the total oscillator strength remains a smooth
and slowly varying function, which is evidence for the
two sections being members of the same "mode. "

In Fig. 5 we have opened. out the continuum slightly
by choosing 6= 2s —0.005. The (1, 1) mode is shown as
before with 80= —0.21, Si =0.1.The mode still appears
to cross. In the lower half of the diagram the oscillator
stl ength ls seen to l3chave similarly to that of the
preceding case. There is one diGerence, however.
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&4,0

45.$

I5.4

cu (50 sec )
&0

0 5.0
m ~1 Conti

&2.6—

0.5

0.4—

R„(q)

Roo(0)

O.O
0 500 )000

s( (cm ')
2000

Pro. 5. (top) Dispersion curve cu(q) of the mode (11) with b, =pm —0.005, Bo=—0.21, B1=0.1. The continuum has opened up to a
narrow fan. (bottom) Oscillator strength of the (11) mode using the same values for Bo and B1.

With the slightly opened fan the collective wave can
lose energy to individual quasiparticles. The sum of the
oscillator strengths is no long(;r a slowly varying func-
tion in the neighborhood of tb, e continuum edge.

X, COMPARISON WITH EXPERIMENT

The problems of transmission. of spin waves in a
finite, metallic slab, which approximates the experi-
mental conditions of Schultz and Dunifer, has been
considered by Lampe and Platzman. "They have found,
at least approximately, that the ratio of the field

transmitted to that incident is

~ g ( —1)"(2—8„,0)y+, „(q=n~/L), (10.1)
+inc n=o

where L is the slab thickness. Removing the phase
factor (—1)" gives the result for the field reflected
from the slab.

The algorithm described here for calculating x has
been used, in conjunction with the formula above, by
Schultz and Dunifer' for comparison with their experi-
mental results in sodium. They have retained the
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Landau coeKcients Bp, Bl, B2 and the collision times
Tp T in the computation of X in the neighborhood

~z. As (10.1) suggests, the eigenvalues of the finite
slab are q„=nx/L, and resonances are to be expected
at frequencies a&(q„) corresponding to these eigenvalues.
In their paper' they show (their Fig. 8) the positions of
tlRnslTllsslon ITlaxima Rnd minima 011 R dispersion curve
and comparing it with the results of the algorithm
they obtain values for the phenomenological parameters
Bp, B&, B2. In the earlier work of Platzman and Wolff, 22

the expression for y near co=co~ was given correct to
O(q'). The more general treatment presented here
extends the range over which comparison with experi-
ment is possible. Moreover it tests the dependence of
the experimental results on B2 as this parameter does
not appear, to O(q'), in the dispersion equation for the
(0, 0) mode. The values reported by Schultz and
Dunifer diGer from those of their earlier work' where
comparison with the more approximate theory was
made. Using (10.1) they compare (their Fig. 9) the
transmitted field spectrum with that obtained from this
analysis.

As we may verify /from (7.24)-(7.26) j, our form
for the long-wavelength dispersion of the (0, 0) mode
agrees with the result of Platzman and Wolg provided
that (i) we neglect terms of order 1/~rr, in the disper-
sion term and (ii) we replace the collision frequency
1/Tps used by these authors by the expression
(1+Bi)(1/r0 1/ri). This—latter quantity is of some
interest for we know that, rigorously, the resistivity
collision time 7, (defined by p=m*jXe'r, ) is related
simply to our collision times:

1/r, = 1/r0 1/ri-
As pointed out in Sec. III our treatment of collisions
and of quasiparticlc interactions is valid at low tem-
peratures if the coeKcients T~ and B~ are made tern-
perature dependent. Thus, apart from the (near unity)
factor j.+Bi, we expect Tg~=T, at all experimental
temperatures, regardless of what the precise tempera-
ture dependence of Tp ls. This unambiguous prediction
does not agree with the measurements of Schultz and
Dunifer. ' It may be, however, that their determination
of the dc resistivity p suBers from the difhculties
(e.g. , inhomogeneities) described and remedied by
Sabiskin and Siebenrnann. "
.XI. COMPARISON OF RESULTS; VISIBILITY OF

MODES; CONCLUSIONS

The treatment given here to the analysis of spin
waves in an isotropic Fermi liquid is fairly complete
in that arbitrary numbers of Landau cocS.cients have
been included as well as the resulting dispersion
properties for arbitrary wavelength and direction of
propagation. While the work of Silin'4 is, of course,
preeminent in this field as the source of the original
investigations, it is of some interest to compare the

results, methods, and limits of generality of subsequent
calculations on nonferromagnetic spin waves.

The long-wavelength dispersion coefFicients given
here [Eqs. (7.24) —(7.26) j reduce to those obtained in' "
if we neglect aH collisions (Silin" divers from these
results for reasons given in Sec. VII). The short-
wavelength behavior (8.5) is not examined exphcitly
in these papers nor do the oscillator-strength results
(7.28)-(7.31) appear to have been given.

The treatment of collisions given here is more
complete than that of" the treatment where the spin-
relaxation process has not been explicitly included.
This is an essential feature in the comparison with
experimental results in the CESR. Also, while not a
discrepancy of major importance, we note that the
collision integral there, although correctly given, is
improperly handled in the transport equation, the
effect being to include relaxation to true rather than
local equilibrium in the "scatter-in" term.

Several features of the present calculation distinguish
it from the others mentioned here. Being carried out
specifically for comparison with experiment, it contains
collision effects consistently throughout. More irn-
portant, it contains an algorithm for the calculation
of the susceptibility including maximum generality.
This algorithm is of practical importance, ' enabling
numerical results to be obtained with relative ease.
The matrix elements (5.6) have been reduced, in
general, to a single quadrative which is an important
advantage over other schemes (e.g. , Refs. 4 and 11).
Thirdly, the derivation of results based on a "molecular-
field" model of the Fermi liquid as described elegantly
by Nozieres" is both interesting and useful. Possessing
the same information as the transport equation, the
integral formulation permits a clearer presentation of
the features of the quasiparticle dynamics. The integral
expressions for the spin densities or charge densities,
(3.18)—(3.20), are in a form directly applicable to
boundary- or initial-value problems. '4

The modes (l, m) analyzed here result from the
energy —,'y Q &Hi~*I'i~ which a quasiparticle has in the
combined Landau and external fields. They would not
exist otherwise. Since 0H varies from point to point,
it Rejects the spatial dispersion of the waves, in addition
to changing the spin precession and cyclotron rotation
frequencies.

To date, of all of these excitations, only the mode
(0, 0) of the transverse magnetization has been ob-
served (Sec. X). Probably the reason for this is the
weak spRtlRI dlspclslon of that cxpclllTicntRI situation.
We recall, (7.29)-(7.31) that for qE.«1 (also qvp/cog,
qvpr«1), the oscillator strength Ei decreases rapidly
with increasing l. In addition Lcf. (7.5) g, the linewidth
of the mode (I, m) is (1/r 1/ri+1/r, ), an—d, since
7 ~~ as l increases and as Tp&&T„SO we can see that the
3=0 mode is the sharpest in definition,

While it would seem dificult to overcome the line-
width problem, it appears more profitable experi-
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mentally to investigate the qR, 1 regime, i.e., I. E,.
In Figs. 4 and 5 we see that the mode (1, 1) is strongest
(with ~o~6.10" rad/sec) for q~1200-1500 cm ' or
L 2.10 ' cm for the fundamental geometric harmonic
(m= 1) . Higher frequencies, while improving ~or values
would demand thinner samples.

With the advent of uv lasers, light sources are
becoming available that can penetrate metals, i.e.,
~&plasma frequency. As suggested by Genkin and
Genkin, " the use of Raman scattering could be a
valuable tool for investigating the spin waves. Under
such experimental conditions the wavelength X=2ir/q
of the scattered radiation is fixed and the observed
quantity is the frequency shift h~ of the natural
frequency excited. For a line of wavelength X~3000 A,
qv~ 10" sec ' in sodium, so that qvpv&&i. However,
even with fields H 50 kOe, we have qR. 20, which is
in the region of strong dispersion. As these authors
have remarked this region has not been investigated
so far. Vnfortunately, the only Landau parameter to
appear t to zero order in (qR, ) '] is Bo, as we see from
(8.5), the size of the effect for the other parameters
being Bi/60&1% for the situation just described.
High resolution would be required to observe the effect.

Although the analysis presented here includes the
effects of (linear) interaction of the various modes we
have not discussed how they might interact with other
normal modes of the system, e.g. , the cyclotron modes.
We should have to solve Maxwell's equations'

V K=4m. {
—2e/(2v)'] f dk be(k)

+4v. (positive background charge), (11.1)

V H=O

VXE+c '(BH/Bt) =0,

VXH c'(BE/Bt) =—(4v./c) (Jp+ J/v), (11.4)

where

Jp L2e/(2v-)'] f dk bn(k) (k/m*), (11.5)

and
Jir=cV&(M (11.6)

Jp(q, &o) t vp

/ (q, ) 4q/m)
(11.8)

Under the experimental conditions described in Sec. X,
q~10' cm ', so that for v~~10' cm sec ', the ratio is of
order 10' . The effects of magnetization are very small.
However, we have assumed the medium to be un-
bounded. Because of the skin effect in a metal, 6E«ba
beyond the skin layer, so that a more careful treatment
is necessary. Also we have not included the effects of a
static magnetic field on the magnitude of J~, J~. The
analysis required to study in detail the interaction
between the magnetization and conduction modes will

be given elsewhere. '4 SufFice it to say that for the alkali
metals (which are weakly magnetic) the treatment used
here remains valid.
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is the magnetization current with M given in (6.1)-
(6.4). The polarization current is of order

Jp (XpevpbE, /oo) evp,

where bEo(~o) is the rf electric field. Similarly, from
(11.4), (11.6), and (6.4), J/ii cqXbHo(vo) cd'XpbH, .
Consequently,

Jp(q, io) evpbE, /vi vp

J/ii(q, io) ybHo Sq/m
'

where we have reinserted 5 into the definition of the
magnetic moment y= (equi/mc) (g/2). This fraction is
proportional to the ratio of the energy gained by a
quasiparticle from the electric field to that of its
moment in the magnetic field. From (11.3) we have
cqbEo vobHo, so that in (11.7) we find

APPENDIX A

Starting with the matrix element (5.4) expressed as

ZM
(l'm'

~
X(X, Y)

~

tm)= ——
(oc 0

dg d8 sin8 Yi~*(8, g) d4 e'rv
0 0

we use the property'7 of Bessel functions

&(expi{X(8)[sin(qh —4') —sing]} Yi (8, $—4),

exp(il sing) = g J„(N)e'"o
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and the definition Ci = Fi e ' to perform the Q integration:

2%M
(Pm'

(
E ( bn) =—

c nn~ 0

d8 sin8 Ci„(8)Ci J„(X(8))J„8 ~„„+ dC exp(i( F(8)—n—m']C }

F(8) —(n+ m')

The summation of the Bessel functions may now be performed as follows. Recall the addition theorem"

Z J.(X)J.+.(X)e'"'= e'"'J.(X'),

X'= 2X sin-,'p, 0=2(~—4)

Integrate on the left- and right-hand sides of the identity with

setting p=m' —m. On the left-hand side we have

dy J„(X)J„,„. (X) expL.—i(&-

On the right-hand side we have

~ expLi(m' —m) (~—p)/2]J (2X sin-,'p) e '&&

) ] ~J„(X)J„+„-„(X)
)1 (

.
2 )]

i())—e)
(A2)

=2 exp( ('~/2) (m' —m) ] d~ J„. (2X sin~) exp) '(m' —m+2&—) ~]

=2expL —(i~/2)(m' —m)] d&J („. „)(2xsin&) expL —i(m' —m+2')6, (A4)

where, in the last line, vie have used

Next, we apply the result"
J (Z) = e' "J' (Z). (A5)

dt A„(2X sin/) em"= se' ~J p(X)J p Rem& —
~

to the former, (A3), of the two integrals above if m'& m and to the latter (A4) if m) m'. Equating the respective
results to the infinite sum (A2) we find

J„J„+„
g —n

sining

™ m'& ns

=(—1)"™.
~

slnÃg

By setting g = F—ns' we obtain the general result

8$+ 5$ .

where m~ is the greater and m& the lesser of (m, m ). Inserting this conclusion in (A1), the E-matrix element is
reduced to a single quadrature:

(f'm'
( E ( lm) = (—1)"& d8 sin8 C (8) C .„(8) . . (A7)

GPg 0 sinir F(8)
This last integral can also be performed" if either X or Y is independent of 8 but, for our purposes, it is more con-
venient in the present form.
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APPENDIX 3
From the power series representation of a Bessel function

OO ( 1)n
J„(X)= (-,'X) Q (~x)'",

it can be shown that the product of two Bessel functions may be written

(—1)"r(p+v+2e+1)
~ r(p+v+e+I) r(e+I) r(p+e+I) r(v+n+I)

It is a property of the gamma function F that

r (F)r (1—F) = m'/sln7r F (F not integral) .

r(F) r(1—F)
I'(F—m&+1) I'(1—F+m&)

For X=O it is clear that

Jr~J (r &)/sinn F=0
=(—1) /(F —m)

Then we can expand the series above:

~—1(XX)wa&-no&

sine Y
(m, —m, + 2) r(F) r(1—F),(-'X) '+ ~ ~

(F—m&+2) I'(2—F+m&)

for stye

for m~=nz&=m.

Finally, for calculation of the matrix elements (lm I E!Pm') we need

Am=0,

hm= 1,
[sJr(x)J r(x)/sins. F]=F '{I——,'[X'/(1 —A) j+O(X') I;

[~J„(X)J &„„(X)/sin~ F]=-',X[F(I~F)]-+O(X).

APPENDIX C

The three types of E-matrix elements contributing to the small-g analysis may be calculated as follows from the
properties given in the two preceding appendixes.

(i) d,m=+1
From (Al) we can show that

{I',m+1! E!I, m) =mes(qvp sink) d8 sin'8 (Ci)[~—mu. —qvp cos& cos8j[&a—(m&1)~, qwF cosA cos8J—

where
co =a)+ i/r —a)r.*.

We shall make use of the signer 3—j symbols":

(Z,yi)(Z, +1)(2I.+1)i«2 r'~ '2 I)('~
d &Flgm&F(yasFlsms=

unit sphere 0)& )
where the integral vanishes unless

and in the case where m~=es2=@&3=0,

mg+m2+ ma =0,

I Ii—41(IS( I
Ii+Im I,

(C2')

(C2")

(4+4+Is) ls even. (Cglll)

Recalling the definition (5.7) of C~ (8), it is straightforward to obtain

N g8g sink
(V, mal! E

I I, m)= ——
42 ((o—eau, ) ((o—(m+1) (o,)

1 I')(» V

X ((»+1)(»'+ 1))'" I I+o(q') (C3)
0) (m +1 —(m+1))
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(ii) LUDO, hm=o
Proceeding as 111 case (i) we have

2m' . g8g cosk cos8
&Pm! E!lm}= d8 isn8G 6 1+ +O(q')

(l'O l P O

((2l+1) (2P+ 1)) ~!
ko o o)(m o —m)

i) ('l'

!+ ((2l+1) (2l'+1) )' '!
&o o o) k

(l' 1

, ((2l+1) (2l'+1) )'"
I !!qep coach+0 (q3),

(au tnu—),) ' (o . o o) ( o —j
where we have used (C2") and the fact PWl to eliminate the former of the two pairs of 3—j symbols.

(iii) dm=o, hi=0

(lm! E!lm)= (—1)~2s'co
d8sin8C~ ' 1 (qadi sinhsin8)'

1——, , +Oq'
m»»g qpip c—oBB co—s8 2 4)g —((d—tpk»g)

(qadi cosh cos8)' 1 (qadi sink sin8)'

(a& mr», )—' 2 a),2—{a)—ma, ) '

( 1)m~
dH sln8 Cg~ cos 8= d'k Fg Fg, Fg,0'

2m 3

I &+&I l 1 l'' l 1 P
=(2~) ' Z (2l+1)(2l'+1)

I

&ooo)& o-)
where we have used

P' 4—( 1)mg

I'i, o
——(3/kr) "' cos8.

F'i,pi= + (3/Ss') i sin88+'».
YVe shaH also need

Finally, we obtain

qv~ coals' ' ~'+'~ l ~ t+ - Z (2'+') (2'+')
I

44—~c l~ I/-1) &o o o) ( o — )
f'1 1 P't'( l 1 l'

+ — ', , Z {»+»(2P+1)!
2 ((id fSMg) Ne ll ( I—i ),+ (O O O) (m ~1 =(m~1) j

The spherical harmonics F~ used here are those of Condon and Shortley. "They are defined Lcf. {5.7) j
2l+1 (l—jm!)! 'i' . dP' (8y) —( 1) ((ns) m)/2- sinI I8 P&(cos8) =—Cg e'"», (C11)kr (l+!m!)! d cos8

such that the C~ are real. I'~ is a Legendre polynonual.

where we have expanded the denominator correct to O(q') and found that the term of O(q) vanished from sym-
metry considerations. We now use the decomposition property of spherical harmonics,

[ ll+l2] w 2l 1 2 1 2 1 g/2 li l2 X li l2 X

to show, for instance, that
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APPENDIX D

We shaH derive here expressions for the E-matrix elements for the case 6=-,Ir in the asymptotic limit
~ qR, ~&&1 or

~
(a) a—&1,

* II—Ia),+I'/r)/(0, ~. We have, from (5.8) and (5.9),
X= (gs/p/(()p) s1118, F= (M 0—)1, +t/ l)/'cdp

Tile Bcssci fllIlct1011S Jr (X) Illav bc 1cplRccd by their RsyIllptotlc fo1'111

Jr(X}= (2/IrX) I"cos(X——',IrF—-dIIr)+O(X 3/'),

so that correct to O(X I/'), a typical matrix element is

(l'm'
~
E

~
()tII) = (21r~/a), ) (—1)"&(a&,/qI p) cscIr F

d8CI (8)CI' '(8) t cosIr(F III&+S(III&—III~) )+sin(2X —-', Ip(()II —IN~) )J, (D3)

w!11cll ls clcal'ly of ol'dcl' (gRd) „Rt 111ost. Wc shRll liow co11ccIltl'xL'tc 011 thc dIagonal clc111c11ts (f=/ ) III&=III(=III) .
In Appendix C we found

I—( 1)mF F'

and, from (C2"'), X is an even integer. But

from (C11).Now
F)0(8) =C10= t (2}(,+1)/4Ip)1"R, (cos8) (D5)

dg
d8P1(cos8)=,„,P), (N)

0
NI 1/2

(X even)

=
t 1'(;(a+1))/I (Q,+1))', (D6)

according to Gradshteyn and Ryzhik. "This deals with the first of the integrals in (D3) . For the second we note
that since P),(cos8) is even about 8= —,Ir as X is an even integer, so the integral is nonzero. We take the series repre-
sentation

(—1)'(2}(,—2r) !
&1(cos8) = g „, ,

(cos8)"-'",~2"r! X r! X——2r !

which indicates that in (D3) we require the integral

(D'f)

d8 cos" '"8 sin(2Z sin8),

In the range of integration the outer sine function varies rapidly except close to 8= —,m which, as can be verified, is a
point of stationary phase. Let 8= sm.+f so that cos8 ifd+0()fd'). Then the integral above may be replaced by

dddx-'"eie[2Z(1 —',d') j (2)) 'f ddd' "[exp((2Z) exp( —idd') —exp( —e2Z) exp(dddd)]. (DS)
~ ~ ~

From the Gaussian integral
00

I0= @exp( —aP) = (D9)

ee 1/(Ixx+1/O

Since we do not require terms of order smaller than Z '/' in the integrals in (D3), we may discard all terms from

the expansion (D7) except for }(,=2r. But from (DS) and (D9),
1/2

d8 S111(2Z S1118)= — Sill(2Z —4m') +O(Z 3/2) . (D10)
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This deals with the second of the integrals ot (D3). Assembling our results we have, correct to O(oi jqv~) sls

&i~ I
&

I J~)=(—1)" (»+1) Z (»+i) I ll lcsc~(I' —~)I« o) k — o)
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